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QUALITATIVE AND BIFURCATION
ANALYSIS USING A COMPUTER VIRUS

MODEL WITH A SATURATED RECOVERY
FUNCTION

Nemat Nyamoradi1,† and Mohamad Javidi1

Abstract In this paper, we introduce a saturated treatment function into the
computer virus propagation model, where the treatment function is limited
for increasing number of infected computers. By carrying out global qualita-
tive and bifurcation analysis, it is shown that the system exhibits some new
and complicated behaviors: if the basic reproduction number is larger than
unity, the number of infected computers will show persistent behavior, either
converging to some positive constant or oscillating; and if the basic repro-
duction number is below unity, the model may exhibit complicated behaviors
including: (i) backward bifurcation; (ii) almost sure virus eradication where
the number of infective computers tends to zero for all initial positions ex-
cept the interior equilibria; (iii) oscillating backward bifurcation where either
the number of infective computers oscillates persistently, if the initial position
lies in a region covering the stable virus equilibrium, or virus eradication, if
the initial position lies outside this region; (iv) virus eradication for all initial
positions if the basic reproduction number is less than a turning point value.
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1. Introduction

Mathematical modeling has been playing an ever more important role in the study
of epidemiology. Various epidemic models have been proposed and explored exten-
sively and great progress has been achieved in the studies of disease control and
prevention [3, 4, 6, 7, 8, 11] and the references therein.

Due to the high similarity between computer viruses and biological viruses
[2], the classical SIR (Susceptible-Infected- Recovered) computer virus propaga-
tion model was proposed [5, 9, 12], which is formulated as the following system of
differential equations: 

dS
dt = b− λS(t)I(t)− dS(t),
dI
dt = λS(t)I(t)− εI(t)− dI(t),
dR
dt = εI(t)− dR(t),

(1.1)
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Here it is assumed that all the computers connected to the network in concern
are classified into three categories: susceptible, infected and recovered computers.
Let S(t), I(t) and R(t) denote their corresponding numbers at time t, respectively.
This model involves four positive parameters: b denotes the rate at which external
computers are connected to the network, ε denotes the recovery rate of infected
computers due to the anti-virus ability of the network, d denotes the rate at which
one computer is removed from the network, λ denotes the rate at which, when
having a connection to one infected computer, one susceptible computer can become
infected.

Recently, Jianguo Ren et. all in [10] introduced a new recovery function

T (I) =

{
εI, if 0 ≤ I ≤ I0,

m, if I > I0,

where ε is the recovery rate when the anti-virus ability is not fully utilized, m = εI0
to characterize the saturation phenomenon of the limited anti-virus ability of a
network and carefully investigated the dynamics of the following computer virus
propagation model 

dS
dt = rS

(
1− S

k

)
− λSI − dS,

dI
dt = λSI − T (I)− dI,
dR
dt = T (I)− dR.

(1.2)

Similar to the argument in [13], we take the saturated recovery function as

T (I) =
µI

1 + αI
,

where µ is positive and α is nonnegative, to show that the network condition is
limited for increasing number of infected computers. Then the model to be studied
takes the following form:

dS
dt = rS

(
1− S

k

)
− λSI − dS,

dI
dt = λSI − µI

1+αI − dI,
dR
dt = µI

1+αI − dR.

(1.3)

Before going into any detail, we simplify the model. Since the first two equations
of (1.3) are independent of the third one and its dynamic behavior is trivial when
I(t0) = 0 for some t0 > 0, it suffices to consider the first two equations with I > 0.
Thus, we restrict our attention to the following reduced model:{

dS
dt = rS

(
1− S

k

)
− λSI − dS,

dI
dt = λSI − µI

1+αI − dI.
(1.4)

To our knowledge, this is the first time the effect of anti-virus ability is taken into
account this way. First, we give the threshold value determining whether the virus
dies out completely. Second, we study the existence of equilibria, and investigate
their local asymptotic stability. Next, we find that, depending on the anti-virus
ability, the system may undergo a backward bifurcation, which is instructive for
us when choosing an appropriate virus-controlling strategy. Finally, we prove that,
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under appropriate conditions, the system may admit bistable states: a stable virus-
free equilibrium and a stable virus equilibrium, or two stable virus equilibria.

The organization of this paper is as follows. In the next section, we present
preliminary results for our model including the boundedness and existence of equi-
libria and backward bifurcation. In Section 3, we present a stability on virus-free
equilibrium.

2. Backward bifurcation

In this section, we will give some preliminary results from (1.4), including the bound-
edness and existence of equilibria and backward bifurcation.

One of the key concepts in dealing with computer virus models is the basic
reproduction number, usually denote it by R0, which plays an important role in
computer virus propagation. One often observes the threshold property that the
virus removed out if R0 ≤ 1 and invade the susceptible host if R0 > 1. In this
case, the bifurcation leading from a virus-free equilibrium to an virus equilibrium
is called forward bifurcation.

However, more and more studies reveal that, under appropriate conditions, many
computer virus and epidemic models admit backward bifurcation, i.e., both the
virus-free equilibrium and the virus equilibrium coexist when R0 ≤ 1 and the basic
reproduction number cannot be the necessary threshold for the virus eradication.
It is very important to identify the backward bifurcations to obtain some necessary
thresholds for the control of virus.

We can define the basic reproduction number as

R0 =
kλ(r − d)

r(d+ µ)
.

It is obvious that (1.4) always has a trivial equilibrium E = (0, 0) and unique virus-

free equilibrium E0 = (k(r−d)
r , 0). The virus equilibria of (1.4) can be obtained by

solving the following algebraic equations

rS
(
1− S

k

)
− λSI − dS = 0, λSI − µI

1 + αI
− dI = 0. (2.1)

First, from the first equation of (2.1), we obtaining I = k(r−d)−rS
kλ . We substitute

this into the second equation, which yields

S2 −
[kλ
αr

+
k(r − d)

r
+

d

λ

]
S +

kµ

αr
+

d

λ

[kλ
αr

+
k(r − d)

r

]
= 0. (2.2)

Let the discriminant of (2.2) be ∆ =
[
kλ
αr + k(r−d)

r − d
λ

]2
− 4kµ

αr . Then it is easy to

see that

∆ =
[kλ
αr

+R0

(d
λ
+

µ

λ

)
− d

λ

]2
− 4

kµ

αr
. (2.3)

Therefore, we have the following simple statements which describe the number and
location of equilibria of system (1.4).

Now, we know that ∆ ≥ 0 is equivalent to

R0 ≥ 1− kλ2 + µαr

αr(d+ µ)
+

2λ

d+ µ

√
kµ

αr
:= ϱ0, (2.4)
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R0 ≤ 1− kλ2 + µαr

αr(d+ µ)
− 2λ

d+ µ

√
kµ

αr
, (2.5)

Note that kλ
αr + k(r−d)

r + d
λ > 0 is equivalent to

R0 > −1− kλ2 − µαr

αr(d+ µ)
.

It follows that ∆ ≥ 0 if and only if (2.4) holds. Let us suppose that (2.4) holds.
Then (2.2) has two positive solutions S1 and S2, where

S1 =
kλ
αr + k(r−d)

r + d
λ +

√
∆

2
, and S2 =

kλ
αr + k(r−d)

r + d
λ −

√
∆

2
,

where S2 < S1. So one can get

I1 =
k(r − d)− rS1

kλ
, and I2 =

k(r − d)− rS2

kλ
,

then E1 = (S1, I1) and E2 = (S2, I2) are the candidates of the virus equilibria of

(1.4). Then Ei (i = 1, 2) is an virus equilibrium of (1.4) if Si <
k(r−d)

r .
To facilitate the discussion below, define

ϱ1 := 1 +
kλ2 − µαr

αr(d+ µ)
.

Theorem 2.1. Assume that R0 ≥ ϱ0.

(i) If λ <
√

µαr
k , then both E1 = (S1, I1) and E2 = (S2, I2) exist when ϱ1 < R0 <

1.

(ii) If λ <
√

µαr
k , then E1 does not exist but E2 exists if R0 > 1.

(iii) If λ ≥
√

µαr
k , then E1 does not exist. Furthermore, E2 exists when R0 > 1,

and E2 does not exist when R0 ≤ 1.

Proof. We know that Ei (i = 1, 2) is an virus equilibrium of (1.4) if Si <
k(r−d)

r .

Let us consider the conditions under which S1 < k(r−d)
r . By the definitions, we see

that this is equivalent to

−
√
∆ >

kλ

αr
+

d

λ
− k(r − d)

r
. (2.6)

This implies that

kλ

αr
+

d

λ
−R0

(d+ µ

λ

)
< 0. (2.7)

It follows that

R0 > 1 +
kλ2 − µαr

αr(d+ µ)
= ϱ1. (2.8)

On the other hand, by (2.6), we have[k(r − d)

r
− kλ

αr
− d

λ

]2
> ∆. (2.9)
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It follows that (2.9) is equivalent to

R0 < 1. (2.10)

Hence, S1 < k(r−d)
r holds if and only if (2.8) and (2.10) are valid. Moreover, if

R0 ≤ ϱ1 or R0 ≥ 1, we have S1 ≥ k(r−d)
r .

By arguments similar to those above, we see that S2 < k(r−d)
r if (2.8) holds or

1 < R0 < ϱ1.
Note that λ <

√
µαr
k is equivalent to ϱ1 < 1. The proof is complete.

Note that ϱ0 < 1. If λ <
√

µαr
k , then ϱ1 < 1. Then, from (i) of Theorem 2.1, we

have the following corollary for giving conditions for such a backward bifurcation
to occur.

Corollary 2.1. System (1.4) has a backward bifurcation with virus equilibria when
R0 < 1 and λ <

√
µαr
k .

Note that a backward bifurcation with virus equilibria when R0 < 1 is very
interesting in applications. The basic reproduction number does not provide a
description of the necessary elimination effort; rather the description of the effort
is provided through the value of the critical parameter at the turning point. Thus,
it is important to identify backward bifurcation to obtain thresholds for the control
of virus.

3. Stability of equilibria

In this section, we deal with the global dynamics of (1.4). First, we examine the
local stability of the equilibria by analyzing the eigenvalues of the Jacobian matrices
of (1.4) at the equilibria.

The Jacobian matrix of (1.4) at the virus-free equilibrium E is

JE =

(
r − d 0
0 −(d+ µ)

)
,

which implies that E is always a saddle.
The Jacobian matrix evaluated at E0 is

JE0 =

(
−(r − d) −kλ(r−d)

r

0 kλ(r−d)
r − µ− d

)
,

which has negative eigenvalues, implying asymptotic stability of the disease-free
equilibrium if and only if

kλ(r − d)− r(µ+ d)

r
< 0,

which is equivalent to R0 < 1. So the virus-free equilibrium E0 is locally asymptot-
ically stable if R0 <1, and is unstable when R0 > 1.

Then, from the above discussions, we get

Theorem 3.1. Consider model (1.4). The following assertions hold.

(i) E is a saddle.
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(ii) If 0 < R0 < 1, then the virus-free equilibrium E0 is locally asymptotically
stable while it is unstable if R0 > 1.

Let Ji be the Jacobian matrix of (1.4) at Ei = (Si, Ii), i = 1, 2; then we get

Ji =

( − r
kSi −λSi

λSi
µαIi

(1+αIi)2

)
.

Thus, one can get

det(J1) = S1I1

(
λ2 − µαr

k(1 + αI1)2

)
.

Note that R0 > ϱ0 and

I1 =
k(r − d)− kλ

α − dr
λ − r

√[
kλ
αr + k(r−d)

r − d
λ

]2
− 4kµ

αr

2kλ
.

It follows from the above two conditions that

(1 + αI1)
2 =

αrλ ·
k(r−d)

r + kλ
αr − d

λ −
√[

kλ
αr + k(r−d)

r − d
λ

]2
− 4kµ

αr

2k


<

α2r2[kλαr + k(r−d)
r − d

λ

]2
4k2λ2

<
µαr

kλ2
,

then, det(J1) < 0. It follows that E1 = (S1, I1) is a saddle point.
By the same argument, we obtain det(J2) > 0. Thus, E2 = (S2, I2) is a focus, a

node, or a center. Further, we have

trJ2 =
kµαI2 − rS2(1 + αI2)

2

k(1 + αI2)2
(3.1)

Since µI2
1+αI2

= λS2I2 − dI2, we see that the trace of J2 is

trJ2 =
1

(1 + αI2)

[
α
(
λ− r

k

)
S2I2 − αdI2 −

r

k
S2

]
. (3.2)

Thus, the trJ2 is negative if λ ≤ r
k . Suppose that λ > r

k . Let us find the conditions

under which trJ2 = 0. Since S2 = k(r−d)
r − λk

r I2, it follows from (3.2) that trJ2 = 0
is equivalent to

αλ(r − kλ)

r
I22 +

[α(kλ− r)(r − d)

r
− αd+ λ

]
I2 − (r − d) = 0. (3.3)

Thus, by (3.3), we can get that trJ2 ̸= 0 if

α(kλ− r)(r − d)

r
− αd+ λ ≤ 0. (3.4)
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Suppose that

α(kλ− r)(r − d)

r
− αd+ λ > 0. (3.5)

It follows from

∆2 =
[α(kλ− r)(r − d)

r
− αd+ λ

]2
+ 4(r − d)

αλ(r − kλ)

r
> 0, (3.6)

that we obtain

I2 =

[
α(kλ−r)(r−d)

r − αd+ λ
]

2αλ(kλ−r)
r

1±
√√√√√1 +

4(r − d)αλ(r−kλ)
r[

α(kλ−r)(r−d)
r − αd+ λ

]2
 .

In view of I2 < r−d
λ , we have

I2 =

[
α(kλ−r)(r−d)

r − αd+ λ
]

2αλ(kλ−r)
r

1−
√√√√√1 +

4(r − d)αλ(r−kλ)
r[

α(kλ−r)(r−d)
r − αd+ λ

]2
 . (3.7)

Hence, after a long and tedious calculation and using (3.7) can be reduced to

µ =
αr

4k

[[kλ
αr

+
k(r − d)

r
− d

λ

]2
−H2

]
, (3.8)

where

H :=
λ2r

α(kλ− r)
− dr

λ(kλ− r)

−
√[α(kλ− r)(r − d)

r
− αd+ λ

]2
+ 4(r − d)

αλ(r − kλ)

r
.

(3.9)

As a consequence, we see that (3.6), (3.5) and (3.8) are the necessary and suffi-
cient conditions for trJ2 = 0. The previous discussion show that the stability of E2

does not change if (3.4) holds. It follows from the definition of trJ2 = 0 that (3.4)
implies that trJ2 < 0. Therefore, E2 is stable if (3.4) holds. It follows from (3.1)
and (3.9) that trJ2 < 0 if

α(kλ− r)(r − d)

r
− αd+ λ > 0,

µ <
αr

4k

[[kλ
αr

+
k(r − d)

r
− d

λ

]2
−H2

]
, (3.10)

and that trJ2 > 0 if

α(kλ− r)(r − d)

r
− αd+ λ > 0,

µ >
αr

4k

[[kλ
αr

+
k(r − d)

r
− d

λ

]2
−H2

]
. (3.11)

From the above discussions, we get
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Theorem 3.2. Let λ <
√

µαr
k , ϱ1 < R0 < 1 and (3.6) hold. For system (1.4), we

have

(i) E2 is stable if either (3.4) or (3.11) hold.

(ii) E2 is unstable if (3.11) hold.

3.1. Analysis at R0 = 1

In this section, we consider the system (1.3), when α = 0. To use the center
manifold theory, as described in [1] (Theorem 4.1). To apply this method, the
following simplification and change of variables are made first. Let S = x1, I = x2,
R = x3, the system (1.3) with α = 0 becomes

dx1

dt = rx1

(
1− x1

k

)
− λx1I − dx1 = f1,

dx2

dt = λx1x2 − µx2 − dI = f2,
dx3

dt = µx2 − dx3 = f3.

(3.12)

with R0 = 1 corresponding to λ = λ∗ = r(d+µ)
k(r−d) . The virus-free equilibrium is(

x∗
1 = k(r−d)

r , x∗
2 = 0, x∗

3 = 0
)
. The linearization matrix of system (3.12) around

the infection-free equilibrium when λ = λ∗ is

Jxf =

 −(r − d) −kλ∗(r−d)
r 0

0 kλ∗(r−d)
r − µ− d 0

0 µ −d


=

 −(r − d) −(d+ µ) 0
0 0 0
0 µ −d

 .

The matrix Jxf has eigenvalues (0,−d,−(r−d))T , which meets the requirement
of a simple zero eigenvalue and others having negative real part. A right eigenvector
ω corresponding to the zero eigenvalue is ω = (−d+µ

r−d , 1,
µ
d ) and the left eigenvector

satisfying ν · ω = 1 is ν = (0, 1, 0). For te system (3.12) we can get

a =
3∑

k,i,j=1

νkωiωj
∂2fk

∂xi∂xj

(k(r − d)

r
, 0, 0

)
= −2r

k

(
d+ µ

r − d

)2

< 0,

and

b =
3∑

k,i=1

νkωi
∂2fk
∂xi∂λ

(k(r − d)

r
, 0, 0

)
=

k(r − d)

r
> 0.

Thus, a < 0, b > 0, by item (iv) of Theorem 4.1 in [1], we can give the following
result:

Theorem 3.3. The virus equilibrium point E1 =
(
x∗
1 = k(r−d)

r , x∗
2 = 0, x∗

3 = 0
)

for system (1.3) is locally asymptotically stable for R0 near 1.
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