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ON THE EQUIVALENCE OF DIFFERENTIAL
SYSTEMS∗

Zhengxin Zhou

Abstract In this article, firstly, we construct some nonlinear differential sys-
tems which are equivalent to some known systems. Secondly, we discuss the
equivalence between some linear differential systems in a different method.
And then we apply the obtained results to the study of the qualitative prop-
erties of these systems simultaneously.
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1. Introduction

In this paper, we deal with differential system

x′ = X(t, x), t ∈ R, x ∈ D ⊂ Rn. (1.1)

We assume that system (1.1) has continuously differentiable right-hand sides and
which has a general solution ϕ(t; t0, x0). To study the property of the solutions of
differential system (1.1) is not only important for the theory of ordinary differential
equation but is also for practical significance. As a rule we cannot integrate system
(1.1) by quadrature and study properties of the solution directly. In this case
we have to look for other methods of studying system (1.1). In [4] there was an
elaborated method of the reflecting function which give us an opportunity to do
this. The reflecting function for system (1.1) is defined in some region near the
hyperplane t = 0 by the formula F (t, x) := ϕ(−t; t, x). If system (1.1) is 2ω-
periodic with respect to t, then F (−ω, x) is its Poincaré mapping [4, 1]. Therefore,
the solution ϕ(t;−ω, x0) which can be extended to [−ω, ω] is 2ω-periodic if and only
if F (−ω, x0) = x0.

The reflective function F (t, x) of system (1.1) can be found sometimes even for
the case where the system (1.1) cannot be integrated by quadrature. For example,
every system (1.1) for which X(−t, x) = −X(t, x) has an reflective function given
by the formula F (t, x) ≡ x. We know this due to the following property. A differ-
entiable function F (t, x) is the reflective function of system (1.1) if and only if the
following basic relation

F ′
t + F ′

xX(t, x) +X(−t, F ) = 0, F (0, x) = x (1.2)

holds.
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So if we can find the solution of the basic relation (1.2), then we can find the ini-
tial data for periodic solutions of (1.1) and investigate the character of the stability
for those solutions.

If the system
x′ = Y (t, x) (1.3)

has the same reflective function F (t, x) as the system (1.1), then Y (0, x) = X(0, x)
and systems

F ′
t + F ′

xX(t, x) +X(−t, F ) = 0,

F ′
t + F ′

xY (t, x) + Y (−t, F ) = 0,

F (0, x) = x

are compatible. At this moment, we call system (1.3) is equivalent to system (1.1).
To check whether the above systems are compatible we can use the Frobenius

theorem [2]. Doing this in practice, however, is a very hard task.
If we can neither solve the system (1.1) nor the problem (1.2), then it is good

enough to construct any system (1.3) which is equivalent to (1.1). To do this,
sometimes we can use:

Lemma 1.1. [5] Let the vector functions △k (k = 1, 2, ...,m) be solutions of the
equation

△′
t +△′

xX(t, x) = X ′
x△ (1.4)

and αk(t)(k = 1, 2, ...,m) be any scalar continuous odd functions. Then every sys-
tem of the form

x′ = X(t, x) +
m∑

k=1

αk(t)△k(t, x) (1.5)

is equivalent to system (1.1) (here m is any natural number or even m = ∞). So if
we find some solutions of equation (1.4), we can construct system (1.5), which has
the same reflective function as system (1.1).

Usually, however, we cannot find out the general equation (1.4). In this paper,
first, we will find out some solutions of (1.4), and construct some nonlinear differen-
tial systems which are equivalent to some known systems. Secondly, we will discuss
in a different method the equivalence between the simplest systems and some linear
differential systems for which the identity (1.4) does not necessarily hold.

Other results concerning the reflective function and its applications can be found
in works of Mironenko [4, 5], Musafirov [6] and others [3, 7, 8, 9].

2. Main results

Now, we consider linear system

x′ = A(t)x, t ∈ R, x ∈ Rn, (2.1)

where A(t) is a continuously matrix function for t ∈ R.
Let

u(t, x) = (u1(t, x), u2(t, x), ..., un(t, x)),

where ui(t, x) = ci are independent first integrals of (2.1), ci(i = 1, 2, ..., n) are
constants, Φ(t) is a fundamental matrix of (2.1).
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Lemma 2.1. Let
∆(t, x) = Φ(t)S(u(t, x)),

where S(u) is an arbitrary continuously differentiable vector function. Then it sat-
isfies the relation

∆′
t +∆′

xA(t)x−A(t)∆ = 0. (2.2)

Proof. For u′
t + u′

xA(t)x = 0, Φ′(t) = A(t)Φ(t),

∆′
t +∆′

xA(t)x−A(t)∆

=Φ′(t)S(u) + Φ(t)S′(u)u′
t +Φ(t)S′(u)u′

xA(t)x−A(t)Φ(t)S(u) ≡ 0.

Theorem 2.1. Let αk(t) be any scalar continuous odd functions, and

∆k = Φ(t)Sk(u), Sk(u)(k = 1, 2, ...,m)

be any continuously differentiable vector functions. Then the reflective function of
system

x′ = A(t)x+

m∑
k=1

αk(t)Φ(t)Sk(u) (2.3)

is the same as system (2.1).
Besides this, if system (2.3) is a 2ω-periodic system. Then its solution x(t)

defined on interval [−ω, ω] is 2ω-periodic, if and only if y(t) (y(−ω) = x(−ω)) is
2ω-periodic solution of (2.1).

Proof. By lemma (2.1), ∆k(k = 1, 2, ..,m) are the solutions of equation (2.2),
and according to Lemma (1.1), the reflective function of (2.3) is the same as system
(2.1). By [4], the system (2.3) is equivalent to system (2.1), then their reflective
functions coincide, which yields that their Poincaré mappings coincide. It implies
that the present theorem is true.

Similarly, we could obtain the following results:

Corollary 2.1. Let ∆k = Φ(t)Dk(u)Φ
−1(t)x, where Dk(u) is an arbitrary contin-

uously differentiable matrix function. Then the reflective function of system

x′ = A(t)x+
m∑

k=1

αk(t)Φ(t)Dk(u)Φ
−1(t)x

is the same as system (2.1).

Corollary 2.2. The reflective function of system

x′ = Ax+
m∑

k=1

αk(t)e
AtDk(u)e

−Atx

is the same as system x′ = Ax, where A is a constant matrix.

Remark 2.1. This result is same as the theorem (2.1) of paper [3].
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Corollary 2.3. Let αk(t) be any scalar continuous odd functions, and

∆k = Sk(u)X(x), Sk(u)(k = 1, 2, ...,m)

be arbitrary continuously differentiable scalar functions. Then the reflective function
of system

x′ = X(x) +
m∑

k=1

αk(t)Sk(u)X(x) (2.4)

is the same as system X ′ = X(x). Where u(t, x) = (u1(t, x), u2(t, x), ..., un(t, x)),
ui(t, x) = ci(i = 1, 2, ..., n) are the independent first integrals of x′ = X(x).

Corollary 2.4. Suppose that ui(t, xi) = ci(i = 1, 2, ..., n) are the first integrals of
equations x′

i = fi(xi)gi(t)(i = 1, 2, ..., n). Then the reflective function

x′ = X(t, x) +

m∑
k=1

αk(t)∆k(t, x)

is the same as equation x′ = X(t, x). Where

∆k = (∆k1,∆k2, ...,∆kn)
T ,

X(t, x) = (f1(x1)g1(t), f2(x2)g2(t), ..., fn(xn)gn(t))
T ,

∆ki = Ski(ui(t, xi))fi(xi), and αk(t)

are arbitrary scalar odd functions, gk(t) and fk(x) and Ski(u) are arbitrary scalar
continuously differentiable functions(i = 1, 2, .., n, k = 1, 2, ...,m).

Remark 2.2. If all the equivalent systems in Corollary (2.1)-(2.4) are 2ω-periodic
with respect to t, then the qualitative properties of their 2ω-periodic solutions
coincide.

Example 2.1. The reflective function of system(
x′

y′

)
=

(
cos t sin t
− sin t cos t

)(
x
y

)
(2.5)

is the same as system(
x′

y′

)
=

(
cos t sin t
− sin t cos t

)(
x
y

)
+

m∑
k=1

αk(t)e
sin t

(
S1 cosβ + S2 sinβ
−S1 sinβ + S2 cosβ

)
, (2.6)

where β = 1 − cos t , αk(t)(k = 1, 2, ...,m) are arbitrarily continuous scalar odd
functions, S1 = S1(u,u2), S2 = S2(u1, u2) are arbitrarily continuously differentiable
functions, u1 = e− sin t(x cosβ − y sinβ), u2 = e− sin t(x sinβ + y cosβ).

Furthermore, if αk(t)(k = 1, 2, ..,m) are 2π-periodic odd functions, then all the
solutions (2.6) defined on interval [−π, π] are 2π-periodic, which is obtained by the
fact that the reflective function of system (2.5) is F (t, x, y) = (e−2 sin tx, e−2 sin ty)T

and F (−π, x, y) ≡ (x, y)T .
This example satisfies all the conditions of Theorem (2.1).

The identity (1.4) only is a sufficient condition for system (1.5) to be equivalent
to system (1.1). There are some systems in the form (1.5) which are equivalent
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to (1.1), but for which the identity (1.4) is not valid. For example: x′ = 1
2x

2 is

equivalent to equation x′ = x2

2+2tx+x2 = 1
2x

2− t
2∆ with reflective function F = x

1+tx ,

but ∆ = x3(2+tx)
2+2tx+x2 does not satisfy the relation (1.4).

In the following part, we will study in a different method the equivalence between
the simple systems (or the simplest systems)and some linear systems.

We denote A := A(t), Ā := A(−t), F := F (t). The notation “ detA(t) ̸= 0 ”
means that in some deleted neighborhood of t = 0 and | t | being small enough
detA(t) is different from zero.

Definition 2.1. [4] For a continuous differentiable function F (t, x) which satisfies

that F (−t, F (t, x)) = x, F (0, x) = x, if X(t, x) = − 1
2F

′
x
−1

(t, x)F ′
t (t, x), then the

system (1) is called the simple system.

By literature [4], if F (t, x) is the reflective function of linear system (2.1), then
F (t, x) = F (t)x, and we call F (t) reflective matrix of (2.1). Thus, for an arbitrary
differentiable matrix F (t) which is a reflective matrix of linear system (2.1) if and
only if

F ′ + FA+ ĀF = 0, F (0) = E.

Theorem 2.2. If system (2.1) is a simple system, then system (2.1) is equivalent
to system

x′ = Ax+
m∑

k=1

αk(t)A
kx, (2.7)

where αk(t)(k = 1, 2, ...,m) are arbitrary continuous scalar odd functions.

Proof. Suppose that F is the reflective matrix of the simple system (2.1). Then
A = −1

2F
−1F ′ and FA = ĀF and F ′ = −FA− ĀF. Therefor,

F ′ + F (A+
m∑

k=1

αk(t)A
k) + (Ā+

m∑
k=1

αk(−t)Āk)F

=

m∑
k=1

αk(t)(FAk − ĀkF ) = 0,

i.e., F is a reflective matrix of (2.7) too.

Theorem 2.3. Suppose that system (2.1) is a simple system, matrix functions
Dj(j = 1, 2, ..., l) satisfy one of the following relations

D′ = AD −DA+
m∑

k=1

αk(t)A
k,

D′ = AD −DA+
m∑

k=1

αk(t)D
k.

Then the system

x′ = Ax+
l∑

j=1

βj(t)D
k
j x (2.8)

is equivalent to system (2.1), where αk(t)(k = 1, 2, ...,m) and βj(t)(j = 1, 2, ..., l)
are arbitrary continuous scalar odd functions.
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Proof. To prove the equivalence between systems (2.1) and (2.8), only need to
check that

FDj = D̄jF, j = 1, 2, ..., l.

Let denote U = FDj − D̄jF . Then U(0) = 0,

U ′ = F (D′
j −ADj +DjA) + (D̄′

j − ĀD̄j + D̄jĀ)− UA− ĀU.

If D′
j = ADj −DjA+

∑m
k=1 αk(t)A

k, then

U ′ = −UA− ĀU, U(0) = 0.

If D′
j = ADj −DjA+

∑m
k=1 αk(t)D

k
j , then

U ′ = −UA− ĀU +
m∑

k=1

αk(t)
∑

i+j=k−1

ĀiUAj , U(0) = 0.

By the uniqueness of solution of the initial problem of the linear differential system,
it follows U ≡ 0. Thus F is a reflective matrix of (2.8) too.

Example 2.2. System

x′ = −1

2

(
c+ s3 (c− s2 + s3)ec

−(c+ s2 + s3)e−c −c− s3

)
x

is a simple system with reflective matrix F =

(
1 + s sec

−se−c 1− s

)
, where s = sin t,

c = cos t. By theorem (2.2), it is equivalent to system

x′ =− 1

2

(
c+ s3 (c− s2 + s3)ec

−(c+ s2 + s3)e−c −c− s3

)
x

+
m∑

k=1

αk(t)(−
1

2
)k

(
c+ s3 (c− s2 + s3)ec

−(c+ s2 + s3)e−c −c− s3

)k

x,

where αk(t)(k = 1, 2, ...,m) are arbitrary continuous differentiable scalar odd func-
tions. Besides, if αk(t + 2π) = αk(t)(k = 1, 2, ...,m) then all solutions defined on
interval [−π, π] of the above equivalent systems are 2π-periodic.

Definition 2.2. [4] For a continuously differentiable function F (t, x) which satisfies
that F (−t, F (t, x)) = x, F (0, x) = x, ifX(t, x) = −(F ′

x(t, x)+E)−1F ′
t(t, x), then the

system (1.1) is called the simplest system (SS) with reflective function F (t, x).
Meanwhile, linear system (2.1) is the SS with reflective function F (t, x) = F (t)x,

we also call this linear system is SS with reflective matrix F (t).

By literature [4], we know that if the system (1.1) is the SS with reflective
function F (t, x), then X(t, x) = X(−t, F (t, x)). Conversely, if this identity is valid
and its solution F satisfies the relation (1.2), then the system (1.1) is the SS with

reflective function F (t, x).[4]

Remark 2.3. If A(t) + A(−t) = 0 and A(t) ̸= 0, then the system (2.1) is not the
SS.
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Theorem 2.4. If det(A) ̸= 0 and

A+A′A−1 + Ā+ Ā′Ā−1 = 0, lim
t→0

Ā−1A = E, (2.9)

then the system (2.1) is the SS with reflective matrix F = Ā−1A.

Proof. Since F = Ā−1A, A = ĀF , A′ = Ā′F + ĀF ′. Thus,

Ā(F ′ + FA+ ĀF ) = (A+A′A−1 + Ā+ Ā′Ā−1)A = 0,

i.e., F = Ā−1A is a reflective matrix of (2.1). Then, the system (2.1) is the SS with
reflective matrix F = Ā−1A.

From this theorem implies the following conclusions easily.

Corollary 2.5. If det(A) ̸= 0, and

A′ +A2 =

n∑
j=1

αj(t)(Sj(A) + Sj(Ā))A, lim
t→0

Ā−1A = E,

then the system (2.1) is the SS with reflective matrix F = Ā−1A, where αj(t)(j =
1, 2, ..., n) are arbitrary scalar odd functions, Sj(j = 1, 2, ..., n) are arbitrary differ-
entiable functions.

Corollary 2.6. If det(A) ̸= 0, and

A′ +A2 = (S(t, A)− S(−t, Ā))A, lim
t→0

Ā−1A = E,

then the system (2.1) is the SS with reflective matrix F = Ā−1A, where S(t, A) is
an arbitrary differentiable function.

By the literature [4], we have

Corollary 2.7. If the conditions of theorem (2.2) are satisfied, then the system
(2.1) is equivalent to the following systems

x′ = Ax+A−1ĀS(t, x)− S(−t, Ā−1Ax)

and
x′ = Ax+A−1(S(t, Ax)− S(−t, Ax)).

Now consider linear system
x′ = Bx, (2.10)

where B = B(t) is a continuous differentiable matrix function.

Theorem 2.5. Suppose that det(A) ̸= 0 and the relation (2.9) is valid and

A′A−1 +ABA−1 + Ā′Ā−1 + ĀB̄Ā−1 = 0. (2.11)

Then the system (2.10) is equivalent to system (2.1).

Proof. By theorem (2.4), we know F = Ā−1A is a reflective matrix of (1.4), then

Ā(F ′ + FB + B̄) = (A′A−1 +ABA−1 + Ā′Ā−1 + ĀB̄Ā−1)A = 0,

i.e., F = Ā−1A is also reflective matrix of (2.10).
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Corollary 2.8. If F = Ā−1A is a reflective matrix of (2.1) and

A+ Ā = ABA−1 + ĀB̄Ā−1,

then the system (2.10) is equivalent to system (2.1).

This conclusion can be yielded by using (2.9) and (2.11).

Corollary 2.9. Suppose that F = Ā−1A is the reflective matrix of system (2.1).
Then system (2.1) is equivalent to system

x′ = Ax+A−1
m∑
j=1

αj(t)Rj(t)Ax, (2.12)

where αj(t), Rj(t)(j = 1, 2, ...,m) are arbitrary functions such that the right-hand
sides of system (2.10) are continuous differentiable, αj(t) are scalar odd functions
Rj(t)(j = 1, 2, ...,m) are n× n even matrix functions.

Proof. It is easy to check that system (2.12) satisfies all the conditions of Corollary
(2.8).

Remark 2.4. If the conditions of theorem (2.5) or corollary (2.8) or corollary (2.9)
are satisfied and the systems (2.1) and (2.10) and (2.12) are 2ω-periodic with respect
to t, then all solutions of those defined on interval [−ω, ω] are 2ω-periodic. This
assertion is implied by F (t) = Ā−1A and F (−ω) = E.

Example 2.3. System

x′ = −1

4

(
a11 a12
a21 −a11

)
x

is the SS with reflective matrix

F =

(
1 + sin t ecos t sin t

−e− cos t sin t 1− sin t

)
,

where

a11 = 2 cos t+ sin3 t,

a12 = ecos t(2 cos t+ sin3 t− 2 sin2 t),

a21 = −e− cos t(2 cos t+ sin3 t+ 2 sin2 t).

This system is equivalent to system

x′ = −1

4

(
a11 a12
a21 −a11

)E − 1

4

m∑
j=1

αj(t)Rj(t)

(
a11 a12
a21 −a11

)x, (2.13)

where αj(t)(j = 1, 2, ...,m) are arbitrary continuous scalar odd functions, Rj(t)(j =
1, 2, ...,m) are continuous differentiable 2 × 2 matrix functions. Besides, if system
(2.13) is a 2π-periodic with respect to t, then all solutions of systems (2.13) defined
on interval [−π, π] are 2π-periodic.
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