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Abstract In this paper, a class of rational explicit symplectic integrators
for one-dimensional oscillatory Hamiltonian problems is presented. These
methods are zero-dissipative, and of first algebraic order and high phase-lag
order. By means of composition technique, we construct second and fourth
order methods with high phase-lag order of this type. Based on our ideas,
three applicable explicit symplectic schemes with algebraic order one, two and
four are derived, respectively. We report some numerical results to illustrate
the good performance of our methods.
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1. Introduction

The classical dynamic equations q′′(t) = f(q(t)) can be written by the following
Hamiltonian formulation

p′ = −∂H(p, q)

∂q
, q′ =

∂H(p, q)

∂p
, (1.1)

where q, p ∈ Rd are the Lagrangian coordinates and the corresponding momenta
respectively, d the number of degrees of freedom and the total energy function
H(p, q) = T (p) + V (q) with the kinetic energy T (p) = pT p/2 and the potential
energy V (q) whose negative gradient is the force f(q). It is well known that, for
system (1), the symplectic structure dp ∧ dq of its exact flow and the total energy
H(p, q) are invariant as the time evolves. When solving the system numerically,
symplectic methods, which have been studied thoroughly in recent years (See [4, 8,
13]), can conserve the discrete symplecticity law dpn+1 ∧ dqn+1 = dpn ∧ dqn at each
time step, where pn, qn are the numerical approximations of p(tn) and q(tn), and
for this reason, they are quite efficient for solving Hamiltonian systems over long
time.
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In this paper, we are concerned on the numerical integration of autonomous
second order initial value problems having oscillatory solutions

q′′(t) = f(q(t)), q(0) = q0, q′(0) = q′0. (1.2)

This kind of problems often arise in many applied scientific fields and can be inte-
grated by some conventional numerical methods such as Partitioned Runge-Kutta,
Runge-Kutta-Nyström methods or linear multi-step methods and so on. Setting
p = q′ in problems (1.2), it may be considered as a kind of special Hamiltonian
problems. Naturally, symplectic methods are considered to solve these problems.
However, conventional explicit symplectic methods, say, symplectic Euler methods
or Störmer-Verlet methods, can not yield the numerical results of high accuracy.
Implicit symplectic methods, especially the ones of high algebraic order, can yield
more precise numerical results, but a nonlinear system has to be solved at each step.
Moreover, the exact solutions of problems (1.2) exhibit some pronounced periodic
or oscillatory behavior, so the numerical methods employed also should also mimic
the character as possible as they can.

For the above reasons, as an attempt, we turn to consider some nonconventional
numerical integrators. In our previous work, we have developed some noncon-
ventional methods of high phase-lag order for second order periodic or oscillatory
problems [10, 11]. Based on the ideas, in this paper, a class of rational explicit
symplectic integrators for one-dimensional Hamiltonian oscillatory problems is p-
resented. These integrators are zero-dissipative, and of first algebraic order and
high phase-lag order. By means of composition technique, we construct second and
fourth order methods with high phase-lag order of this type. Some applicable ra-
tional explicit symplectic schemes are derived. We report some numerical results to
illustrate the good performance of our methods.

At the end of this section, we give some preliminaries on symplectic integrators
and the stability analysis of numerical methods for solving second order oscillatory
problems so that our discussion can be followed easily.

Let Φ∆t : (pn, qn) → (pn+1, qn+1) be a one-step integrator for Hamiltonian
problems and ∆t be the fixed step. Φ∆t is symplectic if dpn+1∧dqn+1 = dpn∧dqn.
Denote ∂Φ∆t as the Jacobian of Φ∆t, namely, ∂Φ∆t = ∂(pn+1, qn+1)/∂(pn, qn), then
Φ∆t is symplectic if and only if

∂ΦT
∆t J ∂Φ∆t = J, J =

(
O I
−I O

)
.

For a one-step integrator Φ∆t for second order oscillatory problems, the stability
analysis is based on the following linear model equation [5, 7]

q̇ = p, ṗ = −ω2q, ω > 0. (1.3)

When Φ∆t is applied to equation (1.3), one can obtain the difference equation of
the form (

qn+1

∆tpn+1

)
= S(ν2)

(
qn

∆tpn

)
,

where ν := ω∆t, S(ν2) is a second order square matrix named stability matrix whose
elements are only dependent on ν2. Let λ1 and λ2 be the two eigenvalues of S(ν2),
the method has an interval of periodicity (0,Γ2), if λ1 and λ2 are conjugate complex
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and |λ1| = |λ2| = 1 for all ν2 ∈ (0,Γ2); The method is P-stable, if the interval of
periodicity is (0,+∞). Denote det(S(ν2)) and tr(S(ν2)) as the determinant and
the trace of matrix S(ν2) respectively, then it is easily shown that Φ∆t is P -stable
if and only if for all ν2 > 0

det(S) = 1, |tr(S)| ≤ 2.

For the method Φ∆t, the phase-lag error (also called dispersion error) and the
dissipation error (also called amplification error) are defined by respectively

φ(ν) = ν − cos−1

(
tr(S)

2
√
det(S)

)
, ψ(ν) = 1−

√
det(S).

The method is said to be of order p phase-lag error and order q dissipation error, if

φ(ν) = O(∆tp+1), ψ(ν) = O(∆tq+1), as ∆t→ 0.

Here, if p = +∞, then we call the method phase-fitted, while if q = +∞ and there
exists some interval (0,Γ2) such that |tr(S(ν2))| ≤ 2 for all ν2 ∈ (0,Γ2), we call the
method zero-dissipative, which means that the method has a nonempty interval of
periodicity. Moreover, it can be shown that a method has phase-lag order p if

tr(S)− 2 cos(ν)
√
det(S) = Cνp+2 +O(νp+4),

where C is some constant. For details, we refer to [1, 3, 5, 6, 7].

2. The explicit symplectic integrators

We consider the numerical integration of problems (1.2) in one dimension. Consider
the following method

qn+1 = qnG(Qn) + ∆tpn, pn+1 = qn
G(Qn)− 1

∆t
+ pn, (2.1)

where G(x) is a real analytic function defined in R, Qn = ∆t2fn/qn, fn = f(qn)
and we always suppose that qn ̸= 0 for all n. Equivalently, method (2.1) can be
written as

qn+1 = qnG(Qn) + ∆tpn, pn+1 =
qn+1 − qn

∆t
. (2.2)

From Taylor’s expansions of qn+1 and pn+1, we have

qn+1 = qn

+∞∑
k=0

G(k)(0)

k!

(
∆t2fn
qn

)k

+∆tpn

= G(0)qn +∆tpn +G′(0)∆t2fn +O(∆t4)

and

pn+1 =
qn
∆t

(
+∞∑
k=0

G(k)(0)

k!

(
∆t2fn
qn

)k

− 1

)
+ pn

= pn +
G(0)− 1

∆t
qn +G′(0)∆tfn +O(∆t3).
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Therefore, if function G(x) satisfies G(0) = G′(0) = 1, then method (2.1) has first
algebraic order with the local truncation error

q(tn+1)− qn+1 = −∆t2

2
fn +O(∆t3), p(tn+1)− pn+1 =

∆t2

2
f ′n +O(∆t3). (2.3)

Note that the Jacobian of method (2.1) is

∂(pn+1, qn+1)

∂(pn, qn)
=

(
1 1

∆t (G(Qn)− 1 + qnGqn(Qn))
∆t G(Qn) + qnGqn(Qn)

)
,

so we have

∂(pn+1, qn+1)

∂(pn, qn)

T

J
∂(pn+1, qn+1)

∂(pn, qn)
= J, J =

(
0 1
−1 0

)
and method (2.1) is symplectic.

As examples, if we take respectively function

• G(x) = 1 + x, then method (2.1) becomes a linear method as follows

qn+1 = qn +∆tpn +∆t2fn, pn+1 =
qn+1 − qn

∆t
; (2.4)

• G(x) = 1/(1− x), then we obtain the following rational method

qn+1 =
q2n

qn −∆t2fn
+∆tpn, pn+1 =

qn+1 − qn
∆t

. (2.5)

Consider the linear stability and phase-lag order of method (2.1). When applying
the method to the model equation (1.3), we have Qn = −(ω∆t)2 =: −ν2 and(

qn+1

∆tpn+1

)
=

(
G(−ν2) 1

G(−ν2)− 1 1

)(
qn

∆tpn

)
:= S(ν2)

(
qn

∆tpn

)
. (2.6)

Obviously, det(S(ν2)) = 1 is valid. Moreover, note that

tr(S)− 2 cos(ν)
√
det(S) = 1 +G(−ν2)− 2 cos(ν)

= G(0)− 1 +
+∞∑
n=1

(−1)n
(
G(n)(0)

n!
− 2

(2n)!

)
ν2n,

so method (2.1) has 2r-th phase-lag order if there exists an integer r such that

G(0) = 1, G(n)(0) =
2n!

(2n)!
, 1 ≤ n ≤ r. (2.7)

Due to its low algebraic accuracy, the method (2.1) is not competitive in prac-
tice. To improve its algebraic order, we will employ the composition technique to
construct some high order methods of this type. Indeed, it is well-known that in
the theory of numerical solutions of ODEs, composition is an important and useful
technique that a high order method can be obtained from some low order methods.
For details, we refer to [4, 8].
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In method (2.2), if exchange ∆t ↔ −∆t, qn ↔ qn+1 and pn ↔ pn+1, then we
have

qn+1 = qn +∆tpn, pn+1 =
qn+1G(Qn+1)− qn

∆t
, (2.8)

where Qn+1 = ∆t2fn+1/qn+1. Method (2.8) is the adjoint method of (2.2) and
clearly, it is also explicit. For the sake of convenience, we denote methods (2.2) and
(2.8) by Φ∆t and Φ∗

∆t respectively.

Theorem 2.1. For the rational integrators Φ∆t and Φ∗
∆t, if there exist some in-

terval (−L, 0), L > 0 and a positive integer r such that −3 ≤ G(x) ≤ 1 for all
x ∈ (−L, 0) and

G(0) = 1, G(n)(0) =
2n!

(2n)!
, 1 ≤ n ≤ r, (2.9)

then the two integrators are both zero-dissipative, symplectic and have algebraic
order one and phase-lag order 2r.

Proof. From the above analysis, we have shown that the assertion is true to Φ∆t.
For Φ∗

∆t, we have qn+1 − q(tn+1) = −f(qn)∆t2/2 +O(∆t3) and

pn+1 =
1

∆t

(
qn+1

+∞∑
n=0

G(n)(0)

n!

(
∆t2fn+1

qn+1

)n

− qn

)
= pn +∆tf(qn +∆tpn) +O(∆t3)

= pn +∆tfn +∆t2f ′q(qn)pn +O(∆t3),

so Φ∗
∆t is also a first order method. The symplecticity of Φ∗

∆t is obvious. Moreover,
the stability matrix of Φ∗

∆t is

S∗(ν2) =

(
1 1

G(−ν2)− 1 G(−ν2)

)
,

as a result, det(S∗(ν2)) = det(S(ν2)) = 1 and tr(S∗(ν2)) = tr(S(ν2)) = 1+G(−ν2).
The proof is completed here.

Next, based on methods Φ∆t and Φ∗
∆t, we have the following composition method

of second order under condition G(0) = G′(0) = 1

Ψ∆t := Φ∆t/2 ◦ Φ∗
∆t/2,

that is,

qn+1/2 = qn +
∆t

2
pn, Qn+1/2 =

∆t2f(qn+1/2)

4qn+1/2
,

qn+1 = 2qn+1/2G(Qn+1/2)− qn,

pn+1 =
2

∆t
(qn+1 − qn+1/2).

Consider the stability and phase-lag properties of Ψ∆t. Applying Ψ∆t to the model
equation (1.3), we obtain the stability matrix of Ψ∆t as follows

SΨ∆t(ν
2) =

(
2G(−ν2/4)− 1 G(−ν2/4)
4G(−ν2/4)− 4 2G(−ν2/4)− 1

)
.
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Clearly,
det(SΨ∆t(ν

2)) = 1, tr(SΨ∆t(ν
2)) = 4G

(
−ν2/4

)
− 2,

therefore, method Ψh is zero-dissipative provided that 0 ≤ G
(
−ν2/4

)
≤ 1 . More-

over, note that

(SΨ∆t)− 2 cos(ν)
√
det(SΨ∆t) = 4G(−ν2/4)− 2− 2 cos(ν)

= 4(G(0)− 1) +
+∞∑
n=1

(−1)n
(
4G(n)(0)

n!4n
− 2

(2n)!

)
ν2n,

so method Ψ∆t has 2r-th phase-lag order if there exists an integer r such that

G(0) = 1, G(n)(0) =
n!22n−1

(2n)!
, 1 ≤ n ≤ r. (2.10)

then method has 2r-th phase-lag order.

Theorem 2.2. For the integrator Ψ∆t, if there exist some interval (−M, 0), M > 0
and an positive integer r such that 0 ≤ G(x) ≤ 1 for all x ∈ (−M, 0) and the
conditions (2.10) are satisfied, then the integrator is zero-dissipative, symmetric,
symplectic and of algebraic order two and phase-lag order 2r.

Note that Ψ∆t is a symmetric and symplectic method of second algebraic order,
so we go on to consider the following composition method

Ξ∆t := Ψσ1∆t ◦Ψσ2∆t ◦Ψσ1∆t, (2.11)

namely,

qn+σ1/2 = qn +
σ1∆t

2
pn, Qn+σ1/2 =

σ2
1∆t

2f(qn+σ1/2)

4qn+σ1/2
,

qn+σ1 = 2qn+σ1/2G(Qn+σ1/2)− qn,

pn+σ1 =
2

σ1∆t
(qn+σ1 − qn+σ1/2),

qn+σ1+σ2/2 = qn+σ1 +
σ2∆t

2
pn+σ1 , Qn+σ1+σ2/2 =

σ2
2∆t

2f(qn+σ1+σ2/2)

4qn+σ1+σ2/2
,

qn+σ1+σ2 = 2qn+σ1+σ2/2G(Qn+σ1+σ2/2)− qn+σ1 ,

pn+σ1+σ2 =
2

σ2∆t
(qn+σ1+σ2 − qn+σ1+σ2/2),

qn+σ2+3σ1/2 = qn+σ1+σ2 +
σ1∆t

2
pn+σ1+σ2 , Qn+σ2+3σ1/2 =

σ2
1∆t

2f(qn+σ2+3σ1/2)

4qn+σ2+3σ1/2
,

qn+1 = 2qn+σ2+3σ1/2G(Qn+σ2+3σ1/2)− qn+σ2+σ1 ,

pn+1 =
2

σ1∆t
(qn+1 − qn+σ2+3σ1/2),

where σ1 = 1/(2− 21/3), σ2 = −21/3/(2− 21/3). Obviously, method Ξ∆t has alge-
braic order four since method (2.11) is a symmetric composition one [12]. Applying
Ξ∆t to the model equation (1.3), we have(

qn+1

pn+1

)
= A1A2A1

(
qn
pn

)
, (2.12)
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where

Ai :=

(
2G(−σ2

i ν
2/4)− 1 G(−σ2

i ν
2/4)σi∆t

4(G(−σ2
i ν

2/4)− 1)/(σi∆t) 2G(−σ2
i ν

2/4)− 1

)
, i = 1, 2.

As a result, the stability matrix is

SΞ∆t(ν
2) = diag{1,∆t}A1A2A1diag{1, 1/∆t}.

Since det(Ai) = 1, we have

det(SΞ∆t(ν
2)) = 1.

Moreover, if G(0) = G′(0) = 1, the estimation

tr(SΞ∆t(ν
2))− 2 cos(ν) = Cν6 +O(∆t8) (2.13)

holds and it follows that method Ξ∆t has phase-lag order four at least.

Theorem 2.3. If function G(x) satisfies G(0) = G′(0) = 1, then method Ξ∆t is
symmetric, symplectic and of phase-lag order four at least.

3. Some rational symplectic schemes

In this section, based on the ideas presented in Section 2, we will derive three
applicable rational symplectic schemes with algebraic order one, two and four, by
taking function G(x) as a polynomial function, respectively.

3.1. First order schemes

In method (2.1), take G(x) = 1 + x +
∑r

n=2 αnx
n with real coefficients αn. By

condition (2.9), we have αn = 2/(2n)!, n = 2, . . . , r. Without loss of generality, set
r = 5 and the coefficients are

α2 =
1

12
, α3 =

1

360
, α4 =

1

20160
, α5 =

1

1814400
.

The scheme has phase-lag order ten and its interval of periodicity is Ω ≈ (0, 1.047192)
since for all ν2 ∈ Ω, we have −3 ≤ G(−ν2) ≤ 1, that is, |tr(S)| ≤ 2.

3.2. Second order schemes

In method Ψ∆t , take G(x) = 1 + x +
∑r

n=2 γnx
n. By condition (2.10), we have

γn = 22n−1/(2n)!, n = 2, . . . , r. Again, if set r = 5, then the coefficients are

γ2 =
1

3
, γ3 =

2

45
, γ4 =

1

315
, γ5 =

2

14175

and the scheme has phase-lag order ten with the interval of periodicity Ω ≈ (0, 3.087082).
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3.3. Fourth order schemes

From Theorem 2.3, we know that method Ξ∆t has fourth phase-lag order at least
provided that G(0) = G′(0) = 1 fulfills. Indeed, we can improve the phase-lag order
of Ξ∆t to arbitrary even order. For instance, consider the following estimation

tr(SΞ∆t(ν
2))− 2 cos(ν) =

5∑
n=3

Cnν
2n +O(ν12).

Solving equations Cn = 0, n = 3, 4, 5, we have

G(3)(0) =
3

5
(5θ − 4) , (3.1)

G(4)(0) =
12
(
44 3

√
2− 92 + 35θ(3− 2 3

√
2) + 35θ2( 3

√
2− 1)

)
35
(
2 3
√
2− 1

) , (3.2)

G(5)(0) =
4
(
31324 3

√
4− 31256− 14260 3

√
2
)

105
(

3
√
2− 2

) (
2 3
√
2− 1

)
+
4θ
(
358 + 141 3

√
2− 334 3

√
4− 105θ − 40 3

√
2θ + 95 3

√
4θ
)(

3
√
2− 2

) (
2 3
√
2− 1

) , (3.3)

where θ := G′′(0) is free parameter. Under these conditions, method Ξ∆t has
phase-lag order ten.

In Ξ∆t , take G(x) = 1+x+
∑5

n=2 ζnx
n and G(n)(0) = n!ζn. For simplicity, set

θ = 0, that is, ζ2 = 0, and by conditions (3.1-3.3), we have

ζ3 = −2

5
, ζ4 =

22 3
√
2− 46

35
(
2 3
√
2− 1

) , ζ5 =
31324 3

√
4− 14260 3

√
2− 31256

3150
(

3
√
2− 2

) (
2 3
√
2− 1

) .

Moreover, the interval of periodicity of the scheme is Ω ≈ (0, 1.503822).

4. Numerical experiments

To illustrate the performance of our methods, we use the three schemes given in
Section 3, denoted by SI, SII, SIII, with relatively large time steps to solve the
cubic oscillatory problem and compare the numerical results with the ones given by
the following three conventional explicit symplectic integrators

• Symplectic Euler method (SEM):

pn+1 = pn +∆tfn, qn+1 = qn +∆tpn+1;

• Störmer-Verlet method (SVM) :

pn+1/2 = pn+∆tfn/2, qn+1 = qn+∆tpn+1/2, pn+1 = pn+1/2+∆tfn+1/2;

• Symmetric composition method based on Störmer-Verlet method (SCM), name-
ly,

ΦSCM
∆t = ΦSVM

σ1∆t ◦ ΦSVM
σ2∆t ◦ ΦSVM

σ1∆t ,

where ΦSVM
∆t is Störmer-Verlet method and σi defined as in method (2.11).
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Consider the problem of the cubic oscillator given by problem [2, 9]

q′′ = −q + εq3, q(0) = 1, p(0) = 0.

Its exact solution is

q(t) = τ +

(
1

8
ε+

25

256
ε2 +

161

2048
ε3
)
τ −

(
1

8
ε+

29

256
ε2 +

212

2048
ε3
)
τ3

+

(
4

256
ε2 +

55

2048
ε3
)
τ5 − ε3

512
τ7,

where τ = cos(µt) and

µ = 1−
(
3

8
ε+

21

256
ε2 +

81

2048
ε3 +

6549

262144
ε4
)
.

For this problem, the quotient Qn = ∆t2fn/qn = ∆t2(εq2n − 1). In the experiment,
we take ε = 10−3 and the endpoint T = 1000. We give the relative errors of
numerical solutions

max
tn∈[0,T ]

∥(p(tn), q(tn))− (pn, qn)∥∞
∥(p(tn), q(tn))∥∞

and the relative errors of the Hamiltonian∥∥∥∥H(p(0), q(0))−H(pn, qn)

H(p(0), q(0))

∥∥∥∥
∞

with H(pn, qn) = p2n/2 + q2n/2 − εq4n/4 and the CPU time of our schemes as well
as the three conventional explicit symplectic integrators with the fixed steps ∆t =
1/2j , j = 2 : 6, respectively (See Tables 1, 2 and 3).

Table 1. The relative errors of the six methods.
h 1/4 1/8 1/16 1/32 1/64

SI 1.2565e-1 6.2580e-2 3.1260e-2 1.5626e-2 7.8126e-3
SEM 2.4102e+0 8.8161e-1 2.0948e-1 5.7455e-2 1.8054e-2
SII 1.0938e-2 2.7426e-3 6.8686e-4 1.7164e-4 4.2917e-5

SVM 2.3987e+0 8.0606e-1 1.7498e-1 4.1498e-2 1.0226e-2
SIII 1.1191e-3 7.0122e-5 4.3832e-6 2.7532e-7 1.6547e-8

SCM 2.8722e-1 1.6217e-2 1.0060e-3 6.2824e-5 3.9259e-6

Table 2. The relative errors of the Hamiltonian of the six methods.
h 1/4 1/8 1/16 1/32 1/64

SI 1.3942e-1 6.5901e-2 3.2072e-2 1.5825e-2 7.8607e-3
SEM 1.4278e-1 6.6637e-2 3.2245e-2 1.5867e-2 7.8710e-3
SII 1.0496e-2 2.6067e-3 6.5059e-4 1.6258e-4 4.0641e-5

SVM 1.5617e-2 3.9043e-3 9.7607e-4 2.4402e-4 6.1005e-5
SIII 2.2113e-4 1.3810e-5 8.6288e-7 5.3928e-8 3.3717e-9
SCM 3.1141e-4 1.8805e-5 1.1652e-6 7.2668e-8 4.5393e-9
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Table 3. The CPU time (s) of the six methods.

h 1/4 1/8 1/16 1/32 1/64

SI 0.005750 0.012202 0.023295 0.045214 0.084023
SEM 0.001151 0.002375 0.006872 0.009402 0.018058
SII 0.006024 0.011258 0.023645 0.043160 0.085954

SVM 0.002260 0.007037 0.010444 0.018020 0.037968
SIII 0.017912 0.032643 0.062616 0.118922 0.245064
SCM 0.007282 0.015386 0.027154 0.053852 0.107558

From the numerical results, we can find that our schemes are more accurate
than the conventional methods of same algebraic order and the behavior of the
Hamiltonian persevering is almost same for these methods of same algebraic order.
However, the computational work of our methods are a bit larger than that of the
conventional methods.

At the end of this section, we have two remarks on our schemes:

• The singular case that qn varnishes at some step, which means the quo-
tient Qn = ∆t2fn/qn may be infinite and then our schemes will be not
applicable, does not arise all along in our numerical experiments. Indeed,
once the singularity arises at some computational step, we can adopt the
following remedial strategy, that is, if limqn→0 f(qn)/qn exists, then we set
Qn = ∆t2 limqn→0 fn/qn, else, we may employ a higher accurate conventional
symplectic method to jump the step.

• Since our schemes are rational, they only can be applicable for one-dimensional
problems. It need to go on discussing how to apply these rational methods
to multi-dimensional problems. The problem that how to make our method-
s applicable for multi-dimensional Hamiltonian oscillatory problems will be
considered in future work.

5. Conclusions

In this paper, a class of rational explicit symplectic integrators for one-dimensional
Hamiltonian oscillatory problems are presented. These methods are zero-dissipative,
and of first algebraic order and high phase-lag order. By means of composition
technique, we construct second and fourth order methods with high phase-lag order
of this type. Based on our ideas, some applicable explicit symplectic schemes are
derived. We report some numerical results to illustrate the good performance of
our methods.
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