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ON THE MONOTONICITY OF THE PERIOD
FUNCTION OF REVERSIBLE CENTERS∗
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Abstract In this paper we study the period function of centers for a class
of reversible systems and give a criteria to determine the monotonicity of the
period functions.
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1. Introduction and main results

It is well known that the center is surrounded by a continuous set of periodic orbits,
which is called the period annulus of the center and denoted by P. The period func-
tion is the period corresponding to the periodic orbits in P. The center is called an
isochronous center if the period function is a constant (see [1]). The critical periods
are the zeros of the derivative of period function. It can be shown that the number
of the critical periods does not depend on the particular parametrization used (see
[6, 7]). A system with a center is said to be reversible if its orbits are symmetric
with respect to a straight line passing through the center. In this paper we study
the monotonicity of period functions of a class of reversible centers. Consider the
reversible systems: {

ẋ = −U(x)y,
ẏ = f(x, y).

(1.1)

Suppose that (1.1) has a first integral of the form

H(x, y) = F (x)y2 +G(x).

Then

f(x, y) =
U(x)(y2F ′(x) +G′(x))

2F (x)
.

Denote by (xI , xS) is the projection of the period annulus P to the x−axis, i.e.

(xI , xS) = {x ∈ R |∃y ∈ R, such that (x, y) ∈ P}.

Assume that F (x), G(x), U(x) are analytic functions on (xI , xS). It is easy to

verify that the origin is a center and M(x) = 2F (x)
U(x) is an integral factor of system

(1.1). Without loss of generality, we always assume that
(H1) : The origin is a nondegenerate centers of (1.1), and U(0) > 0.
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(H2) : P is the period annulus of the origin and H(0, 0) = 0, H(x, y) > 0 for all
(x, y) ∈ P\{(0,0)}.

Denote the range of H on P by (0, h0), where {H = h0} is corresponding to the
boundary of the period annulus P with h0 ≤ ∞. From (H1), it is easy to obtain
that

F (0) ̸= 0, G′(0) = 0, F (0)G′′(0) > 0. (1.2)

For every h ∈ (0, h0), let us denote the periodic orbit of P corresponding to {H = h}
by γh and denote by T (h) its period. Moreover, we define

[x0(h), x1(h)] = {x ∈ R |∃ y ∈ R, such that (x, y) ∈ γh}.

Recall that an analytic diffeomorphism σ is said to be an involution if σ ◦σ = Id
and σ ̸= Id. Since xG′(x) > 0 for all x ∈ (xI , xS) \ {0} (See Lemma 2.1), there
exists an analytic involution σ(x) on (xI , xS) such that

G(x) = G(σ(x)) for all x ∈ (xI , xS).

In fact, we may take σ(x) = g−1(−g(x)), where g(x) = Sgn(x)
√
G(x).

In this paper, we obtain the following results for the reversible system (1.1).

Theorem 1.1. Assume that the origin is a nondegenerate center of system (1.1)
and that the function T (h) is the period function of the periodic orbit γh. We take

µ1(x) =
(F (x)G(x))′U(x)G′(x)− 2F (x)G(x)(U(x)G′(x))′√

F (x)((U(x)G′(x)))2

and define

µk+1(x) = µk(x) +
2

2k − 1

(
µk(x)G(x)

G′(x)

)′

and

Sσ(µk)(x) =
µk(x)

G′(x)
− µk(σ(x))

G′(σ(x))
.

If Sσ(µk)(x) > 0 (or < 0) for x ∈ (0, xS), then the period function of system (1.1)
is monotone.

Recall that the behavior of the period function plays an important role in the
study of Abelian integrals (see [2, 8] for instance). Moreover it is also important in
the study of other dynamical problems (see [3, 4]). Over the years the problem for
the period function have been extensively studied. F. Mañsas and J. Villadelprat
[11] studied the period functions of centers of Hamiltonian potential systems and
gave a criteria to bound the number of critical periods. Chicone [5] conjectured
that the period function of the quadratic reversible centers have at most two critical
periods. To illustrate the applicability of Theorem 1.1, we study the monotonicity
of period functions of some quadratic reversible centers(see Section 3 below). In the
literature there are a lot of papers dealing with the period functions of the quadratic
centers satisfied some Picard-Fuchs differential equations (see [9, 10, 13, 15, 16, 18,
19] and references therein).

The paper is organized in the following way. In Section 2 we give the proof
of Theorem 1.1 by using some results in [17]. In Section 3 we study the period
functions of two quadratic reversible systems by applying Theorem 1.1.
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2. The proof of main results

In what follows we give the following lemma in [17].

Lemma 2.1. [17] Under the assumptions (H1) and (H2), the following statements
hold:
(a) F (x) > 0, U(x) > 0, for all x ∈ (xI , xS).
(b) G(x) > 0, xG′(x) > 0, for all x ∈ (xI , xS) \ {0}. In addition,

G(0) = G′(0) = 0, G′′(0) > 0.

(c) G(x) → h0 as x ↘ xI or x ↗ xS.
(d) The period of the periodic orbit γh is given by

T (h) = 2

∫ x1(h)

x0(h)

√
F

U
√
h−G

dx, (2.1)

where G(x0(h)) = G(x1(h)) = h.

In order to character the period function T (h) of the periodic orbit γh we study
the auxiliary function g(x) = Sgn(x)

√
G(x).

Lemma 2.2. The following statements hold:
(a) The function g(x) is analytic on (xI , xS), g(0) = 0 and g′(x) > 0 for all x ∈
(xI , xS). The inverse function g−1(x) is well defined and analytic on (−

√
h0,

√
h0).

(b) If h ∈ (0, h0), then the period of the periodic orbit γh is given by

T (h) = 2

∫ π
2

−π
2

√
F (g−1(

√
h sin θ))

U(g−1(
√
h sin θ))g′(g−1(

√
h sin θ))

dθ. (2.2)

Moreover,

T ′(h) =
1√
h

∫ π
2

−π
2

sin θα(g−1(
√
h sin θ))(g−1)′(τ)|τ=√

h sin θdθ, (2.3)

where

α(x) =

( √
f(x)

U(x)g′(x)

)′

.

(c) µk(x) are analytic functions on (xI , xS).

Proof. It is clear that g(x) is well defined and analytic on (xI , xS) and that
g(0) = 0 by (b) in Lemma 2.1. Since

g′(x) =
sgn(x)G′(x)

2
√

G(x)
,

it follows from (b) in Lemma 2.1 that g′(x) > 0 for all x ∈ (xI , xS) \ {0}. On the
other hand, we have

g′(0) =

√
2G′′(0)

2
> 0.
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Therefore g−1(x) is well defined and analytic on (−
√
h0,

√
h0) and g′(x) > 0 for all

x ∈ (xI , xS).
Now turn to prove the statement (b). We make the variable z = g(x) in the

expression of T (h) given by (2.1). Noting that for all h ∈ (0, h0), it holds

g(x0(h)) = −
√
h and g(x1(h)) =

√
h.

Since x0(h) < 0 < x1(h), we obtain

T (h) = 2

∫ √
h

−
√
h

√
F (g−1(z))

U(g−1(z))g′(g−1(z))
√
h− z2

dz. (2.4)

Making the variables z =
√
h sin θ, θ ∈ (−π

2 ,
π
2 ), we get (2.2). Direct derivation

with respect to h on (2.1), we have (2.3).

Since α(x) and G(x)
G′(x) are analytic functions on (xI , xS), we have that µk(x) is

an analytic function on (xI , xS). The proof is finished.

Lemma 2.3. Let γh be an oval inside the level curve F (x)y2 +G(x) = h and let
A(x)
G′(x) be any analytic function which is regular at x = 0. Then, for any k ∈ N∮

γh

A(x)
(√

F (x)y
)2k−3

dx =
2

2k − 1

∮
γh

(
A(x)

G′(x)

)′ (√
F (x)y

)2k−1

dx.

Proof. If (x, y) ∈ γh ⊂ F (x)y2 +G(x) = h, then

dy

dx
= −F ′(x)y2 +G′(x)

2F (x)y
.

Moreover,

2d
(
β(x)y2k−1

)
=

(
2β′(x)y2k−1 − (2k − 1)β(x)y2k−2F

′(x)y2 +G′(x)

F (x)y

)
dx

=

(
2β′(x)− (2k − 1)β(x)

F ′(x)

F (x)

)
y2k−1dx−

(
(2k − 1)β(x)

G′(x)

F (x)

)
y2k−3dx.

Taking A(x)(
√
F (x))2k−3 = β(x)G

′(x)
F (x) in the above equality, then∮

γh

d
(
β(x)y2k−1

)
= 0.

This completes the proof of the result.
The next result gives explicit expression of the derivative of the period function.

Lemma 2.4. Suppose that the function T (h) is the period function of the periodic
orbit γh of system (1.1). We take

µ1(x) =
(F (x)G(x))′U(x)G′(x)− 2F (x)G(x)(U(x)G′(x))′√

F (x)((U(x)G′(x)))2
,

and define

µk+1(x) = µk(x) +
2

2k − 1

(
µk(x)G(x)

G′(x)

)
.
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Then, for any k ∈ N, the following equalities hold:

T ′(h) =
1

hk

∮
γh

µk(x)(F (x))
2k−3

2 y2k−3dx.

Proof. We prove the result by induction on k. Making the variable g−1(
√
hsinθ) =

x, it follows from (2.3) that

T ′(h) =
2

h

∫ x1(h)

x0(h)

(F (x)G(x))′U(x)G′(x)− 2F (x)G(x)(U(x)G′(x))′√
F (x)(U(x)G′(x))2

√
h−G(x)

dx

=
1

h

∮
γh

(F (x)G(x))′U(x)G′(x)− 2F (x)G(x)(U(x)G′(x))′√
F (x)((U(x)G′(x)))2

dx√
F (x)y

=
1

h

∮
γh

µ1(x)(F (x))
2k−1

2 y2k−1dx.

This proves the case k = 1 in the statement. Suppose that the equality holds
for k = n, it yields that

T ′(h) = 1
hk

∮
γh

µk(x)(F (x))
2k−3

2 y2k−3dx

= 1
hk+1

∮
γh

µk(x)(F (x)y2 +G(x))(F (x))
2k−3

2 y2k−3dx

= 1
hk+1

∮
γh

(
µk(x) +

2
2k−1

(
µk(x)G(x)

G′(x)

))
(F (x))

2k−1
2 y2k−1dx

= 1
hk+1

∮
γh

µk+1(x)(F (x))
2k−1

2 y2k−1dx,

where in the above equality we apply Lemma 2.3. This shows that the equality
holds for k = n+ 1. Therefore the proof is completed.

In the following, we prove the main result of the paper.
Proof of Theorem 1.1. By the Lemma 6, it follows that

T ′(h) = 1
hk

∮
γh

µk(x)(F (x))
2k−3

2 y2k−3dx

= 2
hk

∫ x1(h)

x0(h)
µk(x)

(√
h−G(x)

)2k−3

dx.

Taking the variables x = g−1(τ) in the second integral above, we have that

T ′(h) =
2

hk

∫ √
h

−
√
h

µk(g
−1(τ))

g′(g−1(τ))

(√
h− τ2

)2k−3

dτ

=
2

hk

∫ √
h

0

µk(g
−1(τ))

g′(g−1(τ))

(√
h− τ2

)2k−3

dτ

+
2

hk

∫ 0

−
√
h

µk(g
−1(τ))

g′(g−1(τ))

(√
h− τ2

)2k−3

dτ

=
2

hk

∫ √
h

0

(
µk(g

−1(τ))

g′(g−1(τ))
+

µk(g
−1(−τ))

g′(g−1(−τ))

)(√
h− τ2

)2k−3

dτ
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Define

δ(τ) =
µk(g

−1(τ))

g′(g−1(τ))
+

µk(g
−1(−τ))

g′(g−1(−τ))
.

Then δ(τ) > 0 (or < 0) for τ ∈ (0,
√
h) imply T ′(h) > 0 (or < 0) for h ∈ (0, h0).

Taking the variable g−1(τ) = x, then δ(τ) =
µk(x)

g′(x)
+

µk(σ(x))

g′(σ(x))
. Note that g2(x) =

g2(σ(x)) = G(x) = G(σ(x)) for x ∈ (xI , xS). Therefore, Sσ(µk)(x) > 0 (or < o)
for x ∈ (0, xS), which implies that the period function of system (1.1) is monotone.
This completes the proof of the result.

Remark 2.1. Note that Sσ(µk)(x) is σ-odd(i.e. Sσ(µk)(x)= −Sσ(µk)(σ(x))), then
the number of the zeros Sσ(µk)(x) on (0, xS) is equal to the number of the zeros
Sσ(µk)(x) on (xI , 0). If G(x) is an even function on (xI , xS), then σ(x) = −x, and

Sσ(µk)(x) = 2µk(x)
g′(x) . In addition, If Sσ(µk)(x) is monotone on (xI , xS), then the

period function is a monotone function.

3. Applications

In the following examples, we shall apply Theorem 1 to prove the period functions
of two reversible Lotka-Volterra systems QLV

3 is monotone.

Example 3.1. {
ẋ = −y(1 + 4

3x),
ẏ = x+ 4

3x
2 − 4

3y
2.

(3.1)

The first integral of (3.1) is H(x, y) = F (x)y2 +G(x), where

G(x) =
−108x− 144x2 + 9(3 + 4x)2 ln(1 + 4

3x)

8(3 + 4x)2
and F (x) =

9

(3 + 4x)2
.

System (2.4) has a center at (0, 0) and a nilpotent singularities at (−3
4 , 0), respec-

tively. Moreover (xI , xS) = (−3
4 ,∞). Straightforward computation, we have that

µ(x)

G′(x)
=

12x(1 + 2x)− (3 + 4x)2 ln( 3+4x
3 )

16x3
.

We claim that µ(x)
G′(x) is a monotone increasing function on (− 3

4 ,∞). In order to

prove the claim, we compute the derivative of µ(x)
G′(x) and have that(

µ(x)

G′(x)

)′

=
−4x(9 + 10x) + (3 + 4x)(9 + 4x) ln( 3+4x

3 )

16x4
.

On the other hand, we take

a(x) = ln(
3 + 4x

3
)− 4x(9 + 10x)

(3 + 4x)(9 + 4x)
.

Then

a′(x) =
256x3

((3 + 4x)(9 + 4x))2
.
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It is clear that a′(x) < 0 on (−3
4 , 0) and a′(x) > 0 on (0,∞), respective. Since

a(x) ≥ a(0) = 0 on (− 3
4 ,∞),

(
µ(x)
G′(x)

)′
≥ 0 on (− 3

4 ,∞), one gets that µ(x)
G′(x) is

a monotone increasing function on (−3
4 ,∞). Consequently, Sσ(µk)(x) > 0 for all

x ∈ (0,+∞). By applying Theorem 1.1, we have that the period function of the
center is (globally) monotone increasing.

Example 3.2. {
ẋ = −y,
ẏ = x+ 2x2 − 2y2.

(3.2)

The first integral of (3.2) is H(x, y) = F (x)y2 +G(x), where

G(x) =
1

4
− (1/2 + x)2

e4x
and F (x) =

1

e4x
.

System (3.2) has a center at (0, 0) and a saddle at (− 1
2 , 0), respectively. Moreover

(xI , 0) = (−1
2 , 0). Straightforward computation, we have that

µ(x)

G′(x)
=

(1 + 2x)3 + e4x(−1− 2x+ 4x2)

8e−2xx3(1 + 2x)3
.

We claim that µ(x)
G′(x) is a monotone function on (− 1

2 ,∞). In order to prove the

claim, we compute the derivative of µ(x)
G′(x) and have that(

µ(x)

G′(x)

)′

=
e2x((−3 + 2x)(1 + 2x)4 + e4x(3 + 10x− 8x2 − 32x3 + 48x4))

8x4(1 + 2x)4
.

By Sturm’s Theorem, we have that 3 + 10x − 8x2 − 32x3 + 48x4 > 0 on (−1
2 ,∞).

It is clear that
(

µ(x)
G′(x)

)′
> 0 on [ 32 ,∞).

On the other hand, for all x ∈ (− 1
2 ,

3
2 ), we take

b(x) = 4x− ln(
(3− 2x)(1 + 2x)4

3 + 10x− 8x2 − 32x3 + 48x4
).

Then

b′(x) =
32x3(−4 + 11x− 46x2 + 24x3)

(−3 + 2x)(1 + 2x)(3 + 10x− 8x2 − 32x3 + 48x4)
.

By Sturm’s Theorem, we have that −4 + 11x− 46x2 + 24x3 < 0 on (−1
2 ,

3
2 ). Since

b′(x) < 0 on (−1
2 , 0) and b′(x) > 0 on (0, 3

2 ), respective, then b(x) ≥ b(0) = 0

on (− 1
2 ,

3
2 ). Hence

(
µ(x)
G′(x)

)′
≥ 0 on (−1

2 ,∞), and µ(x)
G′(x) is a monotone increasing

function on (−1
2 ,∞). Consequently, Sσ(µk)(x) > 0 for all x ∈ (0,+∞). By applying

Theorem 1.1, we have that the period function of the center is (globally) monotone.
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