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A CUBIC DIFFERENTIAL SYSTEM WITH
NINE LIMIT CYCLES
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Abstract Advances in Computer Algebra software have made calculations
possible that were previously intractable. Our particular interest is in the
investigation of limit cycles of nonlinear differential equations. We describe
some recent developments in handling very large computations involving re-
sultants and present an example of a nonlinear differential system of degree
three with nine small amplitude limit cycles surrounding a focus. We know
of no examples of cubic systems with more than this number bifurcating from
a fine focus, as opposed to a centre. Our example appears to be the first to
have been obtained without recourse to some numerical calculation.
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1. Introduction

There continues to be much interest in polynomial differential equations in the
plane and, in particular, their closed orbits: this is the general area of Hilbert’s
16th Problem. Systems

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

are considered, where P,Q are polynomials. There are two particular questions:
given a class of systems, how many limit cycles can exist? and how can they be
configured? The latter can be thought of as asking how many ‘nests’ of limit cycles
can there be and how are these arranged, and the former how many limit cycles
can there be in a nest.

In order to ensure that the presentation is reasonably self-contained, we sum-
marise the mathematical background.

A limit cycle is an isolated closed orbit and a critical point is a point where
both P and Q are zero. It is known that a given system of the form (1.1) has
finitely many limit cycles, but it is not known whether there is a uniform bound
for systems of a given degree. Even for systems in which P,Q are quadratics the
maximum possible number of limit cycles remains unknown.

One way to approach a problem is to start with a known structure and to
introduce perturbations. Since a closed orbit must encircle a critical point, much
effort has been devoted to estimating how many limit cycles can bifurcate from a
critical point of focus type, a centre or from the orbits forming the period annulus.
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A centre is a critical point all orbits in a neighbourhood of which are closed.
The period annulus is the set of closed orbits around it. A focus is a critical point
in a neighbourhood of which the angular variable θ tends to infinity on orbits. We
restrict our attention to non-degenerate critical points, that is critical points for
which the eigenvalues of the linearisation of the system are non-zero.

Suppose that the origin is a non-degenerate critical point of focus type. In a
neighbourhood of the origin the system can be written in the canonical form

ẋ = λx+ y + p(x, y), ẏ = −x+ λy + q(x, y), (1.2)

where p, q are polynomials without linear terms or constants.
The critical point at the origin is a fine focus if λ = 0. Limit cycles that bifurcate

from a fine focus are said to be of small amplitude. The number of small amplitude
limit cycles that can bifurcate from a fine focus is bounded by the order of the
fine focus. The order can be defined as follows. It is known (see Nemytskii &
Stepanov[9]) that there is an analytic function V (x, y), defined in a neighbourhood
of a fine focus, such that V̇ , the rate of change of V along orbits, is of the form

V̇ =

∞∑
k=1

η2kr
2k,

where r2 = x2 + y2 and the η2k are the focal values. The order of the fine focus is
k if η2l = 0 for l ≤ k, but η2k+2 ̸= 0. At most k limit cycles can bifurcate from a
fine focus of order k, but the maximum is often not attained.

Quadratic systems have been studied extensively. It was proved early in the
development of the subject that no more than three limit cycles can bifurcate from
a focus or centre for quadratic systems, see Bautin [2]. In a recent paper, Zhao [14]
proves that no more than five limit cycles can emerge from the orbits forming a
period annulus and conjectures that the maximum number is three.

Much less is known about cubic systems. In Zoladek [15] it is shown that no
more than eleven limit cycles can bifurcate from a centre in a cubic system. This
is a difficult paper to understand. Using a different approach, Yu & Han [13] start
with the integrable system of Zoladek’s example and introduce perturbations under
which nine limit cycles bifurcate from a centre. Using their method they are unable
to obtain more than nine. Christopher [3] gives an example of another cubic system
in which eleven limit cycles bifurcate from a centre. His approach is simpler, though
it does not necessarily lead to the maximum number. The idea is to start with values
of the coefficients in p and q for which the origin is a centre of (1.2). All coefficients
are perturbed and the linear parts of successive focal values set to zero until they
cease to be independent. These approaches obviously require information about
the conditions for a centre; a complete set of centre conditions for the general cubic
system is not known.

In James & Lloyd [5] an example of a system with eight limit cycles bifurcating
from a focus was given. The approach adopted there, as elsewhere, was to calculate
focal values, obtain a fine focus of high order and to introduce a sequence of pertur-
bations each of which reverses the stability of the critical point. In this exchange
of stability a limit cycle is produced (Hopf bifurcation). This approach is explained
in more detail later in this section. Conceptually it is straightforward, however
determining the order of a fine focus in this way involves some very complicated
calculations; it is possible only by using computer algebra and is computationally
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demanding. Our implementation of this approach involves the computation of de-
terminants of matrices whose elements are large multivariate polynomials. Some
specialised and bespoke software is required for the more complicated calculations.

Yu & Corless [12] gave an example in which nine limit cycles can be bifurcated
from a focus, namely

ẋ = λx+ y + x2 + cy2 + fx3 + gx2y − 3pxy2 + ky3,

ẏ = −x+ λy − 2xy + lx3 + (m− 2f)x2y + (n− g)xy2 + py3.

In contrast to our approach they use numerical techniques to complete the calcula-
tions.

We revisited the question of limit cycles bifurcating from a fine focus in the light
of the significant advances in Computer Algebra, some of which were described in
Pearson & Lloyd [10]. To go beyond the bifurcation of eight limit cycles using this
approach requires a surprisingly large increase in computational sophistication. We
perform all our computerised calculations on a Dual 3.2 G Hz Xeon processor, with
2 GB of memory, running a Linux Gentoo operating system.

We consider cubic systems and show that

ẋ = λx+ y + x2 − 2b1xy + (a3 − 1)y2

+a4x
3 + a5x

2y − (2a4 + b7)xy
2 − b4y

3,

ẏ = −x+ λy + b1x
2 + 2xy − b1y

2

+b4x
3 + (b5 − a4 − 2b7)x

2y + (b6 − a5)xy
2 + b7y

3,

with certain relationships between the coefficients ai, bi, can have nine limit cycles
bifurcating from a fine focus at the origin. Our computer calculations are algebraic
and as such involve exact arithmetic.

The number of focal values required to give a fine focus of maximum order is
not known in advance. The approach we use is to calculate focal values for a given
system until we find the first one in the sequence that is necessarily non-zero when
all preceding focal values are zero. This gives us the order of the fine focus and
its stability is determined by the sign of the first non-zero focal value. We use the
computer algebra procedure FINDETA (Lloyd & Pearson [8]) to calculate the first
few focal values. Each of these is then expressed modulo the ideal generated by the
previous ones; that is the relations η2 = η4 = . . . = η2k = 0 are used to eliminate
some of the variables in η2k+2.

The substitutions are in general rational. Since our requirement is knowledge
of the stability of the critical point at the origin we only need the signs of the
reduced focal values. The convention is that strictly positive factors are removed
and, where a substitution results in a rational expression for the reduced focal value,
any non-square factors in the denominator are moved to the numerator. Thus the
signs of the expressions are maintained. The polynomial obtained in this way from
η2k+2 is the Liapunov quantity L(k). We note that for system (1.2), L(0) = λ. We
determine Liapunov quantities from the focal values we have calculated.

The reduction of the focal values to find the Liapunov quantities is equivalent
to finding a basis for the focal values. We do not use Gröbner basis software to
find the basis for two main reasons. Firstly, we do not know a priori the number
of polynomials that make up the basis. Secondly, it is feasible to perform the
calculations only in the simplest examples.
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In order to bifurcate limit cycles, we start with a fine focus of order k, that is
L(0) = . . . = L(k−1) = 0, L(k) ̸= 0. We perturb one of the parameters in L(k−1),
such that the Liapunov quantity becomes non-zero and of opposite sign to L(k).
The stability of the fine focus is reversed and a limit cycle bifurcates. Successive
perturbation of other parameters, at each stage reducing the order and reversing the
stability of the fine focus, produces more limit cycles. Provided the perturbations
are small enough existing limit cycles are not destroyed.

As we have already mentioned, the computations we must perform to manipulate
the focal values in order to obtain the Liapunov quantities are extremely demanding
of computer resources; storage requirements are large and long processing times are
common. The calculation of resultants of large, multivariate polynomials is the
most onerous task we face (the resultant can be thought of as the elimination of a
variable from the polynomials). The polynomials we encounter are of high degree
and the terms have large integer coefficients - we shall give an idea of their size in
section 2. We employ various techniques to obtain the resultants we require and, for
the most difficult examples, use the Computer Algebra system Fermat, developed
by Robert Lewis [6], in their calculation. Here we use two procedures that we have
implemented in Fermat to calculate the resultant; both are based on the Bézout
matrix formulation of the resultant, often known as the Cayley or Dixon method,
which we now summarise.

Let p1, p2 be irreducible, multivariate polynomials of degrees n1, n2 respectively
in the variable v. Let R(p1, p2, v) represent the resultant of the polynomials p1, p2
with respect to the variable v. Assume n2 ≥ n1, and write p1 and p2 as polyno-
mials in the single variable v, with polynomial coefficients, bi, ci, in the remaining
variables. We have

p1(v) =

n1∑
i=0

biv
i and p2(v) =

n2∑
i=0

civ
i.

Let

β(x, y) =
p1(x)p2(y)− p1(y)p2(x)

x− y
.

Clearly x− y is a factor of the numerator, so β is a polynomial of degree n2 − 1 in
x and y. The elements of the Bézout matrix, B, are given by

B(i, j) = coefficient of xi−1yj−1 in β,

for i, j = 1, 2, . . . , n2. The resultant is

R(p1, p2, v) = ±cn1−n2
n2

det(B),

where cn2 ̸= 0 and det(B) represents the determinant of B. The elements of the
Bézout matrix are functions of the coefficients of v in p1, p2 and the order of the
matrix is equal to the highest degree of v in p1 or p2, namely n2. The matrix
elements are often extremely large multivariate polynomials whose terms have large
integer coefficients. We shall give an idea of just how large these polynomials and
the integer coefficients become later in this paper. The resultant is obtained by
calculating det(B) and dividing this by the factor cn2−n1

n2
. We note that, unless

n1 = n2, the resultant is a polynomial of lower degree and generally fewer terms
than the determinant.
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The calculation of the determinant is computationally very demanding. Fermat
has an efficient built-in function to calculate the determinant of a matrix which uses
heuristics to determine the best method, depending on the type of matrix elements.
We use this determinant function in one of our routines to calculate resultants.
Sometimes the size of the matrices or the complexity of their elements means that
this is not feasible and we must calculate the determinant by other means.

Resultants often contain many repeated factors and we know that the factor
cn2−n1
n2

must be present in the determinant. It is expeditious to remove any fac-
tors as they arise in the calculation of the determinant. We can remove common
factors from the rows and columns of the matrix B before the calculation of the
determinant begins. In Pearson & Lloyd [11] we described a procedure in which
the determinant is evaluated using expansion by minors, with factors removed as
the process proceeds. We used this software in Pearson & Lloyd [10]. A slightly
different approach, the “Early Discovery of Factors” (EDF) method is described by
Lewis [7]. In summary, row reductions are performed, with common factors of the
rows of the reduced matrices removed during the process.

We are extremely grateful to Robert Lewis for making his EDF software available
to us. This method is particularly effective when the matrix entries are univariate
polynomials with very large integer coefficients.

Since very large integers arise in the computations, it would be useful if modular
arithmetic could be used in some of the calculations. We make the following general
observation:-

R(p1, p2, v) mod p = R(p1 mod p, p2 mod p, v) mod p,

where p is a prime number and only integer coefficients are computed modulo p.
Within Fermat, computations modulo p are equivalent to considering integers in the
range [−(p−1

2 ), (p−1
2 )]. In some cases, where we only need to show that a certain

polynomial, G say, is not a factor of a resultant, we are able to calculate the resultant
modulo some prime. We calculate the modular resultant and determine its factors.
We then aim to show that G is not a factor of the resultant by comparing the
modular factors of G with those of the resultant.

2. The example with nine limit cycles

Consider the general cubic differential system

ẋ = λx+ y + a1x
2 + (a2 + 2b1)xy + (a3 − a1)y

2

+a4x
3 + a5x

2y + (a6 − 3b7)xy
2 + a7y

3, (2.1)

ẏ = −x+ λy + b1x
2 + (b2 − 2a1)xy + b3y

2

+b4x
3 + (b5 − a6 − 3a4)x

2y + (b6 − a5)xy
2 + b7y

3,

where the coefficients ai, bi are real. The specific form of the coefficients is chosen to
simplify the computations. James & Lloyd [5] show that when a2 = −4b1, b2 = 4a1,
b3 = −b1, a4 = a6 = b7 = 0, there are systems of the form (2.1) with eight small
amplitude limit cycles surrounding the origin. Here we seek a system for which
there are nine small amplitude limit cycles.

We first scale x, y by a1; let x → x
a1
, y → y

a1
, to give a system of the form

(2.1) with a1 = 1. In the following the scaled variables, where ai → ai

a1
, bi → bi

a1
,

i = 1, 2, 3 and ai → ai

a2
1
, bi → bi

a2
1
, i = 4, 5, 6, 7, are used.
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In order to obtain nine limit cycles by successive perturbation of the coefficients
the system must have at least nine coefficients (λ and eight of the ai, bi). We are
free to choose relationships between up to six of the coefficients ai, bi to simplify
the calculations. We note that not every selection will lead to nine limit cycles. We
make the choices following a process of trial and error.

Let λ = 0, a1 = 1. We choose the relationships between the quadratic coefficients
that were used by James & Lloyd [5], that is b3 = −b1, a2 = −4b1, b2 = 4, and
calculate the focal values η4 and η6 for (2.1). From η4, we find that L(1) = 4a3b1+b5.
Let b5 = −4a3b1, then from η6, we find

L(2) = a3Φ− b6(2a4 − 2b7 + a6)− 3a6(a7 + b4),

where Φ is a polynomial in a3, a4, a5, a6, a7, b1, b4, b6, b7. We can choose two more
relationships between the coefficients and we do this such that

b6(2a4 − 2b7 + a6) + 3a6(a7 + b4) = 0,

and hence a3 is a factor of L(2). We consider various options and find that η8 has
the fewest terms when a7 = −b4 and a6 = 2(b7 − a4).

So, with all six choices made, we consider the differential system with nine
parameters

ẋ = λx+ y + x2 − 2b1xy + (a3 − 1)y2

+ a4x
3 + a5x

2y − (2a4 + b7)xy
2 − b4y

3,

ẏ =− x+ λy + b1x
2 + 2xy − b1y

2

+ b4x
3 + (b5 − a4 − 2b7)x

2y + (b6 − a5)xy
2 + b7y

3.

(2.2)

We proceed to calculate focal values for (2.2) and from them determine the corre-
sponding Liapunov quantities. We use the convention described in the Introduction
that strictly positive factors are removed and that expressions in the denominator,
which are not strictly positive, are moved to the numerator. We have

L(0) = λ,

L(1) = 4a3b1 + b5.

Let b5 = −4a3b1, then

L(2) = a3(10a
2
3b1 + 10b1b4 − 2a5b1 − 2b1b6 − 4a3b1 − (a4 − b7)(2 + 5a3)).

Let a3 = 0. Then

L(3) = 2a34 − 2a24b7 + a4b4b6 − a4b
2
6 − 2a4b

2
7 − b4b6b7 + 2b37 + a5b6(a4 − b7).

Assume that b6(a4 − b7) ̸= 0 and let

a5 =
−(2a34 − 2a24b7 + a4b4b6 − a4b

2
6 − 2a4b

2
7 − b4b6b7 + 2b37)

b6(a4 − b7)
.

Then L(3) = 0 and

L(4) = (a4 + b7)Ω((a4 + b7)Ψ0 + 40b4b6(a4 − b7)Ψ1),



Nine limit cycles 299

where Ω = a4 − b7 − b1b6 − a4b
2
1 + b21b7 and

Ψ0 =80a24b6 − 160a4b6b7 − 20b36 + 80b6b
2
7 + 320a34b1 − 960a24b1b7

− 80a4b1b
2
6 + 960a4b1b

2
7 + 80b1b

2
6b7 − 320b1b

3
7 + 272a44 − 1088a34b7

− 80a24b
2
1b6 + 16a24b

2
6 + 1632a24b

2
7 + 160a4b

2
1b6b7 − 32a4b

2
6b7

− 1088a4b
3
7 + 20b21b

3
6 − 80b21b6b

2
7 − 13b46 + 16b26b

2
7 + 272b47,

Ψ1 =4b6 + 16a4b1 − 16b1b7 + 12a24 − 24a4b7 − 4b21b6 + 3b26 + 12b27.

Assume that b6(a4 − b7)(a4 + b7)ΩΨ1 ̸= 0. Let

b4 = − 1

40

(a4 + b7)Ψ0

b6(a4 − b7)Ψ1
,

then L(4) = 0. To simplify the calculations we let a4 = m+ b7. We calculate

L(5) = b6mΩX2(mΥ0 + 2b7Υ1),

where X = 4m2 + b26 ̸= 0, under current assumptions, and

Υ0 =12096b36 + 123648b1b
2
6m− 25536b21b

3
6 + 408576b21b6m

2 + 22832b46

+ 91328b26m
2 − 161280b31b

2
6m+ 430080b31m

3 + 155008b1b
3
6m

+ 620032b1b6m
3 + 14784b41b

3
6 − 236544b41b6m

2 − 31840b21b
4
6

+ 127360b21b
2
6m

2 + 1018880b21m
4 + 14316b56 + 114528b36m

2

+ 229056b6m
4 + 37632b51b

2
6m− 99712b31b

3
6m− 398848b31b6m

3

+ 48624b1b
4
6m+ 388992b1b

2
6m

3 + 777984b1m
5 − 1344b61b

3
6

+ 9008b41b
4
6 + 36032b41b

2
6m

2 − 9996b21b
5
6 − 79968b21b

3
6m

2

− 159936b21b6m
4 + 3213b66 + 38556b46m

2 + 154224b26m
4 + 205632m6,

Υ1 =6720b36 + 80640b1b
2
6m− 20160b21b

3
6 + 322560b21b6m

2 + 15920b46

+ 63680b26m
2 − 161280b31b

2
6m+ 430080b31m

3 + 127360b1b
3
6m

+ 509440b1b6m
3 + 20160b41b

3
6 − 322560b41b6m

2 − 31840b21b
4
6

+ 127360b21b
2
6m

2 + 1018880b21m
4 + 12156b56 + 97248b36m

2

+ 194496b6m
4 + 80640b51b

2
6m− 127360b31b

3
6m− 509440b31b6m

3

+ 48624b1b
4
6m+ 388992b1b

2
6m

3 + 777984b1m
5 − 6720b61b

3
6

+ 15920b41b
4
6 + 63680b41b

2
6m

2 − 12156b21b
5
6 − 97248b21b

3
6m

2

− 194496b21b6m
4 + 3213b66 + 38556b46m

2 + 154224b26m
4 + 205632m6.

Assume that Υ1 ̸= 0 and let b7 = −mΥ0/2Υ1. Then

L(6) = ΩΨ1Φ1,

L(7) = ΩΨ1Υ1(b
2
1 + 1)Φ2,

L(8) = ΩΨ1Φ3,

L(9) = ΩΨ1Υ1(b
2
1 + 1)Φ4,

where the Φi, i = 1, · · · , 4 are irreducible polynomials in m, b1, b6. Our requirement
that all coefficients are real means that b21 +1 > 0 and, under current assumptions,
ΩΨ1Υ1 ̸= 0. It remains to consider the Φi, i = 1, 2, 3, 4.
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The degrees of the variables and the number of terms in the Φi are shown in the
table below.

Φ1 Φ2 Φ3 Φ4 Φ3 mod Φ1 Φ4 mod Φ1

m 16 22 30 36 22 26
b1 16 22 32 38 44 56
b6 16 22 30 36 15 15

Terms 425 980 2598 4224 3104 5144

All the remaining variables occur to high degree in the Φi and the polynomials Φ3,
Φ4 in particular have a large number of terms. We eliminate b6 using our resultant
procedure that incorporates the built-in determinant function of Fermat.

Consider first Φ1 = Φ2 = 0; this is the case if the resultant of Φ1, Φ2 with
respect to b6 is zero. The leading coefficients of b6 in Φ1, Φ2 are integers and that of
Φ2, which will occur to the power six in the determinant, has sixteen decimal digits.
Let # represent a very large integer. We factorise the determinant and conclude
that

R(Φ1,Φ2, b6) = #m144(b21 + 1)188R1,

where R1 is an irreducible polynomial of degrees 20 in m, 40 in b1 with 221 terms.
In order to calculate the resultant of Φ1 and Φ3, with respect to b6, we reduce the

degree of b6, in Φ3, by substituting for b166 , from Φ1 = 0. The resulting polynomial,
Φ3 mod Φ1, has more terms, the degree of b1 is increased and the integer part of the
leading coefficient has 38 decimal digits. However the order of the Bézout matrix,
from which the resultant is determined, is 16 (the degree of b6 in Φ1) instead of
30. This reduction in order of the matrix more than compensates for the increased
complexity of its polynomial entries. We calculate

R(Φ1,Φ3 mod Φ1, b6) = #m186(b21 + 1)248R2,

where R2 is an irreducible polynomial of degrees 42 in m, 92 in b1, with 1097 terms.
Similarly, we calculate the resultant of Φ1 and Φ4 mod Φ1 with respect to b6. In

this instance m72 and integer factors together coming to approximately 10131 are
removed from the matrix before the determinant is calculated. The determinant,
which we find has factors m156, (b21 +1)280 and an integer factor with 1342 decimal
digits, took 79 hours 24 minutes to calculate. We conclude that

R(Φ1,Φ4 mod Φ1, b6) = #m228(b21 + 1)280R3,

where R3 is an irreducible polynomial of degrees 64 in m, 136 in b1, with 2373
terms.

In all these resultant calculations the polynomial of highest degree has a leading
coefficient of b6 that is an integer. Hence the non-integer factors of the determinant
are true factors of the resultant.

Under current assumptions, m ̸= 0 and b21 + 1 > 0. It remains to consider the
possibility that R1 = R2 = R3 = 0.

The magnitude of the integer coefficients and the high degrees of the variables,
in the polynomials R1, R2, R3 makes the calculation of resultants to eliminate m ex-
tremely demanding of computer resources. All the elements of the Bézout matrices
are large polynomials in b1 alone.

For the resultant of R1 and R2 the Bézout matrix is of order 42. The leading
coefficient ofm in R1 is an integer with 147 decimal digits. Let the leading coefficient
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of m in R2 be α. Then α = αIαP , where αI is an integer with at least 170 decimal
digits and αP is a polynomial of degree eight in b1, having a leading coefficient with
33 decimal digits. We note that α22, that is not part of the resultant, will arise in the
calculation of the determinant of the Bézout matrix for R1, R2. Although α2 and
some large integers, that are common factors of the elements in a row or column,
can be removed from this matrix, we were only able to calculate its determinant by
using the Early Discovery of Factors technique.

Recall that in the EDF method row reductions are performed and factors com-
mon to a row are removed at each stage. After two row reductions an integer of the
order of 1045 and αP have been removed from the matrix. When eleven row reduc-
tions have been completed a total of 135 factors have been removed from the rows
of the matrix. Some of these are as small as the integer 4, but in total they come to
at least 10469α10

P . At the completion of row reduction 21 the spurious factor, α22,
has been removed completely. Row reductions 22 to 25 yield a polynomial factor
(b21 + 1)40, as well as a large integer. In further row reductions only integer factors
are removed. After several days of calculation we found that

R(R1, R2,m) = #(b21 + 1)40Z,

where Z is a polynomial of degree 1760 in b1 with extremely large integer coefficients.
We note that b1 occurs to even powers in Z.

Finally we use modular calculations to show that no factor of Z is also a factor
of R(R1, R3,m). The modulus we use is chosen to ensure that leading terms in
the polynomials do not disappear. Often quite small prime numbers satisfy this
requirement but then the modular resultant has very many factors which we must
subsequently consider. We choose a larger prime number to reduce the number
of factors whilst still making the calculations feasible in a reasonable time. We
establish that the maximum degrees of the variables in R1 and R3 are not changed
when the integer coefficients are reduced modulo 44449. So the resultant calculated
modulo 44449 will have the same degree as the actual resultant. We calculate

R(R1, R3,m) mod 44449 = #(b21 + 1)40W,

where W is a polynomial of degree 2640 in b1. We find that W has 11 modular
factors,

W = w24ŵ24w36w56w84w132w308ŵ308w476w576w616,

where wi, ŵi are polynomials of degree i in b1. Similarly we find the factors of Z
modulo 44449:

Z mod 44449 = z28z36ẑ36z48ẑ48z56z140z360z266ẑ266z476,

where zi, ẑi are polynomials of degree i in b1. We conclude that R(R1, R2,m) and
R(R1, R3,m) cannot be zero simultaneously. Hence, if Φ1 = Φ2 = Φ3 = 0, then
Φ4 ̸= 0.

Considering Z as a polynomial in ω = b21 we find that Z = 0 has a real positive
zero ω∗ in the interval (0.6, 0.7). When b21 = ω∗ there is a value of m such that
R1 = R2 = 0, but R3 ̸= 0, and hence a value of b6, such that Φ1 = Φ2 = Φ3 = 0,
with Φ4 ̸= 0. Under current assumptions there are values of the coefficients such
that L(0) = · · · = L(8) = 0, L(9) ̸= 0, and hence the origin is a fine focus of order
9.



302 N.G. Lloyd and J.M. Pearson

Theorem 2.1. The origin is a fine focus of order at most nine for system (2.2)
when b6(a4 − b7)(a4 + b7)Ψ1Υ1Ω ̸= 0 and

λ = 0, b5 = 0, a3 = 0, a5 =
−(2m2(a4 + b7) + b4b6m− a4b

2
6)

b6m
,

b4 = − 1

40

(a4 + b7)Ψ0

b6mΨ1
, b7 = −mΥ0/2Υ1, Φ1 = Φ2 = Φ3 = 0, Φ4 ̸= 0,

where m = a4 − b7 and Ψ0,Ψ1,Υ0,Υ1,Φ1,Φ2,Φ3,Φ4 are as defined above.

Proof. When the conditions of Theorem 2.1 hold the Liapunov quantities L(0) =
· · · = L(8) = 0 and L(9) ̸= 0. The origin is a fine focus of order nine. When
Φ1 = Φ2 = Φ3 = 0 then Φ4 cannot be zero; the origin cannot be of order greater
than nine.

Corollary 2.1. Up to nine limit cycles can be bifurcated from the origin in system
(2.2) with the conditions given in Theorem 2.1.

Proof. The origin is a fine focus of order nine when the conditions of Theorem
2.1 hold. Then L(0) = · · · = L(8) = 0 and L(9) ̸= 0, where

L(0) = λ, L(1) = 4a3b1 + b5,

L(2) = −a3(5a3m+ 2(2a3b1 + a4 + b7) + 2b1(a5 + b6)− 10b1(b4 + a23)),

L(3) = 2a34 − 2a24b7 + a4b4b6 − a4b
2
6 − 2a4b

2
7 − b4b6b7 + 2b37 + a5b6m,

L(4) = (a4 + b7)Ω((a4 + b7)Ψ0 + 40b4b6(a4 − b7)Ψ1),

L(5) = b6mΩ(mΥ0 + 2b7Υ1), L(6) = ΩΨ1Φ1,

L(7) = ΩΨ1Υ1Φ2, L(8) = ΩΨ1Φ3, L(9) = ΩΨ1Υ1Φ4,

and a4 = m+ b7; Ω, Ψ0,Ψ1,Υ0,Υ1,Φ1,Φ2,Φ3,Φ4 are as defined above.
Starting with a fine focus of order nine at the origin we bifurcate successive limit

cycles by a sequence of perturbations of the parameters. At each perturbation the
order of the origin as a fine focus is reduced and its stability is reversed; a limit
cycle bifurcates. Provided the perturbations are small enough existing limit cycles
are not destroyed and the “far field” is unaffected.

We begin with b21 = ω∗, where ω∗ is the root of Z = 0 which lies in (0.6, 0.7),
and the corresponding value of m = m∗, such that R1 = R2 = 0. Then there is a
value b6 = b∗6, such that Φ1 = Φ2 = Φ3 = 0. The stability of the origin is given by
the sign of ΩΨ1Υ1Φ4, when b21 = ω∗, m = m∗ and b6 = b∗6.

We perturb b1 such that Z ̸= 0, and hence Φ3 ̸= 0, at the same time adjusting
m, b6 such that Φ1,Φ2 remain zero. We require L(8)L(9) < 0, that is

Υ1Φ3Φ4 < 0.

So we perturb b1 such that the sign of Υ1Φ3 is opposite to that of Φ4. The stability
of the origin is reversed and a limit cycle bifurcates.

To generate a second limit cycle we perturb m such that L(7) becomes non-zero
and of opposite sign to L(8), at the same time adjusting b6 so that Φ1 remains zero.
We require

Υ1Φ2Φ3 < 0,

or equivalently Φ2Φ4 > 0. The stability of the origin is reversed and a second limit
cycle bifurcates. Provided the perturbations are small enough the first limit cycle
is not destroyed.
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The third limit cycle is generated by perturbing b6 such that L(6) becomes
non-zero and of opposite sign to L(7); that is

Υ1Φ1Φ2 < 0,

or equivalently Φ1Φ3 > 0. A fourth limit cycle bifurcates when b7 is perturbed so
that

b6m(mΥ0 + 2b7Υ1)Ψ1Φ1 < 0.

Similarly perturbation of b4 such that

b6m(mΥ0 + 2b7Υ1)(a4 + b7)((a4 + b7)Ψ0 + 40b4b6(a4 − b7)Ψ1) < 0,

reverses the stability of the origin and a fifth limit cycle bifurcates. The sixth limit
cycle comes from perturbation of a5 such that

((a4 + b7)Ψ0 + 40b4b6(a4 − b7)Ψ1)

×(2m2(a4 + b7)− a4b
2
6 + b4b6m+ a5b6m) < 0.

Limit cycle seven is bifurcated by perturbing a3 such that

a3(5a3m+ 2(2a3b1 + a4 + b7) + 2b1(a5 + b6)− 10b1(b4 + a23))

×(2m2(a4 + b7)− a4b
2
6 + b4b6m+ a5b6m) > 0.

and number eight by perturbing b5 such that

a3(5a3m+ 2(2a3b1 + a4 + b7) + 2b1(a5 + b6)− 10b1(b4 + a23))(4a3b1 + b5) > 0.

At each perturbation the stability of the origin is reversed and another limit cycle
is bifurcated. Finally λ is perturbed such that λ(4a3b1 + b5) < 0. The ninth and
final limit cycle is bifurcated.

3. Concluding remarks

It seems unlikely that the approach based on finding a basis for Liapunov quanti-
ties as described above could be used to determine the maximum number of limit
cycles bifurcating from a fine focus in a general cubic system, which has fifteen
coefficients in its canonical form. We can always rotate and scale the system to
reduce the number of variables to thirteen, which would give rise to no more than
thirteen small amplitude limit cycles. However even finding an example of a cubic
system with eleven such limit cycles is beyond current capabilities. A search for a
transformation of the system to one in which there are fewer coefficients seems to
be a more promising starting point.

It is noteworthy that in recent years computational methods have come to play
an increasing role in mathematical research (see Borwein [1] for a recent survey).
Their use in this paper falls within number 7 of the typology suggested by Borwein
[1]. In particular, proofs sometimes involve the extensive use of some sophisticated
software.

Proofs based on the use of computer algebra are inevitably impossible to verify
completely, see Daly [4]. In some cases we can repeat the calculations using different
software implemented on other platforms to reinforce our results. However, as in the
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above example, we have often struggled to find one successful route to a conclusion
so we are unable to contemplate this type of double checking. Importantly, the
software is used extensively on examples for which results have been obtained by
independent means and this leads to a high degree of confidence in the reliability
of the software.
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