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Abstract We introduce the approximately quadratic functional equation in
Menger probabilistic normed spaces. More precisely, we show under some
suitable conditions that an approximately quadratic functional equation can
be approximated by a quadratic function in above mentioned spaces. Also
we consider the stability problem for approximately pexiderized functional
equation in Menger probabilistic normed spaces.
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1. Introduction

The notion of probabilistic metric spaces was introduced by Menger [10]. Menger
proposed transferring the probabilistic notions of quantum mechanic from physics
to the underlying geometry. Probabilistic normed spaces are real linear spaces in
which the norm of each vector is an appropriate probability distribution function
rather than a number. The theory of probabilistic normed spaces was introduced
by Šerstnev in 1963 [20]. In [1] Alsina, Schweizer and Sklar gave a new definition
of probabilistic normed spaces which includes Šerstnev’s as a special case and leads
naturally to the identification of the principle class of probabilistic normed spaces,
the Menger spaces.

The idea of Menger was to use distribution function instead of nonnegtive real
numbers as values of the metric. It corresponds to the situation when we do not
know exactly the distance between two points, we know only probabilities of possible
values of this distance. The probabilistic generalization of metric spaces appears
to be well adapted for the investigation of quantum particle physics particulary
in connections with both string and ε∞ theory which were given and studied by
El-Naschie [11, 12].

Stability problem of a functional equation was first posed in [22] which was
answered in [6] and then generalized in [2, 18] for additive mappings and linear
mappings respectively. Since then several stability problems for various functional
equations have been investigated in [7, 8, 9, 19].
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Recently, several results for the Hyers-Ulam-Rassias stability of many function-
al equations on Menger probabilistic normed space have been proved by several
researchers[5, 21]. Our goal is to determine some stability results concerning the
quadratic and pexiderized quadratic functional equations in probabilistic normed
spaces.

2. Preliminaries

For reader’s convenience, in this section we briefly recall some concepts and results
from probabilistic metric spaces theory used in the paper.

Definition 2.1. A function F : R → [0, 1] is called a distribution function if it is
nondecreasing and left-continuous, with supt∈RF (t) = 1 and inft∈RF (t) = 0.

The class of all distribution functions F with F (0) = 0 is denoted by D+. ε0 is
the element of D+ defined by

ε0 =

{
1, t > 0,
0, t ≤ 0.

Definition 2.2. A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is said to be a t-norm
if it satisfies the following conditions:

(1) ∗ is commutative and associative;

(2) ∗ is continuous;

(3) a ∗ 1 = a for all a ∈ [0, 1];

(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

Definition 2.3. [3] Let X be a real vector space, F a mapping from X to D+ (for
any x ∈ X, F (x) is denoted by Fx) and ∗ a t-norm. The triple (X,F, ∗) is called
a Menger probabilistic normed space (briefly Menger PN-space) if the following
conditions are satisfied:

1) Fx(0) = 0, for all x ∈ X;

2) Fx = ε0 iff x = θ;

3) Fαx(t) = Fx(
t
|α| ) for all α ∈ R, α ̸= 0 and x ∈ X;

4) Fx+y(t1 + t2) ≥ Fx(t1) ∗ Fx(t2), for all x, y ∈ X and t1, t2 > 0.

Definition 2.4. Let (X,F, ∗) be a Menger PN-space and let {xn} be a sequence
in X. Then {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

Fxn−x(t) = 1

for all t > 0. In this case x is called the limit of {xn}.

Definition 2.5. The sequence {xn} in Menger PN-space (X,F, ∗) is called Cauchy
if for each ϵ > 0 and δ > 0, there exists some n0 such that Fxn−xm(δ) > 1 − ϵ for
all m,n ≥ n0.

Clearly, every convergent sequence in Menger PN-space is Cauchy. If each
Cauchy sequence is convergent sequence in a Menger PN-space (X,F, ∗), then
(X,F, ∗) is called Menger probabilistic Banach space (briefly, Menger PB-space).
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3. Stability of quadratic functional equation in Menger
PN-spaces

In this section, we define an approximately quadratic mapping in Menger PN-
spaces.

Definition 3.1. Let (X,F, ∗) be a Menger PN-space and (Y,G, ∗) be a Menger
PB-space. A mapping f : X → Y is said to be P-approximately quadratic if

Gf(x+y)+f(x−y)−2f(x)−2f(y)(t+ s) ≥ Fx(t) ∗ Fy(s),

∀x, y ∈ X, t, s ∈ [0,∞).
(3.1)

The following result gives a Hyers-Ulam-Rassias stability of the P-approximately
quadratic functional equation.

Theorem 3.1. Let f : X → Y be a P-approximately quadratic functional equation.
Then there exists a unique quadratic mapping Q : X → Y such that

GQ(x)−f(x)(t) ≥ Fx(t), ∀x ∈ X, t > 0. (3.2)

Proof. Put x = y and s = t in (3.1) to obtain

Gf(2x)−4f(x)(2t) ≥ Fx(t). (3.3)

Replacing x by 2nx in (3.3), we see that

Gf(2n+1x)−4f(2nx)(2t) ≥ F2nx(t).

It follows that

Gf(2n+1x)−4f(2nx)(2
n+1t) ≥ Fx(t).

Whence

G f(2n+1x)

4n+1 − f(2nx)
4n

(2−n−1t) ≥ Fx(t).

If n > m > 0, then

G f(2nx)
4n − f(2mx)

4m
(

n∑
k=m+1

2−k−1t)

≥G∑n
k=m+1(

f(2kx)

4k
− f(2k−1x

4k−1 )
(

n∑
k=m+1

2−k−1t)

≥
n∏

k=m+1

G f(2kx)

4k
− f(2k−1x)

4k−1

(2−k−1t) ≥ Fx(t).

(3.4)

Let c > 0 and ε be given. Since

lim
t→∞

Fx(t) = 1,

there is some t0 > 0 such that Fx(t0) ≥ 1 − ε. Fix some t > t0. The convergence
of the series

∑∞
n=1 2

−n−1t shows that there exists some n0 ≥ 0 such that for each
n > m ≥ n0, the inequality

∑n
k=m+1 2

−k−1t < c holds. It follows that,
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G f(2nx)
4n − f(2mx)

4m
(c) ≥ G f(2nx)

4n − f(2mx)
4m

(
∑n

k=m+1 2
−k−1t0) ≥ Fx(t0) ≥ 1− ε.

Hence { f(2nx)
4n } is a Cauchy sequence in (Y,G, ∗). Since (Y,G, ∗) is a Menger

PB-space, this sequence converges to some Q(x) ∈ Y . Hence, we can define a
mapping Q : X → Y such that limn→∞ G f(2nx)

4n −Q(x)
= 1. Moreover, if we put

m = 0 in (3.4) we observe that

G f(2nx)
4n −f(x)

(
∑n

k=1 2
−k−1t) ≥ Fx(t).

Therefore,

G f(2nx)
4n −f(x)

(t) ≥ Fx

(
t∑n

k=1 2
−k−1

)
. (3.5)

Next we will show that Q is quadratic. Let x, y ∈ X, then we have

GQ(x+y)+Q(x−y)−2Q(x)−2Q(y)(t)

≥G
Q(x+y)− f(2n(x+y))

4n

(
t

5

)
∗G

Q(x−y)− f(2n(x−y))
4n

(
t

5

)
∗G

2
f(2nx)

4n −2Q(x)

(
t

5

)
∗G

2
f(2ny)

4n −2Q(y)

(
t

5

)
∗G f(2n(x+y))

4n +
f(2n(x−y))

4n −2
f(2nx)

4n −2
f(2ny)

4n

(
t

5

)
.

The first four terms on the right hand side of the above inequality tend to
1 as n → ∞, t → ∞ and the fifth term, by (3.1) is greater than or equal to
F2nx(

4nt
10 ) ∗ F2ny(

4nt
10 ) = Fx(

2nt
10 ) ∗ Fy(

2nt
10 ), which tends to 1 as n → ∞. Therefore

Q(x+ y)+Q(x− y) = 2Q(x)+2Q(y). Next we approximate the difference between
f and Q. For every x ∈ X and t > 0, by (3.5) for large enough n, we have

GQ(x)−f(x)(t) ≥ G
Q(x)− f(2nx)

4n

(
t

2

)
∗G f(2nx)

4n −f(x)

(
t

2

)
≥ Fx(t).

Let Q′ be another quadratic function from X to Y which satisfies (3.2). We
have

GQ(x)−Q′(x)(t) ≥ GQ(x)−f(x)

(
t

2

)
∗Gf(x)−Q′(x)

(
t

2

)
≥ Fx(t)

for each t > 0. Therefore Q = Q′.

4. Stability of pexiderized quadratic equation in Menger
PN-spaces

In this section we define the P-approximately pexiderized quadratic functional equa-
tion in Menger PN-spaces and then we investigate the Hyers-Ulam-Rassias stability
problem for these functional equations.

Definition 4.1. Let (X,F, ∗) be a Menger PN-space and (Y,G, ∗) a Menger PB-
space. A mapping f : X → Y is said to be P-approximately pexiderized quadratic
mapping in Menger PN-space if

Gf(x+y)+f(x−y)−2g(x)−2h(y)(t+ s) ≥ Fx(t) ∗ Fy(s), ∀x, y ∈ X, t, s ∈ [0,∞). (4.1)
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The following result gives a Hyers-Ulam-Rassias stability of the P-approximately
pexiderized quadratic functional equation.

Proposition 4.1. Let f : X → Y be a P-approximately pexiderized quadratic
mapping in Menger PN-space, such that f, g and h are odd functions from X to
Y . Also suppose that F2x = Fx(

t
|α| ) for some real number α with 0 < |α| < 2. Then

there exists a unique additive mapping T : X → Y such that

GT (x)−f(x)(t) ≥ Fx

(
(2− α)t

48

)
. (4.2)

Proof. By changing the roles of x and y in (4.1) and putting t = s, we get

Gf(x+y)−f(x−y)−2g(y)−2h(x)(2t) ≥ Fy(t) ∗ Fx(t). (4.3)

It follows from (4.1) and (4.3) that

Gf(x+y)−g(x)−h(y)−g(y)−h(x)(4t)

≥Gf(x+y)+f(x−y)−2g(x)−2h(y)(2t) ∗ Ff(x+y)−f(x−y)−2g(y)−2h(x)(2t)

≥Fx(t) ∗ Fy(t).

(4.4)

If we put y = 0 in (4.4), we obtain

Gf(x)−g(x)−h(x)(4t) ≥ Fx(t). (4.5)

Similarly by putting x = 0 in (4.4), we have

Gf(y)−g(y)−h(y)(4t) ≥ Fy(t). (4.6)

From (4.4), (4.5) and (4.6) we conclude that

Gf(x+y)−f(x)−f(y)(12t)

≥Gf(x+y)−g(x)−h(y)−g(y)−h(x)(4t)

∗Gf(x)−g(x)−h(x)(4t) ∗Gf(y)−h(y)−g(y)(4t)

≥Fx(t) ∗ Fy(t).

(4.7)

If we put x = y in (4.7), we get

Gf(2x)−2f(x)(t) ≥ Fx

(
t

12

)
. (4.8)

Replacing x by 2nx in (4.8) and by assumption we have

Gf(2n+1x)−2f(2nx)(t) ≥ F2nx

(
t

12

)
= Fx

(
t

12αn

)
.

Thus

G f(2n+1x)

2n+1 − f(2nx)
2n

(t) = Gf(2n+1x)−f(2nx)(2
nt) ≥ Fx

(
( 2
α )

nt

12

)
.

Hence

G f(2n+1x)

2n+1 − f(2nx)
2n

(
(
α

2
)nt
)
≥ Fx

(
t

12

)
.
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Therefore for each n > m ≥ 0,

G f(2nx)
2n − f(2mx)

2m

(
n∑

k=m+1

(
α

2
)k−1t

)

=G∑n
k=m+1

f(2kx)

2k
− f(2k−1x)

2k−1

(
n∑

k=m+1

(
α

2
)k−1t

)

≥
n−1∏
k=m

G f(2kx)

2k
− f(2k−1x)

2k−1

(
(
α

2
)k−1t

)
≥Fx

(
t

12

)
(4.9)

for all x ∈ X and t > 0 where
∏n

j=1 aj = a1 ∗ a2 ∗ ... ∗ an. Let ε > 0 and t0 > 0
be given. Thanks to the fact that limt→∞ Fx(t) = 1, we can find some t1 > t0 such
that Fx(t1) > 1− ε. The convergence of the series

∑∞
n=1(

α
2 )

nt1 gives some n0 ∈ N
such that for each n > m ≥ n0,∑n

k=m+1(
α
2 )

k−1t1 < t0.

Therefore

G f(2nx)
2n − f(2mx)

2m
(t0) ≥ G f(2nx)

2n − f(2mx)
2m

(
∑n

k=m+1(
α
2 )

k−1t1) ≥ Fx(t1) > 1− ε.

So { f(2nx)
2n } is a Cauchy sequence in the Menger PB-space (Y,G, ∗). Hence

{ f(2nx)
2n } converges to some point T (x) ∈ Y . Define T : X → Y such that

limn→∞G f(2nx)
2n −T (x)

(t) = 1. Fix x, y ∈ X and t > 0. It follows from (4.7) that

G f(2n(x+y))
2n − f(2nx)

2n − f(2ny)
2n

(
t

4

)
≥Fx

(
2nt

48

)
∗ Fy

(
2nt

48

) (4.10)

for all n. Moreover,

GT (x+y)−T (x)−T (y)(t)

≥G
T (x+y)− f(2n(x+y))

2n

(
t

4

)
∗G

T (x)− f(2nx)
2n

(
t

4

)
∗G

T (y)− f(2ny)
2n

(
t

4

)
∗G f(2n(x+y))

2n − f(2nx)
2n − f(2ny)

2n

(
t

4

) (4.11)

for all n. Letting n → ∞ and t → ∞ in (4.10) and (4.11), we obtain T (x + y) =
T (x) + T (y).

Furthermore, using (4.9) with m = 0, we see that for large n,

GT (x)−f(x)(t) ≥ G
T (x)− f(2nx)

2n

(
t

2

)
∗G f(2nx)

2n −f(x)

(
t

2

)
≥ Fx

(
(2− α)t

48

) (4.12)

For the uniqueness of T , let T ′ be another additive mapping which satisfies (4.12).
We have
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GT (x)−T ′(x)(t) ≥ G
T (x)− f(2nx)

2n

(
t
2

)
∗G f(2nx)

2n −T ′(x)

(
t
2

)
.

Therefore T = T ′.

Proposition 4.2. Let f : X → Y be a P-approximately pexiderized quadratic
mapping in Menger PN- space such that f, g and h are even. Also suppose that
F2x = Fx(

t
|α| ) for some real number α with 0 < |α| < 4. Then there exists a unique

quadratic mapping Q : X → Y such that

Gf(x)−Q(x)(t) ≥ Fx

(
(4− α)t

96

)
, ∀x ∈ X, t > 0. (4.13)

Proof. Change the roles of x and y and putting s = t in (4.1) to get

Gf(x+y)+f(x−y)−2g(y)−2h(x)(2t) ≥ Fy(t) ∗ Fx(t). (4.14)

Put y = x and t = s in (4.14) to obtain

Gf(2x)−2g(x)−2h(x)(2t) ≥ Fx(t). (4.15)

Put x = 0 and t = s in (4.1), we get

G2f(y)−2h(y)(2t) ≥ Fy(t). (4.16)

Similarly, putting y = 0 and t = s in (4.1) we get

G2f(x)−2g(x)(2t) ≥ Fx(t). (4.17)

Combining (4.14), (4.16) and (4.17) we get

Gf(x+y)+f(x−y)−2f(x)−2f(y)(6t)

≥Gf(x+y)+f(x−y)−2g(y)−2h(x)(2t) ∗G2f(y)−2h(y)(2t)

∗G2f(x)−2g(x)(2t)

≥Fx(t) ∗ Fy(t).

(4.18)

Setting y = x in (4.18), we have

Gf(2x)−4f(x)(t) ≥ Fx

(
t

6

)
. (4.19)

It follows from (4.19) that

Gf(2n+1x)−4f(2nx)(t) ≥ F2nx

(
t

6

)
= Fx

(
t

6αn

)
. (4.20)

By (4.20),

G f(2n+1x)

4n+1 − f(2nx)
4n

(
αnt

4n+1

)
≥ Fx

(
t

6

)
.
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Therefore for each n > m ≥ 0,

G f(2nx)
4n − f(2mx)

4m

(
n∑

k=m+1

αk−1t

4k

)

=G∑n
k=m+1

f(2kx)

4k
− f(2k−1x)

4k−1

(
n∑

k=m+1

αk−1t

4k

)

≥
n∏

k=m+1

G f(2kx)

4k
− f(2k−1x)

4k−1

(
αk−1t

4k

)
≥Fx

(
t

6

)
.

(4.21)

Let ε > 0 and t0 > 0 be given. Since limt→∞ Fx(t) = 1, there is some t1 > t0

such that Fx(t1) > 1 − ε. The convergence of the series
∑∞

k=1
αk−1t1

4k
gives some

n0 such that
∑n

k=m+1
αk−1t1

4k
< t0 for each n > m ≥ n0. It follows that for each

n > m > n0,

G f(2nx)
4n − f(2mx)

4m
(t0) ≥ G f(2nx)

4n − f(2mx)
4m

(
∑n

k=m+1
αk−1t1

4k
) ≥ Fx(t1) > 1− ε.

This shows that { f(2nx)
4n } is a Cauchy sequence in the Menger PB-space (Y,G, ∗),

therefore it is convergence to some Q(x). So we can define a mapping Q : X → Y
by limn→∞ G f(2nx)

4n −Q(x)
(t) = 1. Fix x, y ∈ X and t > 0. It follows from (4.18) that

G f(2n(x+y))
4n +

f(2n(x−y))
4n −2

f(2nx)
4n −2

f(2ny)
4n

(
t

5

)
=Gf(2n(x+y))+f(2n(x−y))−2f(2nx)−2f(2ny)

(
4nt

5

)
≥Fx

(
4nt

30αn

)
∗ Fy

(
4nt

30αn

) (4.22)

for all n. Moreover,

GQ(x+y)+Q(x−y)−2Q(x)−2Q(y)(t)

≥G
Q(x+y)− f(2n(x+y))

4n

(
t

5

)
∗G

Q(x−y)− f(2n(x−y))
4n

(
t

5

)
∗G

2Q(x)−2
f(2nx)

4n

(
t

5

)
∗G

2Q(y)−2
f(2ny)

4n

(
t

5

)
∗G f(2n(x+y))

4n +
f(2n(x−y))

4n −2
f(2nx)

4n −2
f(2ny)

4n

(
t

5

)
(4.23)

for all n. Since each factor in the right hand side of (4.22) and (4.23) tends to 1 as
n → ∞ and t → ∞, one can easily see that

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y).



Stability in Menger Probabilistic normed spaces 157

Furthermore, using (4.21) with m = 0, we see that for large n,

GQ(x)−f(x)(t) ≥G
Q(x)− f(2nx)

4n

(
t

2

)
∗G f(2nx)

4n −f(x)

(
t

2

)
≥G

Q(x)− f(2nx)
4n

(
t

2

)
∗ Fx

(
(4− α)t

96

)
≥Fx

(
(4− α)t

96

)
.

(4.24)

The uniqueness assertion can be proved by a known strategy as in Proposition
(4.1).

Theorem 4.1. Let f : X → Y be a P-approximately quadratic mapping. Then
there are unique mappings T and Q from X to Y such that T is additive, Q is
quadratic and

Gf(x)−T (x)−Q(x)(t) ≥ Fx

(
(2− α)t

96

)
, ∀x ∈ X, t > 0. (4.25)

Proof. Passing to the odd part fo and even part fe of f we deduce from (4.1) that

Gfo(x+y)+fo(x−y)−2fo(x)−2fo(y)(t) ≥ Fx(t) ∗ Fy(t),

and
Gfe(x+y)+fe(x−y)−2fe(x)−2fe(y)(t) ≥ Fx(t) ∗ Fy(t).

Using the proofs of Propositions (4.1) and (4.2) we get unique additive mapping T
and unique quadratic mapping Q satisfying

Gfo(x)−T (x)(t) ≥ Fx

(
(2− α)t

48

)
, ∀x ∈ X, t > 0,

also

Gfe(x)−Q(x)(t) ≥ Fx

(
(4− α)t

96

)
, ∀x ∈ X, t > 0.

Therefore

Gf(x)−T (x)−Q(x)(t) ≥ Gfo(x)−T (x)

(
t

2

)
∗Gfe(x)−Q(x)

(
t

2

)
≥ Fx

(
(2− α)t

96

)
.

5. Conclusion

The study of Menger probabilistic normed spaces was initiated by Alsina, Schweizer
and Sklar [1] and continued by others, especially in connection with an important
notion in physics, called fractal spacetime theory which was pioneered by Richard
Feynman and Garnet Ord as well as Laurent Nottale. The first comprehensive
paper published in an international journal with the title Fractal Spacetime was by
the English-Canadian Garnet Ord who discussed this subject with Nobel Laureate
Richard Feynman and was strongly influenced by Feynmans views on the subject
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[17]. A little later and seemingly independently, a young but well known French
astrophysicist Laurent Nottale[15]published in 1989 his paper that was a sequel and
generalization of his paper in 1984 [16].

A mathematical foundation for E-infinity was given by El Naschie including
infinity categories are united in a mathematical theory called Highly structured
ring spectrum which deals with multiplicative processes similar to E-infinity and
is usually designated in the mathematical literature by E-infinity rings, E-infinity
loop algebra and probabilistic normed spaces [14].

Menger spaces were found to be relevant to quantum entanglement: El Naschie
in [13] gave two fundamentally different derivations. The first derivation is purely
logical and uses a probability theory which combines the discrete with the con-
tinuum. The second derivation is purely geometrical and topological using the
fundamental equations of a Cantorian spacetime theory.

Penrose fractal tiling is one of the simplest generic examples for a noncommu-
tative space. A quasicrystal, is a structure that is ordered but not periodic. A
quasicrystalline pattern can continuously fill all available space. Menger spaces are
relevant to quasicristals and Penrose tiling [4].

Acknowledgements

We would like to thank the referees for a careful reading of our paper and lot of
valuable suggestions on the first draft of the manuscript.

References

[1] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed
space, Aequationes Math., 46 (1993), 91-98.

[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J.
Math. Soc. Japan, 2 (1950), 64-66.

[3] S. S. Chang, Y. J. Cho and S. M. Kang, Probabilistic metric spaces and non-
linear operator theory, Sichuan University Press, Chengdu, 1994.

[4] L. Marek Crnjac, The Hausdorff Dimension of the Penrose Universe, Physics
Research International., 2011, 1-4.

[5] M. Eshaghi Gordji, J. M. Rassias and M. B. Savadkouhi, Approximation of the
quadratic and cubic functional equations in RN-spaces, European Journal of
Pure and Applied Mathematics, 2 (4) (2009), 494-507.

[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl.
Acad. Sci., 27 (1941), 222-224.

[7] K. W. Jun and H. M. Kim, On the Hyers-Ulam-Rassias stability of a general
cubic functional equation, Math. Inequal. Appl., 6 (1) (2003), 87-95.

[8] K. W. Jun and H. M. Kim, On the Hyers-Ulam stability of a generalized
quadratic and additive functional equation, Bull. Korean Math. Soc., 42 (1)
(2005), 133-148.

[9] Y. S. Lee and S. Y. Chung, Stability of the Jensen type functional equation,
Banach J. Math. Anal., 1 (1) (2007), 91-100.

[10] K. Mengar, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), 535-537.



Stability in Menger Probabilistic normed spaces 159

[11] M. S. El Naschie, On the uncertainly of Cantorian geometry and two-slit ex-
periment, Choas Solitions Fractals, 9 (1998), 517-529.

[12] M. S. El Naschie, On the unification of heterotic strings, M theory and ε∞

theory, Choas Solitions Fractals, 11 (2000), 2397-2408.

[13] M. S. El Naschie, Quantum entanglement as a consequence of Cantorian micro
spacetime geometry, Journal of Quantum Information Science, 1 (1) (2011),
50-53.

[14] M. S. El Naschie and S. A. Olsen, When zero is equal to one: A set theoretical
resolution of quantum paradoxes, Fract. Spacetime Noncommut. Geom. Quant.
High Energ. Phys., 1 (1) (2011), 11-24.

[15] L. Nottale, Fractals and quantum theory of spacetime Int. J. Mod. Physics., 4
(1989), 5047-5117.

[16] L. Nottale and J. Schneider, Fractals and nonstandard analysis J. Math. Phys.,
25 (1984), 1296-1300.

[17] G. Ord, Fractal space-time: a geometric analogue of relativistic quantum me-
chanics, J. Phys. A: Math. Gen., 16 (1983), 1869-1884.

[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.
Amer. Math. Soc., 72 (1978), 297-300.

[19] Th. M. Rassias, On the stability of functional equations and a problem of Ulam,
Acta Appl. Math., 62 (2000), 123-130.
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