
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 2, Number 3, August 2012 pp. 281–292

GLOBAL STABILITY OF A VIRAL
INFECTION MODEL WITH TWO DELAYS
AND TWO TYPES OF TARGET CELLS∗

Jianquan Li1,†, Xiuchao Song1 and Fengyin Gao1

Abstract In this paper, incorporating the delay of viral cytopathicity within
target cells, we first presented a basic model of viral infection with delay,
and then extended it into a model with two delays and two types of target
cells. For the models proposed here, both their basic reproduction numbers
are found. By constructing Lyapunov functionals, necessary and sufficient
conditions ensuring the global stability of the models with delays are given.
The obtained results show that, when the basic reproduction number is not
greater than one, the infection-free equilibrium is globally stable in the feasible
region, which implies that the viral infection goes extinct eventually; when it
is greater than one, the infection equilibrium is globally stable in the feasible
region, which implies that the viral infection persists in the body of host.
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1. Introduction

In order to understand the action of in-host free virus on target cells, a number of
mathematical models have been used to describe in-host virus dynamics. Nowak et
al. [6, 7] proposed one of the earliest of these models

dx
dt = λ− dx− βxv,

dy
dt = βxv − ay,

dv
dt = kay − γv,

(1.1)

where x = x(t), y = y(t) and v = v(t) are the numbers of uninfected cells, infected
cells and viral particles (virions) at time t, respectively. In model (1.1), uninfected
target cells are assumed to be produced at a constant rate λ and die at a rate dx.
Infection of target cells by in-host free virus is assumed to occur at a bilinear rate
βxv. Infected cells are lost at a rate ay. Free virus are produced by infected cells
at a rate kay in which k is the average number of viral particles produced over the
lifetime of a single infected cell, and die at a rate γv. Model (1.1) is a basic model,
which has been used widely to investigate infection of some viruses (such as, HIV,
HBV, HCV, HLMV, etc.)
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In 1997, Perelson et al. [9] observed that the HIV attack two types of target
cells, CD4+ T cells and macrophages. On the other hand, it was also detected that,
except for liver tissue, HCV may be produced in some extrahepatic tissues, such
as bone marrow[12], peripheral blood mononuclear cells (PBMC)[4], brain[5] and
lymph nodes[8]. Then, according to these virological findings, based on model (1.1)
some viral dynamical models with two types of target cells were proposed [1, 10, 11],
which are expressed by ordinary differential equations.

In [14], Wodarz and Levy pointed out that the term ay in model (1.1) should
consist of two parts: one represents the natural death of infected cells, the other is
that infected cells are lost due to viral cytopathicity. In this paper, we assume that
infected cells burst and then release viral particles (i.e., viral cytopathicity occurs)
after uninfected cells were infected by a constant period of time τ , that is, the time
period of viral cytopathicity within target cells is τ . So the objective of our work
is to investigate the basic virus dynamical model with delay of viral cytopathicity
within target cells and further consider the model with two types of target cells and
the associated delays.

The global analysis of viral infection models is an important issue for under-
standing the pathogenesis of in-host free virus. Usually, it is difficult for models
of delay differential equations to obtain the global properties. For the models with
delays established in this paper, the necessary and sufficient conditions ensuring
their global stability are obtained by constructing the Lyapunov functionals.

The paper is organized as follows: In Section 2, we first present a basic model of
viral infection with delay of viral cytopathicity, and then extend it into a model with
two delays and two types of target cells. In Sections 3 and 4, the global properties
of the two models established here are analyzed. The last section is the conclusion.

2. Models

In this section, we present two models of viral infection with delay of viral cy-
topathicity, in which the infected target cells are the same type and two types,
respectively.

When the delay of viral cytopathicity within target cells is τ , and the natural
death rate of per target cell is d, the number of infected cells at time t (t > τ) can
be represented by

y(t) =

∫ t

t−τ

βx(θ)v(θ)e−d(t−θ)dθ, for t > τ, (2.1)

where e−d(t−θ) is the probability that target cells survive from time θ to time t, and
βx(θ)v(θ)e−d(t−θ) is the number of target cells being infected at time θ and still
surviving at time t.

Differentiating y(t) of (2.1) yields

d

dt
y(t) = βx(t)v(t)− βe−dτx(t− τ)v(t− τ)− dy(t),

where the term βe−dτx(t− τ)v(t− τ) is the transfer rate of the infected cells being
used to produce free virus at time t. Thus the recruitment rate of free virus at time
t is kβe−dτx(t− τ)v(t− τ), in which k is the average number of viral particles pro-
duced by a infected target cell when viral cytopathicity occurs. It implies that the
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recruitment of virus at time t depends on the number of target cells that were newly
infected at time t− τ and are still alive at time t. Therefore, corresponding to the
basic viral dynamical model of ordinary differential equations (1.1), incorporating
the delay of viral cytopathicity into (1.1) yields the following basic viral dynamical
model of delay differential equations

d
dtx(t) = λ− dx(t)− βx(t)v(t),

d
dty(t) = βx(t)v(t)− βe−dτx(t− τ)v(t− τ)− dy(t),

d
dtv(t) = kβe−dτx(t− τ)v(t− τ)− γv(t).

(2.2)

Since the variable y does not appear in the first and the third equations of (2.2),
we only focus on the following subsystem of (2.2){

d
dtx(t) = λ− dx(t)− βx(t)v(t),

d
dtv(t) = kβe−dτx(t− τ)v(t− τ)− γv(t),

(2.3)

which has the same dynamics with system (2.2).
In [2], Elaiw studied the global properties of a viral dynamical model with two

types of target cells (CD4+ T cells and macrophages)

dx1

dt = λ1 − d1x1 − β1x1v,

dy1

dt = β1x1v − a1y1,

dx2

dt = λ2 − d2x2 − β2x2v,

dy2

dt = β2x2v − a2y2,

dv
dt = k1a1y1 + k1a2y2 − γv,

(2.4)

where xi and yi (i = 1, 2) are the numbers of uninfected and infected cells for type
i, respectively, and all the parameters in (2.4) have the same biological meanings
as given in model (1.1). According to the idea of establishing delay differential
equations (2.3), corresponding to model (2.4) we can give the following model with
two delays and two types of target cells

d
dtx1(t) = λ1 − d1x1(t)− β1x1(t)v(t),

d
dtx2(t) = λ2 − d2x2(t)− β2x2(t)v(t),

d
dtv(t) = k1β1e

−d1τ1x1(t− τ1)v(t− τ1)

+k2β2e
−d2τ2x2(t− τ2)v(t− τ2)− γv(t),

(2.5)

where τi (i = 1, 2) is the delay of viral cytopathicity within target cells of type i.
For simplicity, letting b = ke−dτ , b1 = k1e

−d1τ1 and b2 = k2e
−d2τ2 , systems (2.3)

and (2.5) become {
d
dtx(t) = λ− dx(t)− βx(t)v(t),

d
dtv(t) = βbx(t− τ)v(t− τ)− γv(t),

(2.6)

and
d
dtx1(t) = λ1 − d1x1(t)− β1x1(t)v(t),

d
dtx2(t) = λ2 − d2x2(t)− β2x2(t)v(t),

d
dtv(t) = β1b1x1(t− τ1)v(t− τ1) + β2b2x2(t− τ2)v(t− τ2)− γv(t),

(2.7)
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respectively. In the following, we will investigate global dynamics of systems (2.6)
and (2.7). For models (2.6) and (2.7) or (2.3) and (2.5), all parameters are assumed
to be positive.

3. Analysis for system (2.6)

To investigate the dynamics of (2.6), we set a suitable phase space. Denote by
C = C([−τ, 0],R) the Banach space of continuous functions mapping the interval
[−τ, 0] into R with norm ∥ϕ∥ = sup−τ≤θ≤0 |ϕ(θ)| for ϕ ∈ C. The nonnegative cone
of C is defined as C+ = C([−τ, 0],R+). From the biological meaning, the initial
conditions for system (2.6) are given as follows:

x(θ) = ϕ1(θ), v(θ) = ϕ2(θ), θ ∈ [−τ, 0], (3.1)

where ϕi ∈ C+ and ϕi(0) > 0 for i = 1, 2.
The following theorem establishes the non-negativity and boundedness of solu-

tions of (2.6).

Theorem 3.1. All the solutions (x(t), v(t))
T
of system (2.6) under the initial con-

ditions (3.1) are positive on [0,+∞) and ultimately bounded.

Proof. Assume that there is t1 (t1 > 0) such that x(t1) = 0, then it follows from
x(0) > 0 and the continuity of solution of (2.6) that there is t∗ = inf {t : t > 0, x(t) = 0}
such that x(t) > 0 for t ∈ [0, t∗). So we have x′(t∗) ≤ 0. However, x′(t∗) = λ > 0.
This contradiction implies that x(t) > 0 for t > 0.

From the last equation of (2.6) we have

v(t) =
[
v(0) + βb

∫ t

0
x(θ − τ)v(θ − τ)eγθdθ

]
e−γt

=
[
v(0) + βb

∫ t−τ

−τ
x(θ)v(θ)eγ(θ+τ)dθ

]
e−γt.

(3.2)

Since x(t) ≥ 0 and v(t) ≥ 0 for −τ ≤ t ≤ 0, it follows from (3.2) and v(0) > 0
that v(t) > 0 for 0 ≤ t < τ .

Further, when τ ≤ t < 2τ ,

v(t) =

{
v(0) + βb

[∫ 0

−τ

U(θ)dθ +

∫ t−τ

0

U(θ)dθ

]}
e−γt,

where U(θ) = x(θ)v(θ)eγ(θ+τ).

Notice that
∫ 0

−τ
U(θ)dθ ≥ 0 since x(θ) ≥ 0 and v(θ) ≥ 0 for −τ ≤ θ ≤ 0, and∫ t−τ

0
U(θ)dθ ≥ 0 for τ ≤ t < 2τ since x(θ) > 0 and v(θ) > 0 for 0 ≤ θ < τ , then

v(t) > 0 also holds true for τ ≤ t < 2τ , which implies that v(t) > 0 holds true for
0 ≤ t < 2τ .

For a positive integer k, when kτ ≤ t < (k + 1)τ , from (3.2) we have

v(t) =

{
v(0) + βb

[∫ (k−1)τ

−τ

U(θ)dθ +

∫ t−τ

(k−1)τ

U(θ)dθ

]}
e−γt.

Assume that v(t) > 0 for 0 ≤ t < kτ , then the similar inference can show that
v(t) > 0 for kτ ≤ t < (k+1)τ . It follows from mathematical induction that v(t) > 0
for t > 0.
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The positivity of solution of (2.6) is proved completely.
To prove the ultimate boundedness of solution of (2.6), we define a functional

L10 = bx(t) + v(t + τ), then the derivative of L10 along solutions of (2.6) is given
by

dL10

dt
= bλ− bdx(t)− γv(t+ τ) ≤ bλ− ρL10,

where ρ = min {d, γ}. It follows that lim supt→+∞ [bx(t) + v(t+ τ)] ≤ bλ/ρ. There-
fore, all the solutions of (2.6) are ultimately bounded.

This completes the proof of Theorem 3.1.
Additionally, from the first equation of (2.6), for x(t) > 0 and v(t) > 0 we have

dx(t)/dt < λ− dx(t), then lim supt→+∞ x(t) ≤ λ/d. Thus, the region

Ω1 =
{
(x(t), v(t))T ∈ C2

+ : x(t) ≤ λ/d, bx(t) + v(t+ τ) ≤ bλ/ρ
}

is positively invariant with respect to system (2.6). We will analyze the dynamics
of system (2.6) on the region Ω1.

Denote R01 = (βbλ)/(dγ), then direct calculation shows that system (2.6) always
has the infection-free equilibrium E01(λ/d, 0), and that, besides E01, system (2.6)
also has a unique infection equilibrium E∗

1 (x
∗, v∗) in the region Ω1 as R01 > 1,

where x∗ = γ/βb and v∗ = d(R01 − 1)/β.
With respect to the global stability of system (2.6), we have

Theorem 3.2. For system (2.6), the infection-free equilibrium E01 is globally stable
on the region Ω1 as R01 ≤ 1; the infection equilibrium E∗

1 is globally stable in the
region Ω1 as R01 > 1.

To simplify the proof of the global stability of the infection equilibrium E∗
1 , we

first introduce an inequality as lemma.

Lemma 3.1. For n positive numbers ci (i = 1, 2, · · · , n), the inequality

n− c1 − c2 − · · · − cn + ln(c1c2 · · · cn) ≤ 0

is true, and the equality holds if and only if c1 = c2 = · · · = cn = 1.

Proof. Since ln(c1c2 · · · cn) = ln c1 + ln c2 + · · ·+ ln cn, then

n− c1 − c2 − · · · − cn + ln(c1c2 · · · cn) =
∑n

i=1 (1− ci + ln ci) .

It is easy to see that function f(x) = 1 − x + lnx ≤ 0 for x > 0 and the equality
holds if and only if x = 1. Thus Lemma 3.1 holds.
Proof of Theorem 3.2. To prove the global stability of the infection-free equilib-
rium E01 of (2.6), we define a Lyapunov functional

L11 =
b

2

(
x− λ

d

)2

+
λ

d

[
v + βb

∫ t

t−τ

x(θ)v(θ)dθ

]
,

then the derivative of L11 along solutions of (2.6) is given by

dL11

dt = b
(
x− λ

d

)
(λ− dx− βxv) + λ

d (βbxv − γv)

= −b(d+ βv)
(
x− λ

d

)2
+ γλ

d (R0 − 1)v.
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When R01 ≤ 1, dL11/dt ≤ 0. And it is easy to see that, when R01 ≤ 1, the
largest invariant set of system (2.6) on the region

{
(x(t), v(t))T ∈ Ω1 : dL11/dt = 0}

is the singleton {E01}. Then it follows by the LaSalle’s Invariance Principle[3] that
the infection-free equilibrium E01 is globally stable on the region Ω1.

To prove the global stability of the infection equilibrium E∗
1 , define a Lyapunov

functional
L12 = m

(
x− x∗ − x∗ ln x

x∗

)
+
(
v − v∗ − v∗ ln v

v∗

)
+r

∫ t

t−τ

[
x(θ)v(θ)

p − 1− ln x(θ)v(θ)
p

]
dθ,

where m, r and p are positive and left unspecified, then the derivative of L12 along
solutions of system (2.6) is given by

dL12

dt = mx−x∗

x
dx(t)
dt + v−v∗

v
dv
dt + r d

dt

∫ t

t−τ

[
x(θ)v(θ)

p − 1− ln x(θ)v(θ)
p

]
dθ

= mx−x∗

x [λ− dx(t)− βx(t)v(t)] + v−v∗

v [βbx(t− τ)v(t− τ)− γv(t)]

+r
{

1
p [x(t)v(t)− x(t− τ)v(t− τ)] + ln x(t−τ)v(t−τ)

x(t)v(t)

}
.

Substituting d = λ/x∗ − βv∗ and γ = βbx∗ into dL12/dt yields

dL12

dt = m
(

x
x∗ − 1

) [
λ
(

x∗

x − 1
)
− βx∗v∗

(
v
v∗ − 1

)]
+βbx∗v∗

(
v
v∗ − 1

) [x(t−τ)v(t−τ)
x∗v(t) − 1

]
+r

{
1
p [x(t)v(t)− x(t− τ)v(t− τ)] + ln x(t−τ)v(t−τ)

x(t)v(t)

}
.

Choosing m = b, r = βbx∗v∗ and p = x∗v∗ gives

dL12

dt = bdx∗
(
2− x∗

x − x
x∗

)
+βbx∗v∗

[
2− x∗

x − x(t−τ)v(t−τ)
x∗v(t) + ln x(t−τ)v(t−τ)

x(t)v(t)

]
.

By the relationship between the arithmetical and geometrical means and Lemma
3.1, we have dL12/dt ≤ 0, and the equality holds if and only if x(t) = x∗ and
v(t) = v(t− τ) for t > 0.

Obviously, the largest invariant set of system (2.6) on the region
{
(x(t), v(t))

T

∈ Ω1 : dL12/dt = 0} is the singleton {E∗
1}. Therefore, it follows by the LaSalle’s

Invariance Principle[3] that E∗
1 is globally stable in Ω1 when R01 > 1.

4. Analysis for system (2.7)

To investigate the dynamics of (2.7), we set a suitable phase space. For τ1 >
0 and τ2 > 0, we set τ = max {τ1, τ2}, and then denote by C = C([−τ, 0],R)
the Banach space of continuous functions mapping the interval [−τ, 0] into R with
norm ∥ϕ∥ = sup−τ≤θ≤0 |ϕ(θ)| for ϕ ∈ C. The nonnegative cone of C is defined
as C+ = C([−τ, 0],R+). From the biological meanings, the initial conditions for
system (2.7) are given as follows:

x1(θ) = ϕ1(θ), x2(θ) = ϕ2(θ), v(θ) = ϕ3(θ), θ ∈ [−τ, 0], (4.1)
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where ϕi ∈ C+ and ϕi(0) > 0 for i = 1, 2, 3. Applying the mathematical in-
duction similar to the proof of Theorem 3.1, we can know that, for any solution
(x1(t), x2(t), v(t))

T
of system (2.7) under the initial conditions (4.1), x1(t), x2(t)

and v(t) are positive for t > 0, The proof is omitted here.
We initially consider the ultimate boundedness of solutions of system (2.7).

Theorem 4.1. For system (2.7), all solutions (x1(t), x2(t), v(t))
T
under the initial

conditions (4.1) are ultimately bounded.

Proof. Define a functional L20 = b1x1(t − τ1) + b2x2(t − τ2) + v(t), then, the
derivative of L20 along solutions of (2.7) is given by

dL20

dt = (b1λ1 + b2λ2)− [b1d1x1(t− τ1) + b2d2x2(t− τ2) + γv(t)]
≤ (b1λ1 + b2λ2)− ρL20,

where ρ = min {d1, d2, γ}. Thus,

lim sup
t→+∞

[b1x1(t− τ1) + b2x2(t− τ2) + v(t)] ≤ b1λ1 + b2λ2

ρ
:= M.

It implies that all solutions of (2.7) are ultimately bounded. The proof is complete.

Again, from the first two equations of (2.7), for x1(t) > 0, x2(t) > 0 and v(t) > 0
we have, respectively,

d

dt
x1(t) < λ1 − d1x1(t), and

d

dt
x2(t) < λ2 − d2x2(t).

Then it follows that lim supt→+∞ x1(t) ≤ λ1/d1 and lim supt→+∞ x2(t) ≤ λ2/d2.
Therefore, the region Ω2 =

{
(x1(t), x2(t), v(t))

T ∈ C3
+ : x1(t) ≤ λ1/d1, x2(t) ≤ λ2/d2,

b1x1(t− τ1) + b2x2(t− τ2) + v(t) ≤ M} is positively invariant with respect to mod-
el (2.7). We will analyze the dynamics of model (2.7) in the region Ω2.

Obviously, (2.7) always has the infection-free equilibrium E02(x10, x20, 0), where
x10 = λ1/d1 and x20 = λ2/d2. The infection equilibrium (positive equilibrium),
E∗

2 (x
∗
1, x

∗
2, v

∗), of (2.7) is determined by the following equations λ1 − d1x1 − β1x1v = 0,
λ2 − d2x2 − β2x2v = 0,
β1b1x1 + β2b2x2 − γ = 0.

(4.2)

From the first two equations of (4.2) we have

x1 =
λ1

d1 + β1v
, and x2 =

λ2

d2 + β2v
.

Substituting them into the third equation of (4.2) yields

β1b1λ1

d1 + β1v
+

β2b2λ2

d2 + β2v
= γ. (4.3)

Since the function of v at the left hand side of (4.3) is strictly decreasing, it is
easy to see that (4.3) has a positive root if and only if β1b1λ1/d1 + β2b2λ2/d2 > γ,
and that the positive root is unique, denoted by v∗. Therefore, with respect to the
existence of equilibria of (2.7), we have
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Theorem 4.2. Denote

R02 =

(
β1b1λ1

d1
+

β2b2λ2

d2

)
1

γ
, i.e., R02 =

β1b1x10 + β2b2x20

γ
.

Then, when R02 ≤ 1, system (2.7) only has the infection-free equilibrium E02;
when R02 > 1, besides E02 system (2.7) also has a unique infection equilibrium
E∗

2 (x
∗
1, x

∗
2, v

∗), where

x∗
1 =

λ1

d1 + β1v∗
, x∗

2 =
λ2

d2 + β2v∗
,

and v∗ is determined by (4.3).

In the following, we consider the global stability of equilibria of (2.7).

Theorem 4.3. When R02 ≤ 1, the infection-free equilibrium E02 of system (2.7) is
globally stable on Ω2; when R02 > 1, the infection equilibrium E∗

2 of (2.7) is globally
stable in the region Ω2.

Proof. We first prove the global stability of the infection-free equilibrium E02.
Since x10 = λ1/d1 and x20 = λ2/d2, system (2.7) can be rewritten as

d
dtx1(t) = x1(t)

{
λ1

[
1

x1(t)
− 1

x10

]
− β1v(t)

}
,

d
dtx2(t) = x2(t)

{
λ2

[
1

x2(t)
− 1

x20

]
− β2v(t)

}
,

d
dtv(t) = β1b1x1(t− τ1)v(t− τ1) + β2b2x2(t− τ2)v(t− τ2)− γv(t).

(4.4)

Define a Lyapunov functional

L21 = L̄11 + L̄12,

where

L̄11 = b1

(
x1 − x10 − x10 ln

x1

x10

)
+ b2

(
x2 − x20 − x20 ln

x2

x20

)
+ v,

and

L̄12 = β1b1

∫ t

t−τ1

x1(θ)v(θ)dθ + β2b2

∫ t

t−τ2

x2(θ)v(θ)dθ.

Direct calculation shows that the derivative of L̄11 along solutions of (4.4) is given
by

dL̄11

dt = b1λ1 [x1(t)− x10]
[

1
x1(t)

− 1
x10

]
+ b2λ2 [x2(t)− x20]

[
1

x2(t)
− 1

x20

]
+(β1b1x10 + β2b2x20 − γ) v(t) + β1b1 [x1(t− τ1)v(t− τ1)− x1(t)v(t)]

+β2b2 [x2(t− τ2)v(t− τ2)− x2(t)v(t)] .

Since
dL̄12

dt = β1b1 [x1(t)v(t)− x1(t− τ1)v(t− τ1)]

+β2b2 [x2(t)v(t)− x2(t− τ2)v(t− τ2)] ,
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the derivative of L21 along solutions of (4.4) is

dL21

dt = b1λ1

[
2− x10

x1(t)
− x1(t)

x10

]
+ b2λ2

[
2− x20

x2(t)
− x2(t)

x20

]
+ γ (R02 − 1) v(t).

According to the property that the arithmetical mean is greater than or equal
to the geometrical mean, it follows from R02 ≤ 1 that dL21/dt ≤ 0. When R02 < 1,
dL21/dt = 0 if and only if x1 = x10, x2 = x20 and v = 0. Thus E02 is globally
stable in Ω2 by the Lyapunov Stability Theorem[13]. When R02 = 1, dL21/dt = 0
if and only if x1 = x10 and x2 = x20. From the first two equations of (2.7) the
largest invariant set of system (2.7) on the set {(x1, x2, v) ∈ Ω2 : dL21/dt = 0} is
the singleton {E02}. Then, it follows by the LaSalle’s Invariance Principle[3] that
E02 is globally stable on Ω2 when R02 = 1.

Summarizing the inference above, the infection-free equilibrium E02 is globally
stable on Ω2 when R02 ≤ 1. The proof is complete.

Next, we prove the global stability of the infection equilibrium E∗
2 .

For the infection equilibrium E∗
2 (x

∗
1, x

∗
2, v

∗), from (4.2) we have
d1 = λ1

x∗
1
− β1v

∗,

d2 = λ2

x∗
2
− β2v

∗,

γ = β1b1x
∗
1 + β2b2x

∗
2,

then (2.7) can be rewritten as
d
dtx1(t) = x1(t)

{
λ1

[
1

x1(t)
− 1

x∗
1

]
− β1 [v(t)− v∗]

}
,

d
dtx2(t) = x2(t)

{
λ2

[
1

x2(t)
− 1

x∗
2

]
− β2 [v(t)− v∗]

}
,

d
dtv(t) = v(t)

{
β1b1

[
x1(t−τ1)v(t−τ1)

v(t) − x∗
1

]
+ β2b2

[
x2(t−τ2)v(t−τ2)

v(t) − x∗
2

]}
,

(4.5)
which has the same dynamics as system (2.7) in the interior of the region Ω2.

Define a Lyapunov functional

L22 = m1

[
x1(t)− x∗

1 − x∗
1 ln

x1(t)
x∗
1

]
+m2

[
x2(t)− x∗

2 − x∗
2 ln

x2(t)
x∗
2

]
+
[
v(t)− v∗ − v∗ ln v(t)

v∗

]
+ r1

∫ t

t−τ1

[
x1(θ)v(θ)

p1
− 1− ln x1(θ)v(θ)

p1

]
dθ

+r2
∫ t

t−τ2

[
x2(θ)v(θ)

p2
− 1− ln x2(θ)v(θ)

p2

]
dθ,

where mi, ri and pi (i = 1, 2) are positive and left unspecified, then the derivative
of L22 along solutions of (4.5) is given by

dL22

dt = m1 [x1(t)− x∗
1]
{
λ1

[
1

x1(t)
− 1

x∗
1

]
− β1 [v(t)− v∗]

}
+m2 [x2(t)− x∗

2]
{
λ2

[
1

x2(t)
− 1

x∗
2

]
− β2 [v(t)− v∗]

}
+ [v(t)− v∗]

{
β1b1

[
x1(t−τ1)v(t−τ1)

v(t) − x∗
1

]
+ β2b2

[
x2(t−τ2)v(t−τ2)

v(t) − x∗
2

]}
+r1

{
1
p1

[x1(t)v(t)− x1(t− τ1)v(t− τ1)] + ln x1(t−τ1)v(t−τ1)
x1(t)v(t)

}
+r2

{
1
p2

[x2(t)v(t)− x2(t− τ2)v(t− τ2)] + ln x2(t−τ2)v(t−τ2)
x2(t)v(t)

}
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= m1λ1

[
2− x∗

1

x1(t)
− x1(t)

x∗
1

]
+m2λ2

[
2− x∗

2

x2(t)
− x2(t)

x∗
2

]
−m1β1x

∗
1v

∗
[
x1(t)v(t)

x∗
1v

∗ − x1(t)
x∗
1

− v(t)
v∗ + 1

]
−m2β2x

∗
2v

∗
[
x2(t)v(t)

x∗
2v

∗ − x2(t)
x∗
2

− v(t)
v∗ + 1

]
+β1b1x

∗
1v

∗
[
x1(t−τ1)v(t−τ1)

x∗
1v

∗ − x1(t−τ1)v(t−τ1)
x∗
1v(t)

− v(t)
v∗ + 1

]
+β2b2x

∗
2v

∗
[
x2(t−τ2)v(t−τ2)

x∗
2v

∗ − x2(t−τ2)v(t−τ2)
x∗
2v(t)

− v(t)
v∗ + 1

]
+r1

{
1
p1

[x1(t)v(t)− x1(t− τ1)v(t− τ1)] + ln x1(t−τ1)v(t−τ1)
x1(t)v(t)

}
+r2

{
1
p2

[x2(t)v(t)− x2(t− τ2)v(t− τ2)] + ln x2(t−τ2)v(t−τ2)
x2(t)v(t)

}
.

In order to eliminate the terms xi(t)v(t) and xi(t − τi)v(t − τi) (i = 1, 2), we
need to choose miβi = βibi = ri/pi (i = 1, 2), that is, mi = bi, ri = βibipi (i = 1, 2).
Thus, we have

dL22

dt
= L̄21 + L̄22,

where

L̄21 = b1λ1

[
2− x∗

1

x1(t)
− x1(t)

x∗
1

]
+ r1 ln

x1(t−τ1)v(t−τ1)
x1(t)v(t)

+β1b1x
∗
1v

∗
[
x1(t)
x∗
1

− x1(t−τ1)v(t−τ1)
x∗
1v(t)

]
,

L̄22 = b2λ2

[
2− x∗

2

x2(t)
− x2(t)

x∗
2

]
+ r2 ln

x2(t−τ2)v(t−τ2)
x2(t)v(t)

+β2b2x
∗
2v

∗
[
x2(t)
x∗
2

− x2(t−τ2)v(t−τ2)
x∗
2v(t)

]
.

Notice that L̄21 can be reexpressed by

L̄21 = 2(b1λ1 − r1)− b1(λ1 − β1x
∗
1v

∗)
x∗
1

x1(t)
− b1(λ1 − β1x

∗
1v

∗)x1(t)
x∗
1

+2r1 − β1b1x
∗
1v

∗ x∗
1

x1(t)
− β1b1x

∗
1v

∗ x1(t−τ1)v(t−τ1)
x∗
1v(t)

+ r1 ln
x1(t−τ1)v(t−τ1)

x1(t)v(t)
.

When r1 = β1b1x
∗
1v

∗, that is, p1 = x∗
1v

∗, using λ1 − β1x
∗
1v

∗ = d1x
∗
1 yields

L̄21 = b1d1x
∗
1

[
2− x∗

1

x1(t)
− x1(t)

x∗
1

]
+β1b1x

∗
1v

∗
[
2− x∗

1

x1(t)
− x1(t−τ1)v(t−τ1)

x∗
1v(t)

+ ln x1(t−τ1)v(t−τ1)
x1(t)v(t)

]
.

Similarly, when r2 = β2b2x
∗
2v

∗, that is, p2 = x∗
2v

∗, we have

L̄22 = b2d2x
∗
2

[
2− x∗

2

x2(t)
− x2(t)

x∗
2

]
+β2b2x

∗
2v

∗
[
2− x∗

2

x2(t)
− x2(t−τ2)v(t−τ2)

x∗
2v(t)

+ ln x2(t−τ2)v(t−τ2)
x2(t)v(t)

]
.

Summarizing the inference above, when mi = bi, ri = βibix
∗
i v

∗ and pi = x∗
i v

∗

(i = 1, 2),

dL22

dt = b1d1x
∗
1

[
2− x∗

1

x1(t)
− x1(t)

x∗
1

]
+ b2d2x

∗
2

[
2− x∗

2

x2(t)
− x2(t)

x∗
2

]
+β1b1x

∗
1v

∗
[
2− x∗

1

x1(t)
− x1(t−τ1)v(t−τ1)

x∗
1v(t)

+ ln x1(t−τ1)v(t−τ1)
x1(t)v(t)

]
+β2b2x

∗
2v

∗
[
2− x∗

2

x2(t)
− x2(t−τ2)v(t−τ2)

x∗
2v(t)

+ ln x2(t−τ2)v(t−τ2)
x2(t)v(t)

]
.
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By the relationship between the arithmetical and geometrical means and Lemma
3.1, we have dL22/dt ≤ 0, and the equality holds if and only if x1(t) = x∗

1, x2(t) =
x∗
2, v(t) = v1(t− τ1) = v2(t− τ2) for t > 0.
Obviously, from the first two equations of system (2.7) the largest invariant

set of system (2.7) on the region
{
(x1(t), x2(t), v(t))

T ∈ Ω2 : dL22/dt = 0
}

is the

singleton {E∗
2}. Therefore, it follows by the LaSalle’s Invariance Principle[3] that

E∗
2 is globally stable in Ω2 when R02 > 1.
This completes the proof of Theorem 4.3.

5. Conclusion

In this paper, assuming that the time period of viral cytopathicity within target
cells is a constant number, we incorporated a constant delay into the basic viral
dynamical model proposed in [6, 7], established a basic viral dynamical model (2.3)
with viral cytopathicity delay, and then extended model (2.3) into the case with two
types of target cells. The modeling idea may be applied into the case with n(n ≥ 2)
types of target cells.

For the two viral infection models with delay proposed here, we found their
thresholds determining their dynamics, respectively. By the definition of the basic
reproduction number of viral infection, we can know that the obtained thresholds are
the basic reproduction numbers of the associated viral infection models, respectively.
By constructing Lyapunov functionals, we obtained the main results on the two
models: when the basic reproduction number is not greater than one, the infection-
free equilibrium is globally stable in the feasible region, which implies that the
viral infection goes extinct eventually; when it is greater than one, the infection
equilibrium is globally stable in the feasible region, which implies that the viral
infection persists in the body of host. Mathematically, the method of constructing
Lyapunov functions here is suitable for some delay differential equations of higher
order (i.e., the system with n(n ≥ 2) types of target cells), and the introduction of
Lemma 3.1 may simplify the proof of the global stability.
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