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EVANS FUNCTIONS AND BIFURCATIONS OF
STANDING WAVE SOLUTIONS IN DELAYED

SYNAPTICALLY COUPLED NEURONAL
NETWORKS

Linghai Zhang

Abstract Consider the following nonlinear singularly perturbed system of
integral differential equations

∂u

∂t
+ f(u) + w

=(α− au)

∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
u(y, t− τ)−Θ

)
dy

]
dτ,

∂w

∂t
= ε[g(u)− w],

and the scalar integral differential equation

∂u

∂t
+ f(u)

=(α− au)

∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
u(y, t− τ)−Θ

)
dy

]
dτ.

There exist standing wave solutions to the nonlinear system. Similarly, there
exist standing wave solutions to the scalar equation.

The author constructs Evans functions to establish stability of the stand-
ing wave solutions of the scalar equation and to establish bifurcations of the
standing wave solutions of the nonlinear system.
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1. Introduction

1.1. The Model Equations

When an action potential is generated across a neuron membrane, normally, sodium
activation is considerably faster than potassium activation. This is reflected by a
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singular perturbation parameter ε in mathematical models. In this paper, we will
show by using rigorous mathematical analysis that when the ratio of sodium acti-
vation and potassium activation reaches a certain value, which is closely related to
the threshold above which an action potential is generated, bifurcations of standing
wave solutions occur.

Consider the following nonlinear singular perturbed system of integral differen-
tial equations arising from delayed synaptically coupled neuronal networks

∂u

∂t
+ f(u) + w

=(α− au)

∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
u(y, t− τ)−Θ

)
dy

]
dτ,

(1.1)

∂w

∂t
= ε[g(u)− w], (1.2)

and

∂u

∂t
+ f(u)

=(α− au)

∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
u(y, t− τ)−Θ

)
dy

]
dτ,

(1.3)

where u = u(x, t) represents the membrane potential of a neuron at position x
and time t in a delayed synaptically coupled neuronal network, w = w(x, t) repre-
sents the leaking current. The kernel functions K and W are defined on R. They
represent synaptic couplings between neurons. The gain function is the Heaviside
step function: H(u − θ) = 0 for all u < θ, H(0) = 1

2 , and H(u − θ) = 1 for
all u > θ. The probability density functions ξ and η are defined on (0,∞). The
function ξ represents a statistical distribution of action potential speeds. Addition-
ally, ξ may have a compact support [c1, c2], where c1 and c2 are positive constants,
denoting the lower bound and upper bound of biologically possible speeds, respec-
tively. Moreover, a, b, α, β, ε, θ and Θ are nonnegative or positive constants,
representing various biological mechanisms. The functions f = f(u) and g = g(u)
are smooth functions. In addition, either f(u) + g(u) = m(u − n) + k(u − l) is
a linear function, where k > 0 and m > 0 are positive constants, l and n are re-
al constants; or f(u) + g(u) = u(u − 1)(Du − 1) is a cubic polynomial function,
where D > 0 is a positive constant. Biologically, to model the sodium curren-
t and the potassium current, a nonlinear function is much better than a linear
function because sodium channels and potassium channels are voltage gated chan-
nels (in another word, sodium conductance and potassium conductance should be
functions of voltage). On the other hand, mathematically, a linear function is
much better than a nonlinear function because a linear function is easy to han-
dle and in some sense it is a good approximation of the nonlinear function. We
may interpret the constant m as the sodium conductance and the constant n as
the sodium reversal potential. Similarly, we may interpret the constant k as the
potassium conductance and the constant l as the potassium reversal potential. See
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[2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] for the same or
very similar model equations.

The nonlinear singularly perturbed system of integral differential equations
(1.1)-(1.2) becomes the scalar integral differential equation (1.3) if ε = 0 and w = 0.
We will study existence, stability/instability and bifurcations of standing wave solu-
tions, that is, solutions of the form

(
u(x, t), w(x, t)

)
=

(
ϕ(x), ψ(x)

)
to system (1.1)-

(1.2) and solutions of the form u(x, t) = φ(x) to equation (1.3). Note that the non-
linear system (1.1)-(1.2) is autonomous. Hence, if

(
u(x, t), w(x, t)

)
=

(
ϕ(x), ψ(x)

)
is a standing wave solution of system (1.1)-(1.2), then

(
u(x, t), w(x, t)

)
=

(
ϕ(x +

h), ψ(x+h)
)
is also a standing wave solution of (1.1)-(1.2), for any real constant h.

There may exist both simple standing wave solutions (which cross only one
threshold) and complicated standing wave solutions (which cross both thresholds).
Our results show that there exist two complicated standing wave solutions and
under additional conditions, there are four simple standing wave solutions. We
will highlight complicated standing wave solutions. We call them standing wave
solutions because they are special traveling wave solutions where the wave speed is
equal to zero. We may also call them stationary solutions or steady state solutions.

Previously, Amari [1], Guo and Chow [6], Pinto and Ermentrout [9] and Zhang
[19] have studied the existence, stability/instability of standing wave solutions of
some integral differential equations arising from synaptically coupled neuronal net-
works. However, the existence, stability/instability and bifurcations of standing
wave solutions of system (1.1)-(1.2) have been open for a long time. An interesting
feature on the stability/instability analysis and the bifurcation analysis is that the
eigenvalue problems derived from linearization of the nonlinear system are nonlinear
in λ (this is the eigenvalue parameter). This difficulty arises because the system
involves two kinds of delays and any of the two delays may cause such difficulty. We
are able to overcome the difficulty to find the eigenvalues of the eigenvalue problems
by the construction of Evans functions and by studying their properties.

1.2. The Mathematical Assumptions

Suppose that a ≥ 0, b ≥ 0, α ≥ 0, β ≥ 0, ε > 0, θ > 0 and Θ > 0 are nonnegative
or positive constants. Suppose that ξ ≥ 0 and η ≥ 0 are nonnegative probability
density functions defined on (0,∞). Suppose that the kernel functions K and W
are bounded, at least piecewise continuous functions defined on R.

Suppose that either f(u)+g(u) = m(u−n)+k(u−l), for some positive constants
k > 0 andm > 0 and for some real constants l and n; or f(u)+g(u) = u(u−1)(Du−
1), for some positive constant D > 0. Suppose that

α ≥ aΘ, β ≥ bθ, (1.4)

K(−x) = K(x), for all x ∈ R, and

∫
R
K(x)dx = 1, (1.5)

W (−x) =W (x), for all x ∈ R, and

∫
R
W (x)dx = 1, (1.6)∫ ∞

0

ξ(c)dc = 1,

∫ ∞

0

η(τ)dτ = 1, (1.7)∫ ∞

0

1

c
ξ(c)dc <∞,

∫ ∞

0

τη(τ)dτ <∞. (1.8)
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Remark 1.1. The conditions∫ ∞

0

ξ(c)dc = 1,

∫ ∞

0

η(τ)dτ = 1,∫
R
K(x)dx = 1,

∫
R
W (x)dx = 1,

are not essential. Actually, if they are not equal to one, then we can always rescale
the constants a, b, α and β so that the integrals are equal to one. For the existence
and stability/instability analysis of traveling wave solutions, we must make the
additional assumption

|K(x)|+ |W (x)| ≤ C exp(−ρ|x|) on R,

for two positive constants C > 0 and ρ > 0. For example, K(x) = ρ
2 exp(−ρ|x|)

and W (x) =
√

ρ
π exp(−ρx2), where ρ > 0 is a parameter, satisfy this condition.

For the existence and stability/instability analysis of standing wave solutions, we
do not need such assumptions. For non-symmetric kernel functions K and W , the
results obtained in this paper may not be true.

Let us find the constant solutions of the system. If f(u) + g(u) = m(u −
n) + k(u − l) and ϕ0 is a constant solution, such that ϕ0 < θ and ϕ0 < Θ, then
m(ϕ0 − n) + k(ϕ0 − l) = 0. Thus

ϕ0 =
kl +mn

k +m
< θ.

If f(u)+ g(u) = m(u−n)+ k(u− l), θ < Θ and ϕ1 is a constant solution, such that
θ < ϕ1 < Θ, then m(ϕ1 − n) + k(ϕ1 − l) = α− aϕ1. Hence

θ < ϕ1 =
α+ kl +mn

a+ k +m
< Θ.

If f(u)+ g(u) = m(u−n)+ k(u− l) and ϕ2 is a constant solution, such that ϕ2 > θ
and ϕ2 > Θ, then m(ϕ2 − n) + k(ϕ2 − l) = α+ β − aϕ2 − bϕ2. Hence

ϕ2 =
α+ β + kl +mn

a+ b+ k +m
> Θ.

The constant solution ϕ1 does not exist if θ = Θ. All of them are stable constant
solutions.

1.3. The Main Goal

In this paper, we will use rigorous mathematical analysis to establish the existence,
stability/instability and bifurcations of the standing wave solutions to the nonlinear
singularly perturbed system of integral differential equations with ε > 0. First of
all, we will obtain explicit standing wave solutions for the nonlinear system. Then,
we derive some eigenvalue problems. Then by constructing and making use of
some complex analytic functions, called Evans functions, we will accomplish the
stability/instability and the bifurcations of the standing wave solutions. Evans
functions are complex analytic functions defined in some right half complex plane.
Moreover, λ0 is an eigenvalue of the eigenvalue problem if and only if λ0 is a zero
of the Evans function.
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2. Existence of the Standing Wave Solutions

2.1. The nonlinear system (1.1)-(1.2)

First of all, we establish the existence of the standing wave solutions to the nonlinear
singularly perturbed system of integral differential equations with ε > 0 and f(u)+
g(u) = m(u−n)+k(u−l), where k > 0 andm > 0 are positive constants, l and n are
real constants. As mentioned before, the linear function is a good approximation
of the nonlinear function.

Theorem 2.1. Suppose that f(u)+ g(u) = m(u−n)+k(u− l). Suppose that there
exists a nonnegative constant Z0 ≥ 0, such that

(α− aθ)K(0) ≥ 0, (β − bθ)W (−Z0) ≥ 0, (2.1)

(α− aθ)K(0) + (β − bθ)W (−Z0) > 0, (2.2)

(α− aΘ)K(Z0) ≥ 0, (β − bΘ)W (0) ≥ 0, (2.3)

(α− aΘ)K(Z0) + (β − bΘ)W (0) > 0, (2.4)

(α− aθ)K(x) + (β − bθ)W (x− Z0) ≥ 0, for all x ∈ R, (2.5)

(α− aΘ)K(x) + (β − bΘ)W (x− Z0) ≥ 0, for all x ∈ R, (2.6)∫ −Z0

−∞
W (z)dz =

(2k + 2m+ a)θ − (2kl + 2mn+ α)

2(β − bθ)
, (2.7)∫ Z0

−∞
K(z)dz =

(2k + 2m+ b)Θ− (2kl + 2mn+ β)

2(α− aΘ)
, (2.8)

k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz > 0, for all x ∈ R, (2.9)

kl +mn

k +m
< θ ≤ Θ <

α+ β + kl +mn

a+ b+ k +m
. (2.10)

(I) There exist two complicated standing wave solutions(
u1(x, t), w1(x, t)

)
=

(
ϕ1(x), ψ1(x)

)
=

(
ϕ1(x), g

(
ϕ1(x)

))
,(

u2(x, t), w2(x, t)
)

=
(
ϕ2(x), ψ2(x)

)
=

(
ϕ2(x), g

(
ϕ2(x)

))
,

to the nonlinear system of integral differential equations (1.1)-(1.2), where

ϕ1(x) =

{
kl +mn+ α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz

}

/

{
k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
,

ϕ2(x) =

{
kl +mn+ α

∫ ∞

x

K(z)dz + β

∫ ∞

x+Z0

W (z)dz

}
/

{
k +m+ a

∫ ∞

x

K(z)dz + b

∫ ∞

x+Z0

W (z)dz

}
.

Define the positive constants

P =
α+ β + kl +mn

a+ b+ k +m
, Q =

kl +mn

k +m
, R =

α+ kl +mn

a+ k +m
.
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The standing wave solutions satisfy the following boundary conditions

lim
x→−∞

(
u1(x, t), w1(x, t)

)
=

(
Q, g(Q)

)
,

lim
x→∞

(
u1(x, t), w1(x, t)

)
=

(
P, g(P )

)
,

lim
x→−∞

(
u2(x, t), w2(x, t)

)
=

(
P, g(P )

)
,

lim
x→∞

(
u2(x, t), w2(x, t)

)
=

(
Q, g(Q)

)
.

(II) Suppose that the constants satisfy the additional conditions

α+ 2kl + 2mn

a+ 2k + 2m
= θ <

α+ kl +mn

a+ k +m
< Θ =

2α+ β + 2kl + 2mn

2a+ b+ 2k + 2m
.

There exist four simple standing wave solutions(
ui(x, t), wi(x, t)

)
=

(
ϕi(x), g

(
ϕi(x)

))
to the system (1.1)-(1.2) of integral differential equations, where i = 3, 4, 5, 6 and

ϕ3(x) =

{
kl +mn+ α

∫ x

−∞
K(z)dz

}
/

{
k +m+ a

∫ x

−∞
K(z)dz

}
,

ϕ4(x) =

{
kl +mn+ α

∫ ∞

x

K(z)dz

}
/

{
k +m+ a

∫ ∞

x

K(z)dz

}
,

ϕ5(x) =

{
kl +mn+ α+ β

∫ x

−∞
W (z)dz

}
/

{
k +m+ a+ b

∫ x

−∞
W (z)dz

}
,

ϕ6(x) =

{
kl +mn+ α+ β

∫ ∞

x

W (z)dz

}
/

{
k +m+ a+ b

∫ ∞

x

W (z)dz

}
.

These standing wave solutions satisfy the following boundary conditions

lim
x→−∞

(
u3(x, t), w3(x, t)

)
=

(
Q, g(Q)

)
,

lim
x→∞

(
u3(x, t), w3(x, t)

)
=

(
R, g(R)

)
,

lim
x→−∞

(
u4(x, t), w4(x, t)

)
=

(
R, g(R)

)
,

lim
x→∞

(
u4(x, t), w4(x, t)

)
=

(
Q, g(Q)

)
,

lim
x→−∞

(
u5(x, t), w5(x, t)

)
=

(
R, g(R)

)
,

lim
x→∞

(
u5(x, t), w5(x, t)

)
=

(
P, g(P )

)
,

lim
x→−∞

(
u6(x, t), w6(x, t)

)
=

(
P, g(P )

)
,

lim
x→∞

(
u6(x, t), w6(x, t)

)
=

(
R, g(R)

)
.

Remark 2.1. If the kernel functions K and W are positive functions, then the
conditions (9)-(14) and (17) hold automatically. If one synaptic coupling represents
a pure excitation and another denotes a lateral inhibition, then these conditions can
be easily satisfied. If one synaptic coupling represents a pure excitation and another
denotes a lateral excitation, then these conditions can also be easily satisfied.
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Remark 2.2. If θ = Θ and (a+ b+2k+2m)θ = α+ β +2kl+2mn, then Z0 = 0.
If θ < Θ, then Z0 > 0.

Remark 2.3. By an intermediate value theorem, it is easy to show that there exists
a real number Z0

′, such that∫ −Z0
′

−∞
W (z)dz =

(2k + 2m+ a)θ − (2kl + 2mn+ α)

2(β − bθ)
.

Similarly, there exists a real number Z0
′′, such that∫ Z0

′′

−∞
K(z)dz =

(2k + 2m+ b)Θ− (2kl + 2mn+ β)

2(α− aΘ)
.

For simplicity, we assume that the model parameters and the kernel functions are
chosen appropriately, such that Z0

′ = Z0
′′ ≥ 0.

Proof. Define

ω− =

∫ −Z0

−∞
W (z)dz, ω+ =

∫ Z0

−∞
K(z)dz.

Standing wave solutions satisfy
∂u

∂t
= 0 and

∂w

∂t
= 0. Substituting a solution of the

form
(
u(x, t), w(x, t)

)
=

(
ϕ(x), ψ(x)

)
into the system (1.1)-(1.2), we get

f
(
ϕ(x)

)
+ ψ(x) =

[
α− aϕ(x)

] ∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
ϕ(y)− θ

)
dy

]
dc

+
[
β − bϕ(x)

] ∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
ϕ(y)−Θ

)
dy

]
dτ,

0 =ε[g
(
ϕ(x)

)
− ψ(x)

]
.

(I) Suppose that the first standing wave solution satisfies the conditions ϕ < θ on
(−∞, 0), ϕ(0) = θ and ϕ > θ on (0,∞); ϕ < Θ on (−∞, Z0), ϕ(Z0) = Θ and ϕ > Θ
on (Z0,∞), for some nonnegative constant Z0 ≥ 0. Then the right hand side of the
first equation in the last system becomes

[
α− aϕ(x)

] ∫
R
K(x− y)H

(
ϕ(y)− θ

)
dy +

[
β − bϕ(x)

] ∫
R
W (x− y)H

(
ϕ(y)−Θ

)
dy

=
[
α− aϕ(x)

] ∫ ∞

0

K(x− y)dy +
[
β − bϕ(x)

] ∫ ∞

Z0

W (x− y)dy

=
[
α− aϕ(x)

] ∫ x

−∞
K(z)dz +

[
β − bϕ(x)

] ∫ x−Z0

−∞
W (z)dz

=α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz −

[
a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

]
ϕ(x).

Hence we obtain the first standing wave solution(
u1(x, t), w1(x, t)

)
=

(
ϕ1(x), g

(
ϕ1(x)

))
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to the nonlinear system (1.1)-(1.2) of integral differential equations, where ϕ1 =
ϕ1(x) is given by

ϕ1(x) =

{
kl +mn+ α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz

}

/

{
k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
.

The derivative of ϕ1 = ϕ1(x) is given by

ϕ1
′(x) =

{[
α− aϕ1(x)

]
K(x) +

[
β − bϕ1(x)

]
W (x− Z0)

}
/

{
k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
.

In particular, we have

ϕ1
′(0)

=
{
(α− aθ)K(0) + (β − bθ)W (−Z0)

}
/

{
k +m+

a

2
+ b

∫ −Z0

−∞
W (z)dz

}
> 0,

ϕ1
′(Z0)

=
{
(α− aΘ)K(Z0) + (β − bΘ)W (0)

}
/

{
k +m+ a

∫ Z0

−∞
K(z)dz +

b

2

}
> 0.

However, this is only a formal solution. We have to show that it is compatible,
namely, we have to verify that the standing wave solution is below and above the
threshold θ on (−∞, 0) and (0,∞), respectively; and it is below and above the
threshold Θ on (−∞, Z0) and (Z0,∞), respectively. The following inequalities are
equivalent to one another (below, the symbol “<=>” means that either we always
take “<” or we always take “=” or we always take “>”):{

kl +mn+ α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz

}

/

{
k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
<=> θ;

kl +mn+ α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz

<=>

{
k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
θ;

k(l − θ) +m(n− θ) + (α− aθ)

∫ x

−∞
K(z)dz

+ (β − bθ)

∫ x−Z0

−∞
W (z)dz <=> 0;

(α− aθ)

∫ x

−∞
K(z)dz + (β − bθ)

∫ x−Z0

−∞
W (z)dz <=> k(θ − l) +m(θ − n).
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Moreover, the following inequalities are equivalent to each other:{
kl +mn+ α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz

}

/

{
k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
<=> Θ;

kl +mn+ α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz

<=>

{
k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
Θ;

k(l −Θ) +m(n−Θ) + (α− aΘ)

∫ x

−∞
K(z)dz

+ (β − bΘ)

∫ x−Z0

−∞
W (z)dz <=> 0;

(α− aΘ)

∫ x

−∞
K(z)dz + (β − bΘ)

∫ x−Z0

−∞
W (z)dz <=> k(Θ− l) +m(Θ− n).

Define the following auxiliary functions on R:

A(x) =(α− aθ)

∫ x

−∞
K(z)dz + (β − bθ)

∫ x−Z0

−∞
W (z)dz,

B(x) =(α− aΘ)

∫ x

−∞
K(z)dz + (β − bΘ)

∫ x−Z0

−∞
W (z)dz.

Then we have

A(0) =
1

2
(α− aθ) + (β − bθ)

∫ −Z0

−∞
W (z)dz = k(θ − l) +m(θ − n),

B(Z0) =(α− aΘ)

∫ Z0

−∞
K(z)dz +

1

2
(β − bΘ) = k(Θ− l) +m(Θ− n),

and

A′(x) =(α− aθ)K(x) + (β − bθ)W (x− Z0) ≥ 0, for all x ∈ R,
B′(x) =(α− aΘ)K(x) + (β − bΘ)W (x− Z0) ≥ 0, for all x ∈ R,
A′(0) =(α− aθ)K(0) + (β − bθ)W (−Z0) > 0,

B′(Z0) =(α− aΘ)K(Z0) + (β − bΘ)W (0) > 0.

Hence, both A(x) and B(x) are increasing functions on R. Therefore, we find that
ϕ1 < θ on (−∞, 0), ϕ1(0) = θ and ϕ1 > θ on (0,∞). Similarly, ϕ1 < Θ on (−∞, Z0),
ϕ1(Z0) = Θ and ϕ1 > Θ on (Z0,∞).

The existence of the second standing wave solution can be proved very similarly.
Indeed, suppose that the second standing wave solution satisfies the conditions:
ϕ2 > θ on (−∞, 0), ϕ2(0) = θ and ϕ2 < θ on (0,∞); ϕ2 > Θ on (−∞,−Z0),
ϕ2(−Z0) = Θ and ϕ2 < Θ on (−Z0,∞), for the same constant Z0 as in the analysis
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of ϕ1. Then the differential equations become

m
[
ϕ2(x)− n

]
+ k

[
ϕ2(x)− l

]
= f

(
ϕ2(x)

)
+ g

(
ϕ2(x)

)
=

[
α− aϕ2(x)

] ∫ ∞

x

K(z)dz +
[
β − bϕ2(x)

] ∫ ∞

x+Z0

W (z)dz.

Therefore, we obtain the second standing wave solution(
u2(x, t), w2(x, t)

)
=

(
ϕ2(x), g

(
ϕ2(x)

))
,

where

ϕ2(x) =

{
kl +mn+ α

∫ ∞

x

K(z)dz + β

∫ ∞

x+Z0

W (z)dz

}
/

{
k +m+ a

∫ ∞

x

K(z)dz + b

∫ ∞

x+Z0

W (z)dz

}
.

The derivative of ϕ2 = ϕ2(x) is given by

ϕ2
′(x) = −

{[
α− aϕ2(x)

]
K(x) +

[
β − bϕ2(x)

]
W (x+ Z0)

}
/

{
k +m+ a

∫ ∞

x

K(z)dz + b

∫ ∞

x+Z0

W (z)dz

}
.

In particular, we have

ϕ2
′(−Z0)

=−
{
(α− aΘ)K(−Z0) + (β − bΘ)W (0)

}
/

{
k +m+ a

∫ ∞

−Z0

K(z)dz +
b

2

}
< 0,

ϕ2
′(0)

=−
{
(α− aθ)K(0) + (β − bθ)W (Z0)

}
/

{
k +m+

a

2
+ b

∫ ∞

Z0

W (z)dz

}
< 0.

It is easy to check that this standing wave solution also satisfies the prescribed
conditions.

(II) To obtain the expressions of the standing wave solutions
(
u3(x, t), w3(x, t)

)
=(

ϕ3(x), ψ3(x)
)
and

(
u4(x, t), w4(x, t)

)
=

(
ϕ4(x), ψ4(x)

)
, we may simply let b = 0,

Z0 = 0 and β = 0 in the proof of Theorem 2.1, because
(
ϕ3, ψ3

)
and

(
ϕ4, ψ4

)
are

below the big threshold Θ. To obtain the representations of the standing wave solu-
tions

(
u5(x, t), w5(x, t)

)
=

(
ϕ5(x), ψ5(x)

)
and

(
u6(x, t), w6(x, t)

)
=

(
ϕ6(x), ψ6(x)

)
,

we may simply replace both
∫ x

−∞K(z)dz and
∫∞
x
K(z)dz with 1 in the proof of (I),

because
(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
are above the small threshold θ. All other details are

the same as those in (I) and they are omitted. The proof of Theorem 2.1 is finished.

2.2. The Scalar Integral Differential Equation (1.3)

Theorem 2.2. Suppose that f(u) = m(u − n), for some positive constant m > 0
and for some real constant n. Suppose that there exists a nonnegative constant
Z0 ≥ 0, such that

α ≥ aΘ, β ≥ bθ, n < θ ≤ Θ <
α+ β +mn

a+ b+m
, (2.11)

(α− aθ)K(0) ≥ 0, (β − bθ)W (−Z0) ≥ 0, (2.12)
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(α− aθ)K(0) + (β − bθ)W (−Z0) > 0, (2.13)

(α− aΘ)K(Z0) ≥ 0, (β − bΘ)W (0) ≥ 0, (2.14)

(α− aΘ)K(Z0) + (β − bΘ)W (0) > 0, (2.15)

(α− aθ)K(x) + (β − bθ)W (x− Z0) ≥ 0, for all x ∈ R, (2.16)

(α− aΘ)K(x) + (β − bΘ)W (x− Z0) ≥ 0, for all x ∈ R, (2.17)∫ −Z0

−∞
W (z)dz =

(2m+ a)θ − (2mn+ α)

2(β − bθ)
, (2.18)∫ Z0

−∞
K(z)dz =

(2m+ b)Θ− (2mn+ β)

2(α− aΘ)
, (2.19)

k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz > 0, for all x ∈ R. (2.20)

(I) There exist two complicated standing wave solutions u1(x, t) = φ1(x) and u2(x, t)
= φ2(x) to the scalar integral differential equation (1.3), where

φ1(x) =

{
mn+ α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz

}

/

{
m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
,

φ2(x) =

{
mn+ α

∫ ∞

x

K(z)dz + β

∫ ∞

x+Z0

W (z)dz

}
/

{
m+ a

∫ ∞

x

K(z)dz + b

∫ ∞

x+Z0

W (z)dz

}
.

The standing wave solutions satisfy the following boundary conditions

lim
x→−∞

u1(x, t) = n, lim
x→∞

u1(x, t) =
α+ β +mn

a+ b+m
,

lim
x→−∞

u2(x, t) =
α+ β +mn

a+ b+m
, lim

x→∞
u2(x, t) = n.

(II) Suppose that the constants satisfy the additional conditions

α+ 2mn

a+ 2m
= θ <

α+mn

a+m
< Θ =

2α+ β + 2mn

2a+ b+ 2m
.

There exist four additional standing wave solutions ui(x, t) = φi(x) to the scalar
integral differential equation (1.3), where i = 3, 4, 5, 6, and

φ3(x) =

{
mn+ α

∫ x

−∞
K(z)dz

}
/

{
m+ a

∫ x

−∞
K(z)dz

}
,

φ4(x) =

{
mn+ α

∫ ∞

x

K(z)dz

}
/

{
m+ a

∫ ∞

x

K(z)dz

}
,

φ5(x) =

{
mn+ α+ β

∫ x

−∞
W (z)dz

}
/

{
m+ a+ b

∫ x

−∞
W (z)dz

}
,

φ6(x) =

{
mn+ α+ β

∫ ∞

x

W (z)dz

}
/

{
m+ a+ b

∫ ∞

x

W (z)dz

}
.
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These standing wave solutions satisfy the following boundary conditions

lim
x→−∞

u3(x, t) = n, lim
x→∞

u3(x, t) =
α+mn

a+m
,

lim
x→−∞

u4(x, t) =
α+mn

a+m
, lim

x→∞
u4(x, t) = n,

lim
x→−∞

u5(x, t) =
α+mn

a+m
, lim

x→∞
u5(x, t) =

α+ β +mn

a+ b+m
,

lim
x→−∞

u6(x, t) =
α+ β +mn

a+ b+m
, lim

x→∞
u6(x, t) =

α+mn

a+m
.

Proof. The proof follows from Theorem 2.1.

Remark 2.4. It is not difficulty to show that

ϕ1(x) = ϕ2(−x), ϕ3(x) = ϕ4(−x), ϕ5(x) = ϕ6(−x),
φ1(x) = φ2(−x), φ3(x) = φ4(−x), φ5(x) = φ6(−x),

for all x ∈ R. Therefore, we obtain

ϕ1
′(x) = −ϕ2′(−x), ϕ1

′(0) = −ϕ2′(0),
ϕ3

′(x) = −ϕ4′(−x), ϕ3
′(0) = −ϕ4′(0),

ϕ5
′(x) = −ϕ6′(−x), ϕ5

′(0) = −ϕ6′(0),

and ϕ1
′(Z0) = −ϕ2′(−Z0). Moreover, we have

φ1
′(x) = −φ2

′(−x), φ1
′(0) = −φ2

′(0),

φ3
′(x) = −φ4

′(−x), φ3
′(0) = −φ4

′(0),

φ5
′(x) = −φ6

′(−x), φ5
′(0) = −φ6

′(0).

These relationships will play important roles in the construction of Evans functions
and to establish the stability/instability of the standing wave solutions.

Remark 2.5. Both standing wave solutions of system (1.1)-(1.2) enjoy the esti-
mates

1

|ϕ′(0)|

=

{
k +m+

a

2
+ b

∫ −Z0

−∞
W (z)dz

}
/
{
(α− aθ)K(0) + (β − bθ)W (−γZ0)

}
> 0,

1

|ϕ′(γZ0)|

=

{
k +m+ a

∫ Z0

−∞
K(z)dz +

b

2

}
/
{
(α− aΘ)K(γZ0) + (β − bΘ)W (0)

}
> 0.

where γ = 1 for the first standing wave solution and γ = −1 for the second standing
wave solution.

Both standing wave solutions of equation (1.3) enjoy the estimates

1

|φ′(0)|
=

{
m+

a

2
+ b

∫ −Z0

−∞
W (z)dz

}
/
{
(α− aθ)K(0) + (β − bθ)W (−γZ0)

}
> 0,

1

|φ′(γZ0)|
=

{
m+ a

∫ Z0

−∞
K(z)dz +

b

2

}
/
{
(α− aΘ)K(γZ0) + (β − bΘ)W (0)

}
> 0.
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where γ = 1 for the first standing wave solution and γ = −1 for the second standing
wave solution.

3. Stability/Instability of the Standing Wave Solu-
tions

In this section, our goal is to establish the stability/instability of the standing wave
solutions. First of all, we derive some eigenvalue problems. Then we construc-
t complex analytic functions (namely, the Evans functions) corresponding to the
eigenvalue problems. Then we study properties of the Evans functions. Finally, we
finish the stability/instability analysis.

We will focus on the mathematical analysis of the eigenvalue problems and the
Evans functions of the first two standing wave solutions because they cross both
thresholds θ and Θ. For the next two standing wave solutions

(
ϕ3, ψ3

)
and

(
ϕ4, ψ4

)
,

simply let b = 0, Z0 = 0 and β = 0 because
(
ϕ3, ψ3

)
and

(
ϕ4, ψ4

)
do not cross the

big threshold Θ. For the last two standing wave solutions
(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
,

simply let Z0 = 0 and
K(x)

|ϕ′(0)|
= 0 because

(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
do not cross the

small threshold θ.

3.1. Derivation of the Eigenvalue Problems

Recall that all standing wave solutions satisfy

∂ϕ

∂t
+ f

(
ϕ) + ψ =

[
α− aϕ(x)

] ∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
ϕ(y)− θ

)
dy

]
dc

+
[
β − bϕ(x)

] ∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
ϕ(y)−Θ

)
dy

]
dτ,

∂ψ

∂t
= ε[g

(
ϕ)− ψ].

Linearizing the nonlinear system of integral differential equations

∂u

∂t
+ f(u) + w

=(α− au)

∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
u(y, t− τ)−Θ

)
dy

]
dτ,

∂w

∂t
= ε[g(u)− w],

about the standing wave solutions, we obtain the linear system of integral differential
equations

∂w

∂t
= ε

[
g′
(
ϕ(x)

)
u− w],
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∂u

∂t
+ f ′

(
ϕ(x)

)
u+ w =

[
α− aϕ(x)

] K(x)

|ϕ′(0)|

∫ ∞

0

ξ(c)u

(
0, t− 1

c
|x|

)
dc

+
[
β − bϕ(x)

]W (x− γZ0)

|ϕ′(γZ0)|

∫ ∞

0

η(τ)u(γZ0, t− τ)dτ

−au
∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
ϕ(y)− θ

)
dy

]
dc

−bu
∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
ϕ(y)−Θ

)
dy

]
dτ,

where γ = 1 for the first standing wave solution
(
ϕ1, ψ1

)
and γ = −1 for the second

standing wave solution
(
ϕ2, ψ2

)
.

Suppose that
(
u(x, t), w(x, t)

)
= exp(λt)

(
ψ1(x), ψ2(x)

)
is a solution of this sys-

tem, where λ is a complex number and ψ1(x) and ψ2(x) are bounded complex
functions. Then

λψ1(x) exp(λt) + f ′
(
ϕ(x)

)
ψ1(x) exp(λt) + ψ2(x) exp(λt)

=
[
α− aϕ(x)

] K(x)

|ϕ′(0)|

∫ ∞

0

ξ(c)ψ1(0) exp

(
λt− λ

c
|x|

)
dc

+
[
β − bϕ(x)

]W (x− γZ0)

|ϕ′(γZ0)|

∫ ∞

0

η(τ)ψ1(γZ0) exp(λt− λτ)dτ

− aψ1(x) exp(λt)

∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
ϕ(y)− θ

)
dy

]
dc

− bψ1(x) exp(λt)

∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
ϕ(y)−Θ

)
dy

]
dτ,

λψ2(x) exp(λt) = ε
[
g′
(
ϕ(x)

)
ψ1(x) exp(λt)− ψ2(x) exp(λt)

]
.

By canceling out the exponential function exp(λt), we obtain the eigenvalue prob-
lems

λψ1(x) + f ′
(
ϕ(x)

)
ψ1(x) + ψ2(x)

=
[
α− aϕ(x)

] K(x)

|ϕ′(0)|

[∫ ∞

0

ξ(c) exp

(
−λ
c
|x|

)
dc

]
ψ1(0)

+
[
β − bϕ(x)

]W (x− γZ0)

|ϕ′(γZ0)|
ψ1(γZ0)

− a

{∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
ϕ(y)− θ

)
dy

]
dc

}
ψ1(x)

− b

{∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
ϕ(y)−Θ

)
dy

]
dτ

}
ψ1(x),

λψ2(x) = ε
[
g′
(
ϕ(x)

)
ψ1(x)− ψ2(x)

]
.

The eigenvalue problems may be written as

L(λ)ψ = λψ, ψ(x) =

(
ψ1(x)
ψ2(x)

)
∈ [L∞(R)]2, (3.1)

where L(λ) : [L∞(R)]2 → [L∞(R)]2 is a family of linear operators. As we can easily
see, due to the presence of any of the delays, these eigenvalue problems are nonlinear
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in λ. This new feature makes the eigenvalue problems more difficult to solve. We
will construct Evans functions to investigate the eigenvalues of this family of linear
operators.

Definition 3.1. If there exists a complex number λ0 and there exists a nontrivial
bounded continuous function ψ0 defined on R, such that L(λ0)ψ0 = λ0ψ0, then λ0
is called an eigenvalue and ψ0 is called an eigenfunction of the eigenvalue problem.

3.2. Derivation of the Evans Functions

Define a real constant γ: γ = 1 for the first standing wave solution and γ = −1 for
the second standing wave solution. Note that for the standing wave solutions, we
have ∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
ϕ(y)− θ

)
dy

]
dc

=

∫
R
K(x− y)H

(
ϕ(y)− θ

)
dy =

∫ γx

−∞
K(z)dz,∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
ϕ(y)−Θ

)
dy

]
dτ

=

∫
R
W (x− y)H

(
ϕ(y)−Θ

)
dy =

∫ γx−Z0

−∞
W (z)dz.

Now we are ready to solve the eigenvalue problems and construct the Evans func-
tions to study the stability/instability of the standing wave solutions.

Define the positive constants

ξ0 =

∫ ∞

0

1

c
ξ(c)dc, η0 =

∫ ∞

0

τη(τ)dτ.

Define two complex analytic functions

ξ1(λ) =

∫ ∞

0

ξ(c) exp

(
−λ
c
|Z0|

)
dc, η1(λ) =

∫ ∞

0

η(τ) exp(−λτ)dτ,

ξ2(λ) =

∫ ∞

0

|Z0|
c
ξ(c) exp

(
−λ
c
|Z0|

)
dc, η2(λ) =

∫ ∞

0

τη(τ) exp(−λτ)dτ.

Letting x = 0 and x = γZ0, respectively, in the eigenvalue problems, we have

λψ1(0) + f ′(θ)ψ1(0) + ψ2(0)

=(α− aθ)
K(0)

|ϕ′(0)|
ψ1(0) + (β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)ψ1(γZ0)

− a

2
ψ1(0)− bω−ψ1(0),

λψ2(0) = ε
[
g′(θ)ψ1(0)− ψ2(0)

]
,
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and

λψ1(γZ0) + f ′(Θ)ψ1(γZ0) + ψ2(γZ0)

=(α− aΘ)
K(γZ0)

|ϕ′(0)|
ξ1(λ)ψ1(0) + (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)ψ1(γZ0)

− aω+ψ1(γZ0)−
b

2
ψ1(γZ0),

λψ2(γZ0) = ε
[
g′(Θ)ψ1(γZ0)− ψ2(γZ0)

]
.

For the standing wave solutions
(
ϕ3, ψ3

)
and

(
ϕ4, ψ4

)
, we only need the first system

to construct the Evans function E2(λ, ε), where b = 0, Z0 = 0 and β = 0. For the
standing wave solutions

(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
, we only need the second system to

construct the Evans function E3(λ, ε), where we must let Z0 = 0 and
K(0)

|ϕ′(0)|
= 0.

In each of the above systems, it is easy to see that

ψ2(0) =
ε

λ+ ε
g′(θ)ψ1(0), ψ2(γZ0) =

ε

λ+ ε
g′(Θ)ψ1(γZ0).

If we plug ψ2 back into the first equation, then we get the following equations{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}
ψ1(0)

=

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)

}
ψ1(γZ0),{

λ+ f ′(Θ) +
ε

λ+ ε
g′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

}
ψ1(γZ0)

=

{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ1(λ)

}
ψ1(0).

It is not difficult to find that ψ1(0) = 0 if and only if ψ1(γZ0) = 0. If ψ1(0) = 0 or
if ψ1(γZ0) = 0, then

[
λ+ f ′

(
ϕ(x)

)
+

ε

λ+ ε
g′
(
ϕ(x)

)
+ a

∫ γx

−∞
K(z)dz + b

∫ γx−Z0

−∞
W (z)dz

]
ψ1(x)

=
[
α− aϕ(x)

] K(x)

|ϕ′(0)|

[∫ ∞

0

ξ(c) exp

(
−λ
c
|x|

)
dc

]
ψ1(0)

+
[
β − bϕ(x)

]W (x− γZ0)

|ϕ′(γZ0)|
η1(λ)ψ1(γZ0) = 0.

Hence ψ1(x) = 0, for all x ∈ R. Therefore, if λ0 is an eigenvalue and ψ0 =

(
ψ01

ψ02

)
is an eigenfunction of the eigenvalue problem L(λ)ψ = λψ, then ψ01(0) ̸= 0 and
ψ01(γZ0) ̸= 0.

If we multiply these two equations together and cancel out ψ1(0)ψ1(γZ0), then
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we find that{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}
·
{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

}
=

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ1(λ)

}
.

Definition 3.2. (I) Define the domain Ω =
{
λ ∈ C: λ ̸= −ε

}
.

(II) Define the domain Ω0 =
{
λ ∈ C: λ satisfies the following conditions

}
,

Re λ > −f ′(θ)− a

2
− bω−, Re λ > −f ′(Θ)− aω+ − b

2
.

(III) Define the Evans function E = E1(λ, ε) for the first two standing wave solutions(
ϕ1, ψ1

)
and

(
ϕ2, ψ2

)
of the nonlinear singularly perturbed system (1.1)-(1.2) by

E1(λ, ε) =
{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}
·

{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

}
−

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ1(λ)

}
,

for all λ ∈ Ω.
(IV) Define the Evans function E = E2(λ, ε) for the next two standing wave solutions(
ϕ3, ψ3

)
and

(
ϕ4, ψ4

)
of the nonlinear singularly perturbed system (1.1)-(1.2) by

E2(λ, ε) = λ+ f ′(θ) +
ε

λ+ ε
g′(θ) +

a

2
− (α− aθ)

K(0)

|ϕ′(0)|
,

for all λ ∈ Ω.
(V) Define the Evans function E = E3(λ, ε) for the last two standing wave solutions(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
of the nonlinear singularly perturbed system (1.1)-(1.2) by

E3(λ, ε) = λ+ f ′(Θ) +
ε

λ+ ε
g′(Θ) + a+

b

2
− (β − bΘ)

W (0)

|ϕ′(0)|
η1(λ),

for all λ ∈ Ω.
(VI) Define the Evans function E = E1(λ) for the first two standing wave solutions
φ1 and φ2 of the scalar integral differential equation (1.3) by

E1(λ) =
{
λ+ f ′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}
·

{
λ+ f ′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

}
−

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ1(λ)

}
,

for all λ ∈ Ω0.
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(VII) Define the Evans function E = E2(λ) for the next two standing wave
solutions φ3 and φ4 of the scalar integral differential equation (1.3) by

E2(λ) = λ+ f ′(θ) +
a

2
− (α− aθ)

K(0)

|ϕ′(0)|
,

for all λ ∈ Ω0.

(VIII) Define the Evans function E = E3(λ) for the last two standing wave
solutions φ5 and φ6 of the scalar integral differential equation (1.3) by

E3(λ) = λ+ f ′(Θ) + a+
b

2
− (β − bΘ)

W (0)

|ϕ′(0)|
η1(λ),

for all λ ∈ Ω0.

Remark 3.1. The definitions of the Evans functions Ei(λ, ε) for the last four s-
tanding wave solutions of (1.1)-(1.2) make sense only if

α+ 2kl + 2mn

a+ 2k + 2m
= θ <

α+ kl +mn

a+ k +m
< Θ =

2α+ β + 2kl + 2mn

2a+ b+ 2k + 2m
.

Similarly, the definitions of the Evans functions Ei(λ) for the last four standing wave
solutions of (1.3) make sense only if

α+ 2mn

a+ 2m
= θ <

α+mn

a+m
< Θ =

2α+ β + 2mn

2a+ b+ 2m
.

Theorem 3.1. (I) The Evans function E = E1(λ, ε) is a complex analytic function
of λ and it is real valued if the eigenvalue parameter λ is real.

(II) The complex number λ0 is an eigenvalue of the eigenvalue problem L(λ)ψ =
λψ if and only if E1(λ0, ε) = 0.

(III) The Evans functions enjoy the following limit

lim
|λ|→∞

E1(λ, ε)
λ2

= 1.

Proof. (I) Obviously, the statement is true.
(II) If λ0 ∈ Ω is an eigenvalue, then there exists a nontrivial bounded contin-

uous solution ψ0 =

(
ψ01

ψ02

)
to the eigenvalue problem L(λ)ψ = λψ, such that

ψ01(0)ψ01(γZ0) ̸= 0. Therefore, E1(λ0, ε) = 0. On the other hand, if E1(λ0, ε) = 0,
then there exists a nontrivial vector

(
ψ01(0), ψ01(γZ0)

)
, such that(

a11(λ0, ε) a12(λ0, ε)
a21(λ0, ε) a22(λ0, ε)

)(
ψ01(0)
ψ01(γZ0)

)
=

(
0
0

)
,

where

E1(λ, ε) ≡ det

(
a11(λ, ε) a12(λ, ε)
a21(λ, ε) a22(λ, ε)

)
.

Moreover, there exists a nontrivial bounded continuous function ψ0 =

(
ψ01(x)
ψ02(x)

)
,

such that L(λ0)ψ0 = λ0ψ0. Therefore, λ0 is an eigenvalue of the eigenvalue problem
L(λ)ψ = λψ.

(III) Clearly, the conclusion is correct.
The proof of Theorem 3.1 is finished.
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Remark 3.2. We believe that the algebraic multiplicity of any eigenvalue λ0 of
the eigenvalue problem L(λ)ψ = λψ is equal to the order of λ0 as a zero of the
corresponding Evans function E = E1(λ, ε). However, it may be very complicated
to prove.

Let us find the derivatives of the Evans functions. For the nonlinear singularly
perturbed system (1.1)-(1.2), by using Definition 3.2, we find that

∂E1
∂λ

(λ, ε) =

{
1− ε

(λ+ ε)2
g′(θ)

}
·
{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

}
+

{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}
·
{
1− ε

(λ+ ε)2
g′(Θ) + (β − bΘ)

W (0)

|ϕ′(γZ0)|
η2(λ)

}
+

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η2(λ)

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ1(λ)

}
+

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ2(λ)

}
.

Moreover, for the scalar integral differential equation (1.3), we have

E1′(λ) =
{
λ+ f ′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

}
+

{
λ+ f ′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}
·
{
1 + (β − bΘ)

W (0)

|ϕ′(γZ0)|
η2(λ)

}
+

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η2(λ)

}
·
{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ1(λ)

}
+

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)

}
·
{
(α− aΘ)

K(γZ0)

|ϕ′(0)|

[∫ ∞

0

|Z0|
c
ξ(c) exp

(
−λ
c
|Z0|

)
dc

]}
.

In particular, for λ = 0, we have

∂E1
∂λ

(0, ε) =

{
1− 1

ε
g′(θ)

}
·
{
f ′(Θ) + g′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|

}
+

{
f ′(θ) + g′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}
·
{
1− 1

ε
g′(Θ) + (β − bΘ)

W (0)

|ϕ′(γZ0)|
η0

}
+

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η0

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|

}
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+

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
|Z0|ξ1(λ)

}
.

Moreover

E1′(0) =
{
f ′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|

}
+

{
f ′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}{
1 + (β − bΘ)

W (0)

|ϕ′(γZ0)|
η0η0

}
+

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η0

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|

[∫ ∞

0

ξ(c)dc

]}
+

{
(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|

}{
(α− aΘ)

K(γZ0)

|ϕ′(0)|
x|Z0|ξ0

}
> 0.

Let us also find the partial derivatives of the Evans functions E1(λ, ε) with respect
to ε:

∂E1
∂ε

(λ, ε)

=
λ

(λ+ ε)2
g′(θ) ·

{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

}
+

λ

(λ+ ε)2
g′(Θ)

{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

}
.

For the next four standing wave solutions of the nonlinear system (1.1)-(1.2), we
find that

∂E2
∂λ

(λ, ε) = 1− ε

(λ+ ε)2
g′(θ),

∂E2
∂λ

(0, ε) = 1− 1

ε
g′(θ),

and

∂E3
∂λ

(λ, ε) = 1− ε

(λ+ ε)2
g′(Θ) + (β − bΘ)

W (0)

|ϕ′(0)|
η2(λ),

∂E3
∂λ

(0, ε) = 1− 1

ε
g′(Θ) + (β − bΘ)

W (0)

|ϕ′(0)|
η0.

For the next four standing wave solutions of the scalar integral differential equation
(1.3), we have

∂E2
∂λ

(λ) = 1,
∂E2
∂λ

(0) = 1,

∂E3
∂λ

(λ) = 1,
∂E3
∂λ

(0) = 1.

Definition 3.3. Define the positive numbers ε1, ε2 and ε3 for the three pairs of s-
tanding wave solutions

[(
ϕ1, ψ1

)
,
(
ϕ2, ψ2

)]
,
[(
ϕ3, ψ3

)
,
(
ϕ4, ψ4

)]
,
[(
ϕ5, ψ5

)
,
(
ϕ6, ψ6

)]
of the system (1.1)-(1.2) by using the conditions

∂E1
∂λ

(0, ε1) = 0,
∂E2
∂λ

(0, ε2) = 0,
∂E3
∂λ

(0, ε3) = 0.
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Therefore, we find that

ε1 = O(1), ε2 = g′(θ) > 0,

ε3 = g′(Θ)/

{
1 + (β − bΘ)

W (0)

|ϕ′(0)|
η0

}
> 0.

Theorem 3.2. (I) λ = 0 is a simple eigenvalue of the eigenvalue problem L(λ)ψ =
λψ except for ε = ε1, that is

E1(0, ε) = 0,
∂E1
∂λ

(0, ε) > 0, for all ε ∈ (ε1,∞),

E1(0, ε) = 0,
∂E1
∂λ

(0, ε) < 0, for all ε ∈ (0, ε1).

(II) For any ε ∈ (0, ε1), there exist two positive numbers λ0(ε) and λ1(ε), such that
λ1(ε) > λ0(ε) > 0, and

∂E1
∂λ

(
λ0(ε), ε

)
= 0, E1

(
λ1(ε), ε

)
= 0.

(III) In the unbounded domain Ω, the Evans functions

E1(λ, ε) ̸= 0, for all ε ∈ (ε1,∞), for all λ ̸= 0,with Reλ ≥ 0.

Proof. (I) Differentiating the standing wave equations with respect to x, we get

f ′
(
ϕ(x)

)
ϕ′(x) + ψ′(x) =

[
α− aϕ(x)

]
K(γx) +

[
β − bϕ(x)

]
W (γx− Z0)

−aϕ′(x)
∫ γx

−∞
K(z)dz − bϕ′(x)

∫ γx−Z0

−∞
W (z)dz,

0 = ε
[
g′
(
ϕ(x)

)
ϕ′(x)− ψ′(x)

]
.

From this system, we see that λ = 0 is an eigenvalue and
(
ϕ′(x), ψ′(x)

)
is an

eigenfunction of the eigenvalue problem L(λ)ψ = λψ.

By definition,
∂E1
∂λ

(0, ε) = 0. By the expression of the derivatives of the Evans

functions with respect to λ, we find that if ε ∈ (0, ε1), then
∂E1
∂λ

(0, ε) < 0 and if

ε ∈ (ε1,∞), then
∂E1
∂λ

(0, ε) > 0.

(II) Fix ε ∈ (0, ε1). Then for all positive, sufficiently large λ > 0, we find that

∂E1
∂λ

(λ, ε) > 0.

By using intermediate value theorem, we know that there exists a positive number
λ0(ε) > 0, such that

∂E1
∂λ

(
λ0(ε), ε

)
= 0.

Clearly, we know that E1(0, ε) = 0 and that

∂E1
∂λ

(λ, ε) < 0,
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for all real number λ ∈
(
0, λ0(ε)

)
. Therefore,

E1
(
λ0(ε), ε

)
< 0.

Very similar to before, for all positive, sufficiently large λ > 0, we find that E1(λ, ε) >
0.

By using intermediate value theorem, we know that there exists a positive num-
ber λ1(ε) with λ1(ε) > λ0(ε) > 0, such that

E1
(
λ1(ε), ε

)
= 0.

Additionally, we find that

λ0 = O(ε), λ1 = O(1).

Lemma 3.1. Suppose that the nonnegative function ω ≥ 0 is defined on (0,∞) and
suppose that 0 <

∫∞
0
ω(x)dx < ∞. For any complex number λ ̸= 0, if Reλ ≥ 0,

then ∣∣∣∣∫ ∞

0

exp(−λx)ω(x)dx
∣∣∣∣ < ∫ ∞

0

ω(x)dx.

Proof. See [14].
(III) For all ε ∈ (ε1,∞) and for all λ ∈ Ω, if Reλ ≥ 0 and λ ̸= 0, then by using

Lemma 3.1, we have the following estimates∣∣∣∣λ+ f ′(θ) +
ε

λ+ ε
g′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

∣∣∣∣
>

∣∣∣∣f ′(θ) + g′(θ) +
a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

∣∣∣∣
=

{
k +m+

a

2
+ bω−

} (β − bθ)W (−γZ0)

(α− aθ)K(0) + (β − bθ)W (−γZ0)
≥ 0,∣∣∣∣λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

∣∣∣∣
>

∣∣∣∣f ′(Θ) + g′(Θ) + aω+ +
b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|

∣∣∣∣
=

{
k +m+ aω+ +

b

2

}
(α− aΘ)K(γZ0)

(α− aΘ)K(γZ0) + (β − bΘ)W (0)
≥ 0,∣∣∣∣(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)

∣∣∣∣
≤

∣∣∣∣(β − bθ)
W (−γZ0)

|ϕ′(γZ0)|

∣∣∣∣ = (β − bθ)
W (−γZ0)

|ϕ′(γZ0)|
,∣∣∣∣(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ1(λ)

∣∣∣∣
≤

∣∣∣∣(α− aΘ)
K(γZ0)

|ϕ′(0)|

[∫ ∞

0

ξ(c)dc

]∣∣∣∣ = (α− aΘ)
K(γZ0)

|ϕ′(0)|
.

Therefore, we obtain the desired estimate

|E1(λ, ε)| > |E1(0, ε)| = E1(0, ε) = 0.

The proof of Theorem 3.2 is finished.
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Corollary 3.1. For the standing wave solutions of the integral differential equation
(1.3), there hold the following results

E1(0) = 0, E1′(0) > 0.

Moreover, for all complex number λ with λ ̸= 0 and Reλ ≥ 0, we have

E1(λ) ̸= 0.

Proof. The first half is easy to prove. Let us establish the estimates in the second
half. We have the following estimates∣∣∣∣λ+ f ′(θ) +

a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

∣∣∣∣
>

∣∣∣∣f ′(θ) + a

2
+ bω− − (α− aθ)

K(0)

|ϕ′(0)|

∣∣∣∣
=

{
m+

a

2
+ bω−

} (β − bθ)W (−γZ0)

(α− aθ)K(0) + (β − bθ)W (−γZ0)
≥ 0,∣∣∣∣λ+ f ′(Θ) + aω+ +

b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|
η1(λ)

∣∣∣∣
>

∣∣∣∣f ′(Θ) + aω+ +
b

2
− (β − bΘ)

W (0)

|ϕ′(γZ0)|

∣∣∣∣
=

{
m+ aω+ +

b

2

}
(α− aΘ)K(γZ0)

(α− aΘ)K(γZ0) + (β − bΘ)W (0)
≥ 0,∣∣∣∣(β − bθ)

W (−γZ0)

|ϕ′(γZ0)|
η1(λ)

∣∣∣∣
≤

∣∣∣∣(β − bθ)
W (−γZ0)

|ϕ′(γZ0)|

∣∣∣∣ = (β − bθ)
W (−γZ0)

|ϕ′(γZ0)|
,∣∣∣∣(α− aΘ)

K(γZ0)

|ϕ′(0)|
ξ1(λ)

∣∣∣∣
≤

∣∣∣∣(α− aΘ)
K(γZ0)

|ϕ′(0)|

[∫ ∞

0

ξ(c)dc

]∣∣∣∣ = (α− aΘ)
K(γZ0)

|ϕ′(0)|
.

Therefore, we obtain

|E1(λ)| > |E1(0)| = E1(0) = 0.

The proof of Corollary 3 is finished. �

Theorem 3.3. There hold the following results

λ0(ε1) = 0, λ1(ε1) = 0.

For all ε < ε1, there hold

λ0(ε) > 0, λ0
′(ε) > 0,

λ1(ε) > 0, λ1
′(ε) > 0.

For all ε > ε1, there hold

λ0(ε) < 0, λ0
′(ε) < 0,

λ1(ε) < 0, λ1
′(ε) < 0.
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Remark 3.3. The Evans function E1(λ) for the first two standing wave solutions
of equation (1.3) enjoys the same properties as those of E = E1(λ, ε) mentioned in
Theorem 3.1, Theorem 3.2 and Corollary 3. All other Evans functions E = Ei(λ, ε)
for the standing wave solutions of the system (1.1)-(1.2) and the Evans functions
Ei = Ei(λ) for the standing wave solutions of equation (1.3) enjoy similar properties,
where i = 2, 3.

Definition 3.4. Denote by (ϕ, ψ) a standing wave solution of system (1.1)-(1.2).
If there exist positive constants C > 0, M > 0 and δ > 0, such that if the initial
data

(
u0, w0) of system (1.1)-(1.2) satisfies the condition∥∥∥∥( u0

w0

)
−
(
ϕ
ψ

)∥∥∥∥
L∞(R)

≤ C,

then there exists a real constant h, such that the global solution (u,w) =
(
u(x, t), w(x, t)

)
of system (1.1)-(1.2) corresponding to the initial data

(
u0, w0) satisfies the estimate∥∥∥∥( u(·, t)

w(·, t)

)
−
(
ϕ(·+ h)
ψ(·+ h)

)∥∥∥∥
L∞(R)

≤ C

∥∥∥∥( u0
w0

)
−
(
ϕ
ψ

)∥∥∥∥
L∞(R)

exp(−δt),

for all t > 0, where the constant h satisfies the condition

|h| ≤M

∥∥∥∥( u0
w0

)
−
(
ϕ
ψ

)∥∥∥∥
L∞(R)

,

then we say the standing wave solution (ϕ, ψ) is a stable. Otherwise, we say it is
unstable.

The Linearized Stability Criterion. (I) If there exists no nonzero eigenvalue
to the eigenvalue problem L(λ)ψ = λψ in

{
λ ∈ C : Reλ ≥ 0

}
and if λ = 0 is a simple

eigenvalue of the eigenvalue problem, then the standing wave solution is stable.
(II) If there exists a positive eigenvalue to the eigenvalue problem L(λ)ψ = λψ,

then the standing wave solution is unstable.
(III) If λ = 0 is not a simple eigenvalue of the eigenvalue problem L(λ)ψ = λψ,

then the standing wave solution is unstable.
The proof of the linearized stability criterion may be found in [22].

4. Bifurcations of the Standing Wave Solutions

Theorem 4.1. There exist three positive constants ε1 > 0, ε2 > 0 and ε3 > 0,
such that for all ε < εi, the standing wave solutions

(
ϕ2i−1, ψ2i−1

)
and

(
ϕ2i, ψ2i

)
are unstable and for all ε > εi, the standing wave solutions

(
ϕ2i−1, ψ2i−1

)
and(

ϕ2i, ψ2i

)
are stable, where i = 1, 2, 3.

Proof. The proof follows from Theorem 4.2 and Theorem 4.3.

Remark 4.1. The bifurcations are caused by the singular perturbation, not by
delays. In another word, even if the delays are not present, the bifurcations exist
for the nonlinear system (1.1)-(1.2).

4.1. Stability on the interval (εi,∞)
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Theorem 4.2. Let f(u) + g(u) = m(u − n) + k(u− l) in the nonlinear singularly
perturbed system of integral differential equations (1.1)-(1.2).
(I) For all ε ∈ (ε1,∞), the standing wave solutions

(
ϕ1, ψ1

)
and

(
ϕ2, ψ2

)
of system

(1.1)-(1.2) are exponentially stable.
(II) For all ε ∈ (ε2,∞), the standing wave solutions

(
ϕ3, ψ3

)
and

(
ϕ4, ψ4

)
of system

(1.1)-(1.2) are exponentially stable.
(III) For all ε ∈ (ε3,∞), the standing wave solutions

(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
of system

(1.1)-(1.2) are exponentially stable.

Proof. For each of the six standing wave solutions
(
ϕ1, ψ1

)
,
(
ϕ2, ψ2

)
,
(
ϕ3, ψ3

)
,(

ϕ4, ψ4

)
,
(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
, there exists no nonzero eigenvalue to the eigenvalue

problem L(λ)ψ = λψ in the region
{
λ ∈ C : Reλ ≥ 0

}
. Moreover, the neutral

eigenvalue λ = 0 is simple. By using the linearized stability criterion, we find that
the standing wave solutions of the system (1.1)-(1.2) are exponentially stable. The
proof of Theorem 4.2 is finished.

Corollary 4.1. Let f(u) = m(u − n) in the scalar integral differential equation
(1.3). (I) The standing wave solutions φ1 and φ2 of (1.3) are exponentially stable.
(II) The standing wave solutions φ3, φ4, φ5 and φ6 of (1.3) are exponentially stable
if θ < α+mn

a+m < Θ.

Proof. The proof of Corollary 4 is very similar to that of Theorem 4.2.

4.2. Instability on the interval (0, εi)

Theorem 4.3. Let f(u) + g(u) = m(u − n) + k(u− l) in the nonlinear singularly
perturbed system of integral differential equations (1.1)-(1.2).
(I) For all ε ∈ (0, ε1), the standing wave solutions

(
ϕ1, ψ1

)
and

(
ϕ2, ψ2

)
of system

(1.1)-(1.2) are exponentially unstable.
(II) For all ε ∈ (0, ε2), the standing wave solutions

(
ϕ3, ψ3

)
and

(
ϕ4, ψ4

)
of system

(1.1)-(1.2) are exponentially unstable.
(III) For all ε ∈ (0, ε3), the standing wave solutions

(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
of system

(1.1)-(1.2) are exponentially unstable.

Proof. For each of the six standing wave solutions
(
ϕ1, ψ1

)
,
(
ϕ2, ψ2

)
,
(
ϕ3, ψ3

)
,(

ϕ4, ψ4

)
,
(
ϕ5, ψ5

)
and

(
ϕ6, ψ6

)
, there exists a positive eigenvalue λ1(ε) > 0 to the

eigenvalue problem L(λ)ψ = λψ in the region
{
λ ∈ C : Reλ > −ε

}
. By the

linearized stability criterion, we see the standing wave solutions of the system (1.1)-
(1.2) are exponentially unstable. The proof of Theorem 4.3 is finished.

5. Concluding Remarks

5.1. Summary

Consider the following nonlinear singularly perturbed system of integral differential
equations

∂u

∂t
+ f(u) + w

=(α− au)

∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc
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+ (β − bu)

∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
u(y, t− τ)−Θ

)
dy

]
dτ,

∂w

∂t
= ε[g(u)− w],

and the scalar integral differential equation

∂u

∂t
+ f(u)

=(α− au)

∫ ∞

0

ξ(c)

[∫
R
K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫
R
W (x− y)H

(
u(y, t− τ)−Θ

)
dy

]
dτ.

These model equations generalize many important integral differential equations
arising from delayed synaptically coupled neuronal networks.

For the nonlinear singularly perturbed system of integral differential equations,
let f(u) + g(u) = m(u−n) + k(u− l), for some positive constants k > 0 and m > 0
and for some real constants l and n, we have obtained the following results.
(I-1) There exist two complicated standing wave solutions

(
u1(x, t), w1(x, t)

)
=(

ϕ1(x), g
(
ϕ1(x)

))
and

(
u2(x, t), w2(x, t)

)
=

(
ϕ2(x), g

(
ϕ2(x)

))
, where

ϕ1(x) =

{
kl +mn+ α

∫ x

−∞
K(z)dz + β

∫ x−Z0

−∞
W (z)dz

}

/

{
k +m+ a

∫ x

−∞
K(z)dz + b

∫ x−Z0

−∞
W (z)dz

}
,

ϕ2(x) =

{
kl +mn+ α

∫ ∞

x

K(z)dz + β

∫ ∞

x+Z0

W (z)dz

}
/

{
k +m+ a

∫ ∞

x

K(z)dz + b

∫ ∞

x+Z0

W (z)dz

}
.

(I-2) There exist four simple standing wave solutions under additional conditions.
(I-3) There exists three positive constants ε1 > 0, ε2 > 0 and ε3 > 0. For all ε ∈
(0, ε1), the standing wave solutions

(
ϕ1(x), ψ1(x)

)
and

(
ϕ2(x), ψ2(x)

)
are unstable.

For all ε ∈ (ε1,∞), the standing wave solutions
(
ϕ1(x), ψ1(x)

)
and

(
ϕ2(x), ψ2(x)

)
are stable.
For all ε ∈ (0, ε2), the standing wave solutions

(
ϕ3(x), ψ3(x)

)
and

(
ϕ4(x), ψ4(x)

)
are unstable. For all ε ∈ (ε2,∞), the standing wave solutions

(
ϕ3(x), ψ3(x)

)
and(

ϕ4(x), ψ4(x)
)
are stable.

For all ε ∈ (0, ε3), the standing wave solutions
(
ϕ5(x), ψ5(x)

)
and

(
ϕ6(x), ψ6(x)

)
are unstable. For all ε ∈ (ε3,∞), the standing wave solutions

(
ϕ5(x), ψ5(x)

)
and(

ϕ6(x), ψ6(x)
)
are stable.

For the scalar integral differential equation, let f(u) = m(u− n), we have obtained
the following results.
(II-1) There exist two complicated standing wave solutions u1(x, t) = φ1(x) and
u2(x, t) = φ2(x).
(II-2) There exist four simple standing wave solutions under additional conditions.
(II-3) The standing wave solutions of the scalar integral differential equation (1.3)
are stable.
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It is worth of mentioning that for the scalar integral differential equation, the
standing wave solutions are always stable. However, for the nonlinear singularly
perturbed system of integral differential equations, even though the parameter ε
plays no role in the existence analysis of the standing wave solutions, it does play
a very important role in the stability/instability analysis and the bifurcation anal-
ysis. The main idea to establish the stability/instability and the bifurcations is to
construct Evans functions corresponding to several associated eigenvalue problems
to find the eigenvalues.

5.2. Open Problems

Under different conditions on the model parameters and functions, there may exist
standing pulse solutions rather than standing front solutions. But these problems
have not been investigated rigorously.

The results for the nonlinear system are surprisingly interesting in mathematical
neuroscience.
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