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SPECTRUM COMPARISON FOR A
CONSERVED REACTION-DIFFUSION

SYSTEM WITH A VARIATIONAL PROPERTY∗

Yoshihisa Morita

Abstract We are dealing with a two-component system of reaction-diffusion
equations with conservation of a mass in a bounded domain subject to the
Neumann or the periodic boundary conditions. We consider the case that
the conserved system is transformed into a phase-field type system. Then the
stationary problem is reduced to that of a scalar reaction-diffusion equation
with a nonlocal term. We study the linearized eigenvalue problem of an e-
quilibrium solution to the system, and compare the eigenvalues with ones of
the linearized problem arising from the scalar nonlocal equation in terms of
the Rayleigh quotient. The main theorem tells that the number of negative
eigenvalues of those problems coincide. Hence, a stability result for noncon-
stant solutions of the scalar nonlocal reaction-diffusion equation is applicable
to the system.
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1. Introduction

We are concerned with the following 2-component reaction-diffusion system:{
ut = d1∆u+ k1f̃(u, v),

vt = d2∆v − k2f̃(u, v),
(1.1)

in a bounded domain, where dj , kj(j = 1, 2) are positive parameters and ∆ stands
for the Laplacian. This class of model equations contains an autocatalytic model,
exothermic reaction-diffusion model and a cell polarity model. For instance, in an
autocatalytic model f̃(u, v) = −umvn (m,n are positive integers) is treated where
the variables u and v stand for a reactant and an autocatalyst respectively. In an
exothermic model the case f̃(u, v) = −u exp(−C/v) (C is a positive constant) is
studied where u and v correspond to a reactant and temperature respectively. The

Email adress: morita@rins.ryukoku.ac.jp(Y. Morita)
Department of Applied Mathematics and Informatics, Ryukoku University,
Seta Otsu 520-2194, Japan

∗The research were supported in part by the Grant-in-Aid for Scientific Re-
search (B) No.22340022 and Challenging Exploratory Research No.21654025,
Japan Society for the Promotion of Science.



58 Y. Morita

main issues for those models are the existence of travelling waves and the speed
of the waves (see, for instance, Chen & Qi [3], Hosono [9], Ikeda etc [10] and the
references therein). On the other hand for a cell polarity model an emergence of a
pattern under the periodic boundary conditions is studied for f̃(u, v) = −g1(u, v)+
g2(u, v) with appropriate functions g1 and g2 in the literature Ishihara etc, Otsuji
etc [11, 14].

In this paper we are dealing with the case

f̃(u, v) = f(u) + v, (1.2)

which corresponds to the case g1 = −f(u), g2 = v in the cell polarity model. Scaling
the variables as

k1t→ t,
√
k2/d2x→ x,

and putting
d := d1k2/d2k1, τ := k1/k2, (1.3)

we consider the following normalized system{
ut = d∆u+ f(u) + v,

τvt = ∆v − f(u)− v
(x ∈ Ω), (1.4)

under the Neumann boundary conditions for a bounded domain Ω in Rn with
smooth boundaries ∂Ω,

∂u

∂ν
=
∂v

∂ν
= 0 (x ∈ ∂Ω), (1.5)

or the periodic boundary conditions for Ω = [0, L] with{
u(0, t) = u(L, t), ux(0, t) = ux(L, t),

v(0, t) = v(L, t), vx(0, t) = vx(L, t).
(1.6)

A specific case f(u) = −au/(u2 + b) (a, b > 0) is proposed in Ishihara etc [11]
and Otsuji etc [14] as a conceptual model for the cell polarity. In those papers the
Turing-type instability of a constant solution is verified for appropriate parameter
values and the emergence of a localized pattern is shown by numerics. Later, Morita
& Ogawa [13] studies the stability of nonconstant solutions to (1.4) rigorously. This
article is successive to Morita & Ogawa [13] about the study for the stability analysis
of equilibrium solutions to (1.4).

We note that the solution (u, v) = (u(x, t), v(x, t)) to (1.4) with the boundary
conditions satisfies

d

dt

∫
Ω

(u+ τv)dx =

∫
Ω

(d∆u+∆v)dx = 0,

which implies the conservation of the mass as∫
Ω

(du+ v)dx = constant.

In the present paper we use the notation for the spatial average of a function
w = w(x) by

⟨w⟩ := 1

|Ω|

∫
Ω

w(x)dx,
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where |Ω| stand for the volume of Ω, and define the average of the mass for the
solution

s := ⟨u(·, t)⟩+ τ⟨v(·, t)⟩, (1.7)

which is constant for t ≥ 0, as long as the solution is defined in an appropriate
function space.

Throughout the paper, we consider f such that the equations (1.4) with (1.5)
or (1.6) allows a unique time global solution for the initial conditions

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ∈ X

in an appropriate function space X, and the solution map

(u0(·), v0(·)) 7→ (u(·, t;u0, v0), v(·, t;u0, v0))

for t ≥ 0 generates a C1 semiflow in X.
We note that the system (1.4) is transformed into a phase-field type system (see

in the next section), hence the system allows a Lyapunov function. Moreover, as
for the phase-field system (proposed by Caginalp [2] and Fix [6]) a nice variational
property is found in Bates & Fife [1]. In this article, we shall develop the argument
in Bates & Fife [1] for the study of spectra of the linearized eigenvalue problem of
a nonconstant equilibrium to (1.4).

Corresponding to the system (1.4) under the boundary conditions with (1.7),
we consider the scalar reaction-diffusion equation with a nonlocal term

ut = d∆u+ f(u)− du+
s

τ
− 1− τd

τ
⟨u⟩ (x ∈ Ω), (1.8)

with the Neumann boundary condition

∂u

∂ν
= 0 (x ∈ ∂Ω), (1.9)

or the periodic boundary conditions

u(0, t) = u(L, t), ux(0, t) = ux(L, t), (1.10)

for Ω = [0, L].
The goal of the present article is to establish a comparison theorem between

the spectra for the linearized eigenvalue problem of an equilibrium solution to
(1.4) and the ones of (1.8). We see that equilibrium solutions between the sys-
tem and the scalar equation have one-to-one correspondence in what follows. Let
(u∗(x; s), v∗(x; s)) be a solution enjoying{

d∆u+ f(u) + v = 0,

∆v − f(u)− v = 0
(x ∈ Ω), (1.11)

and
s = ⟨u⟩+ τ⟨v⟩, (1.12)

with the Neumann or the periodic boundary conditions. Then u∗ and v∗ satisfy

d∆u+ f(u)− du+
s

τ
− 1− τd

τ
⟨u⟩ = 0, (1.13)
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and

v = −du+
s

τ
− 1− τd

τ
⟨u⟩, (1.14)

respectively. Indeed, from adding the two equations of (1.11) it follows that

du∗ + v∗ = C (1.15)

holds for a constant C. Integrating (1.15) and using

s = ⟨u∗⟩+ τ⟨v∗⟩,

we obtain (1.13) and (1.14) for u∗ and v∗. In sequel, an equilibrium solution u∗ of
(1.13) together with v∗ given by (1.14) provide a solution (u∗, v∗) of (1.11) with
(1.12), and vice versa.

Now we write the linearized eigenvalue problem

L
(
ϕ
ψ

)
:= −

(
d∆ϕ+ f ′(u∗)ϕ+ ψ
∆ψ − f ′(u∗)ϕ− ψ

)
= λ

(
ϕ
τψ

)
(1.16)

with the domain

DN (L) := DN ×DN , (1.17)

DN := {φ ∈ H2(Ω) : ∂φ/∂ν = 0 (x ∈ ∂Ω)}, (1.18)

or

Dp(L) := Dp ×Dp, (1.19)

Dp := {φ ∈ H2(0, L) : φ(0) = φ(L), φx(0) = φx(L) = 0}, (1.20)

under the constraint
⟨ϕ⟩+ τ⟨ψ⟩ = 0. (1.21)

This condition (1.21) naturally follows when we fix the mass s. On the other hand
the corresponding linearized eigenvalue problem to a solution u∗ of (1.13) is given
by

L0[φ] := −{d∆φ+ f ′(u∗)φ− dφ− 1

τ
(1− τd)⟨φ⟩} = µφ, (1.22)

with the domain D(L0) = DN or Dp.
We note that for a nonconstant solution (u∗, v∗) = (u∗(·; s), v∗(·; s)) to (1.11)

with the periodic boundary conditions,

L
(
u∗x
v∗x

)
=

(
0
0

)
and L0[u

∗
x] = 0 hold.

Let us define the eigenvalues and the corresponding eigenfunctions as

L
(
ϕj
ψj

)
= λj

(
ϕj
ψj

)
(j = 1, 2, . . .), (1.23)

and
L0[φj ] = µjφj (j = 1, 2, . . .), (1.24)
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where {λj} and {µj} are arranged in an nondecreasing order with counting multi-
plicity in the way

λ1 ≤ λ2 ≤ . . . λj ≤ λj+1 ≤ . . . , µ1 ≤ µ2 ≤ . . . µj ≤ µj+1 ≤ . . . (1.25)

The main result of the present article is that the number of negative eigenvalues
(the Morse index) of the operators L and L0 coincides. More precisely we obtain
the next theorem.

Theorem 1.1. Assume 0 < τd < 1. Consider a nonconstant solution (u∗(x), v∗(x))
to (1.11) with the constraint (1.12) subject to the Neumann or the periodic bound-
ary conditions. Let {λj}j=1,2,... and {µj}j=i,2,... be the eigenvalues of L with the
condition (1.21) and L0 respectively with the ordering (1.25). If λk ̸= 0 or µk ̸= 0,
then

λkµk > 0, |λk| < |µk| (1.26)

holds. Moreover, if µk = 0, then λk = 0 holds, and vice versa.

We also consider the eigenvalues and the corresponding eigenfunctions of L
without the restriction (1.21), which are denoted as

{λ′j}j=1,2,..., {(ϕ′j , ψ′
j)}j=1,2,... (1.27)

with nondecreasing order and counting the multiplicity. We note that in this case
L always has a zero eigenvalue since

L
(
∂u∗/∂s
∂v∗/∂s

)
=

(
0
0

)
, (1.28)

holds, where
⟨∂u∗/∂s⟩+ τ⟨∂v∗/∂s⟩ = 1,

while
L0[∂u

∗/∂s] = 1/τ

holds. Then we obtain the next corollary.

Corollary 1.1. Under the same assumption in Theorem 1.1 let {λ′j}j=1,2,... and
{µj}j=i,2,... be the eigenvalues of L and L0 respectively with the nondecreasing order
and the counting multiplicity. Then the following holds for the Neumann boundary
conditions:

(i) If µ1 > 0, then λ′1 = 0 < λ′2 and

λ′j+1 < µj (j ≥ 1) (1.29)

hold. On the other hand, if λ′1 = 0 < λ′2, then (1.29) holds.

(ii) If there is a positive integer n such that µn < 0 < µn+1, then λ
′
n+1 = 0 and

µj < λ′j < 0 (j ≤ n), 0 < λ′j+1 < µj (j ≥ n+ 1) (1.30)

hold. On the other hand, if λ′n+1 = 0 < λ′n+2 for a positive integer n, then
(1.30) holds.
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As for the periodic boundary conditions the next assertions hold:

(i’) If µ2 > µ1 = 0, then λ′1 = λ′2 = 0 < λ′3 and

λ′j+1 < µj (j ≥ 2) (1.31)

hold. On the other hand, if λ′1 = λ′2 = 0 < λ′3, then (1.31) holds.

(ii’) If there is a positive integer n such that µn < 0 = µn+1 < µn+2, then λ
′
n+1 =

λ′n+2 = 0 and

µj < λ′j < 0 (j ≤ n), 0 < λ′j+1 < µj (j ≥ n+ 2) (1.32)

hold. On the other hand, if λ′n+1 = λ′n+2 = 0 < λ′n+3 for a positive integer n,
then (1.32) holds.

Remark 1.1. As seen in Morita & Ogawa [13], the nonlinear dynamical stability
of the equilibrium solution to (1.4) is assured for the case (i) and (i’) of Corollary
1.1 (see also Henry [8]).

Remark 1.2. Some partial result of Corollary 1.1 is obtained in Morita & Ogawa
[13], where a variational property for the system is not used. In this paper, by virtue
of the variational setting found in Bates & Fife [1], we can conclude in the assertions
of the theorem and the corollary. Indeed, as mentioned before, our system (1.4) can
be transformed into a phase-field type equations. We develop the argument in Bates
& Fife [1] to the present problem.

We also give a remark on the result about the spectra in Bates & Fife [1]. Since in
Bates & Fife [1] they compare the spectra between the system and scalar equations
(without nonlocal term), they obtain a different comparison result. We believe that
the comparison to the scalar equation with nonlocal term is more natural. In sequel,
the assertion is simple and clear. Moreover, by this comparison, the next corollary
follows from Theorem 1.1 and a result in Suzuki & Tasaki [15].

Corollary 1.2. Consider the system (1.4) in Ω = (0, L) under the condition
0 < τd < 1. For the Neumann boundary conditions any stable nonconstant equilib-
rium solution is constant or strictly monotone. For the periodic boundary condition
any stable equilibrium solution is constant or it has a single peak. Moreover, in a
cylindrical domain

Ω = {x = (x1, x
′) ∈ (0, L)×D} ⊂ Rn,

where D is a bounded domain with smooth boundaries in Rn−1 (n ≥ 2), any stable
nonconstant equilibrium solution is constant, or monotone in the x1 direction.

We prove the theorem together with the corollaries in the rest of this article.

2. Variational setting

As shown in Morita & Ogawa [13], putting w = du+ v in (1.4) yields a phase-field
type system {

ut = ∆u+ f(u)− du+ w,

τwt + (1− τd)ut = ∆w
(2.1)
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which allows a Lyapunov function

E1(u,w) :=
∫
Ω

{
d

2
|∇u|2 − F (u) +

d

2
u2 +

τ

2(1− τd)
w2

}
dx, (2.2)

where

F (u) =

∫
f(u)du.

Here, to see a variational property of the system clearly, we transform (1.4) in
another way, which is found in Bates & Fife [1]. We put

α :=
√
τ(1− τd), β :=

√
1− τd

τ
, (2.3)

and introduce the new variable as

W :=
1

α
(u+ τv). (2.4)

Then the equations (1.4) with (1.7) and the boundary conditions (1.5) or (1.6) are
transformed into {

ut = d∆u+ f(u)− u/τ + βW,

τWt = ∆W − β∆u
(x ∈ Ω), (2.5)

⟨W (·, t)⟩ = s

α
(2.6)

with the Neumann or the periodic boundary conditions for both u and W .
The associate Lyapunov function turns to be

E2(u,W ) :=

∫
Ω

{
d

2
|∇u|2 − F (u) +

d

2
u2 +

1

2
(W − βu)2

}
dx (2.7)

In what follows the stationary equations of (2.5) are obtained as the variational
equations of (2.7). We introduce function spaces. Let

L
2
:= {w ∈ L2(Ω) : ⟨w⟩ = 0}, H

k
:= {w ∈ Hk(Ω) : ⟨w⟩ = 0} (k ≥ 1).

and the closed operator A0 in L
2
with the domain

D(A0) := H
2

N := {u ∈ H
2
: ∂u/∂ν = 0 (x ∈ ∂Ω)}

and the range R(A0) = L
2
such that

A0u = −∆u (u ∈ D(A0)).

We use the notation

∥u∥ :=

(∫
Ω

|u(x)|2dx
)1/2

, (u, v)L2 :=

∫
Ω

u(x)v(x)dx.

We note that the fractional power operator Aα
0 (0 < α ≤ 1) is self-adjoint, i.e.,

(Aα
0u, v)L2 = (u,Aα

0 v)L2 .
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Henceforth we fix s so that ⟨W ⟩ = s/τ . For ψ′ ∈ H
1
there is a unique function Ψ

which solves

ψ′ = −∆Ψ (x ∈ Ω),
∂Ψ

∂ν
= 0 (x ∈ ∂Ω), ⟨Ψ⟩ = 0 (2.8)

For (ϕ, ψ′) ∈ H1 ×H
1
, with Ψ of (2.8) we can compute

d

dη
E2(u+ ηϕ,W + ηψ′)|η=0

=

∫
Ω

{d∇u · ∇ϕ− F ′(u)ϕ+ duϕ+ (W − βu)(ψ′ − βϕ)}dx

=

∫
Ω

{d∇u · ∇ϕ− f(u)ϕ+ duϕ+ (W − βu)(−∆Ψ)− βWϕ+ β2uϕ}dx

=

∫
Ω

{d∇u · ∇ϕ− f(u)ϕ+
1

τ
uϕ− βWϕ+∇(W − βu) · ∇Ψ}dx

By this we obtain the Euler-Lagrange equations as{
d∆u+ f(u)− u/τ + βW = 0,

∆W − β∆u = 0
(x ∈ Ω), (2.9)

with the boundary conditions. This system is the stationary equations of (2.5).
Next we compute the second variation around the equilibrium solution

(u∗(x),W ∗(x)).

1

2

d2

dη2
E2(u∗ + ηϕ,W ∗ + ηψ′)|η=0

=

∫
Ω

{d|∇ϕ|2 − f ′(u∗)|ϕ|2 + d|ϕ|2 + (ψ′ − βϕ)2}dx

=

∫
Ω

{d|∇ϕ|2 − f ′(u∗)|ϕ|2 + 1

τ
|ϕ|2 − 2βψ′ϕ+ ψ′2}dx

(2.10)

Putting

ψ′ = A
1/2
0 Ψ, (2.11)

(not as in (2.8)) and using
ϕQ := ϕ− ⟨ϕ⟩,

we can write (2.10) as

K[ϕ,Ψ] :=

∫
Ω

{d|∇ϕ|2 − f ′(u∗)|ϕ|2 + 1

τ
|ϕ|2}dx

−2β(A
1/2
0 Ψ, ϕQ)L2 + ∥A1/2

0 Ψ∥2, (2.12)

where we used
(A

1/2
0 Ψ, ϕ)L2 = (A

1/2
0 Ψ, ϕQ)L2 .

Define the Rayleigh quotient

R[ϕ,Ψ] :=
K[ϕ,Ψ]

∥ϕ∥2 + τ∥Ψ∥2
. (2.13)
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Any critical point of the minimizing problem of this Rayleigh quotient in (ϕ,Ψ) ∈
H1 ×H

1
((ϕ,Ψ) ̸= (0, 0)) leads to the linearized eigenvalue problem (1.16) except

for the zero corresponding to the eigenfunction (∂u∗/∂s, ∂v∗/∂s). To prove it, we
compute the variation

1

2

d2

dη2
K[ϕ+ ηϕ1,Ψ+ ηΨ1]|η=0

=

∫
Ω

{d∇ϕ · ∇ϕ1 − f ′(u∗)ϕϕ1 +
1

τ
ϕϕ1}dx

− β(A
1/2
0 Ψ, ϕQ1 )L2 − β(A

1/2
0 Ψ1, ϕ

Q)L2 + (A
1/2
0 Ψ, A

1/2
0 Ψ1)L2

=

∫
Ω

{d∇ϕ · ∇ϕ1 − f ′(u∗)ϕϕ1 +
1

τ
ϕϕ1}dx

− β(A
1/2
0 Ψ, ϕ1)L2 + (A

1/2
0 (A

1/2
0 Ψ− βϕQ),Ψ1)L2 ,

while
1

2

d

dη
(∥ϕ+ ηϕ1∥2 + τ∥Ψ+ ηΨ1∥2)|η=0 = (ϕ, ϕ1)L2 + τ(Ψ,Ψ1)L2

Thus the Euler-Lagrange equations of the minimization problem is given as{
−(d∆ϕ+ f ′(u∗)ϕ− 1

τ ϕ+ βA
1/2
0 Ψ) = λϕ

A0Ψ− βA
1/2
0 ϕQ = τλΨ

(2.14)

with the boundary conditions

∂ϕ

∂ν
= 0 (x ∈ ∂Ω)

for ϕ. For the solutions of (2.14) we see Ψ ∈ D(A
3/2
0 ) from the bootstrap argument.

Acting A
1/2
0 on the second equation and putting ψ′ = A

1/2
0 Ψ yield{

−(d∆ϕ+ f ′(u∗)ϕ− 1
τ ϕ+ βψ′) = λϕ,

−∆ψ′ + β∆ϕ = τλψ′,
(2.15)

with the boundary conditions and the constraint

⟨ψ′⟩ = 0. (2.16)

This eigenvalue problem (2.15) with (2.16) is nothing but the one around the solu-
tion (u∗,W ∗) of (2.9), and it is equivalent to (1.16) with (1.21) through the relation

ψ′ =
1

α
(ϕ+ τψ).

Note that defining

L̃
(

ϕ
Ψ

)
:=

(
−(d∆ϕ+ f ′(u∗)ϕ− 1

τ ϕ+ βA
1/2
0 Ψ)

A0Ψ− βA
1/2
0 ϕQ

)
,

and {(
ϕ1
Ψ1

)
,

(
ϕ2
Ψ2

)}
L2×L2

:= (ϕ1,Ψ1)L2 + (ϕ2,Ψ2)L2
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we can check L̃ satisfy{
L̃
(

ϕ1
Ψ1

)
,

(
ϕ2
Ψ2

)}
L2×L2

=

{(
ϕ1
Ψ1

)
, L̃
(

ϕ2
Ψ2

)}
L2×L2

in H2
N ×D(A0).

3. Proof of the main Theorem

Define

K0[φ] :=

∫
Ω

{d|∇φ|2 − (f ′(u∗)− d)|φ|2}dx+
1− τd

τ
|Ω|⟨φ⟩2. (3.1)

Lemma 3.1. For K[·, ·] and K0[·]

K[ϕ,Ψ] = K0[ϕ] + ∥A1/2
0 Ψ− βϕQ∥2 (3.2)

holds.

Proof. The assertion follows from the computation

∥A1/2
0 Ψ∥2 − 2β(A

1/2
0 Ψ, ϕQ)L2

=∥A1/2
0 Ψ− βϕQ∥2 − β2∥ϕQ∥2

=∥A1/2
0 Ψ− βϕQ∥2 − 1− τd

τ

{
∥ϕ∥2 − 1

|Ω|

(∫
Ω

ϕdx

)2
}

and the definitions of K[·, ·] and K0[·].

We let

R0[φ] :=
K0[φ]

∥φ∥2
. (3.3)

The associate eigenvalue problem is given by (1.22).
We denote

Mn : a set of all n− dimensional subspaces in L2 × L
2
,

Nn : a set of all n− dimensional subspaces in L2.

We use the notation φ⊥φ̃ which implies (φ, φ̃)L2 = 0. Similarly,

(ϕ,Ψ)⊥(ϕ̃, Ψ̃)

implies

(ϕ, ϕ̃)L2 + (Ψ, Ψ̃)L2 = 0.

We also denote by Z⊥ the orthogonal space of Z of L2 or L2 × L
2
.

Recall {λj} and {µj} are the sets of the eigenvalues of L with (1.21) and L0

respectively, which are arranged in the nondecreasing order and {(ϕj , ψj)} and {φj}
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are the corresponding eigenfunctions. Then the eigenfucntions to (2.14) are given
by

(ϕj ,Ψj) = (ϕj ,
1

α
A

−1/2
0 (ϕj + τψj)) (j = 1, 2, . . .).

Those eigenvalues are variationally achieved as

λn = inf{R[ϕ,Ψ] : (ϕ,Ψ) ∈ H1 ×H
1
, (ϕ,Ψ) ̸= (0, 0),

(ϕ,Ψ)⊥(ϕj ,Ψj) (j ≤ n− 1)}
µn = inf{R0[φ] : φ ∈ H1, φ ̸= 0, φ⊥φj (j ≤ n− 1)}

and

λn = sup
Xn−1∈Mn−1

inf{R[ϕ,Ψ] : (ϕ,Ψ) ∈ H1 ×H
1
, (ϕ,Ψ) ̸= (0, 0),

(ϕ,Ψ) ∈ X⊥
n−1}

µn = sup
Yn−1∈Nn−1

inf{R0[φ] : φ ∈ H1, φ ̸= 0, φ ∈ Y ⊥
n−1}

We also recall the Min-Max principle such as

λn = inf
Xn∈Mn

sup{R[ϕ,Ψ] : (ϕ,Ψ) ∈ Xn, (ϕ,Ψ) ̸= (0, 0)},

µn = inf
Yn∈Nn

sup{R0[φ] : φ ∈ Yn, φ ̸= 0}

(see Davies [4]).

Now we are ready to prove the theorem.

Proof of Theorem 1.1. First we observe

λ1 = R[ϕ1,Ψ1] ≥
K0[ϕ1]

∥ϕ1∥2 + τ∥Ψ1∥2
≥ µ1∥ϕ1∥2

∥ϕ1∥2 + τ∥Ψ1∥2
. (3.4)

This yields

µ1 > 0 (resp. µ1 = 0) =⇒ λ1 > 0 (resp. λ1 ≥ 0), (3.5)

λ1 < 0 (resp. λ1 = 0) =⇒ µ1 < λ1 < 0 (resp. µ1 ≤ 0). (3.6)

We can exclude the possibility µ1 = λ1 in (3.6) if λ1 < 0. Indeed, if this equality
holds, then Ψ = 0 and ϕQ = 0, that is, ϕ must be constant, which is not allowed by
the nonconstant u∗.

Next, for a positive integer k define a k-dimensional subspace of H1 ×H
1
as

X ′
k := L.H.{(φ1, βA

−1/2
0 φQ

1 ), (φ2, βA
−1/2
0 φQ

2 ), . . . , (φk, βA
−1/2
0 φQ

k )}. (3.7)

For any (φ,Ψ) ∈ X ′
k there is a family of constants {cj} such that

(φ,Ψ) =
k∑

j=1

cj(φj , βA
−1/2
0 φQ

j ).
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With the aid of this expression we compute

R[φ,Ψ] =
K0[
∑k

j=1 cjφj ]

∥
∑k

j=1 cjφj∥2 + τ∥
∑k

j=1 cjβA
−1/2
0 φQ

j ∥2

=

∑k
j=1 c

2
jµj∥φj∥2∑k

j=1 c
2
j∥φj∥2 + τβ2∥A−1/2

0

∑k
j=1 cjφ

Q
j ∥2

≤
µk

∑k
j=1 c

2
j∥φj∥2∑k

j=1 c
2
j∥φj∥2 + τβ2∥A−1/2

0

∑k
j=1 cjφ

Q
j ∥2

(3.8)

We take (c1, c2, . . . , ck) ̸= (0, 0, . . . , 0) so that φ̃ :=
∑k

j=1 cjφj achieves the maxi-
mum of R[φ,Ψ] in X ′

k, that is,

sup{R[φ,Ψ] : (φ,Ψ) ∈ X ′
k, (φ,Ψ) ̸= (0, 0)} = R[φ̃, βA

−1/2
0 φ̃Q]. (3.9)

If λk > 0, then by the Mini-Max principle and (3.8) we obtain

0 < λk ≤ R[φ̃, βA
−1/2
0 φ̃Q] < µk, (3.10)

where λk = µk is not allowed since

λk = R[φ̃, 0] = µk

implies that φ̃ is constant. On the other hand, if µk < 0, then λk < 0 by (3.8) and
(3.9). In addition λk = 0 yields µk ≥ 0 while λ ≤ 0 if µk = 0. Summarizing these
properties, we obtain

λk > 0 (resp. λk = 0) =⇒ 0 < λk < µk (resp. µk ≥ 0) (3.11)

µk < 0 (resp. µk = 0) =⇒ λk < 0 (resp. λk ≤ 0). (3.12)

Hence, for k = 1, combining (3.5), (3.6), (3.11) and (3.12) together, we obtain that
for λ1 ̸= 0 or µ1 ̸= 0,

λ1µ1 > 0, |λ1| < |µ1| (3.13)

holds. In the case µ1 = 0 we use (3.5) and (3.11) to obtain λ1 = 0 while λ1 = 0
implies µ1 = 0 by (3.6) and (3.12). Thus we conclude the proof for the case k = 1.

In the case k ≥ 2 we need another inequality. We put

Ỹk−1 := L.H.{φ1, φ2, . . . , φk−1} ⊂ H1,

X̃k−1 := L.H.{(φ1, 0), (φ2, 0), . . . , (φk−1, 0)} ⊂ H
1
.

For any (ϕ,Ψ) ∈ X̃⊥
k−1 with (ϕ,Ψ) ̸= (0, 0), since ϕ ∈ Ỹ ⊥

k−1,

R[ϕ,Ψ] =
K0[ϕ] + ∥A1/2

0 Ψ− βϕQ∥2

∥ϕ∥2 + τ∥Ψ∥2

≥ K0[ϕ]

∥ϕ∥2 + τ∥Ψ∥2
≥ µk∥ϕ∥2

∥ϕ∥2 + τ∥Ψ∥2
(3.14)

holds, while letting (ϕ̃, Ψ̃) be a minimizer of R[ϕ,Ψ] over the space X̃⊥
k−1, we have

R[ϕ̃, Ψ̃] = inf{R[ϕ,Ψ] : (ϕ,Ψ) ∈ X̃⊥
k−1, (ϕ,Ψ) ̸= (0, 0)} ≤ λk (3.15)
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By virtue of (3.14) and (3.15), for k ≥ 2 we obtain

µk > 0 (resp. µk = 0) =⇒ λk > 0 (resp. λk ≥ 0), (3.16)

λk < 0 (resp. λk = 0) =⇒ µk < λk < 0 (resp. µk ≤ 0). (3.17)

We can exclude the case µk = λk = 0 in (3.17) if λk < 0 by the same reason in the
previous inequalities (3.6) and (3.11). It is not difficult to see from (3.11), (3.12),
(3.16) and (3.17) yields that if λk ̸= 0 or µk ̸= 0, then

λkµk > 0, |λk| < |µk| (k ≥ 2), (3.18)

and
µk = 0 ⇐⇒ λk = 0.

Consequently, we get to the desired conclusion for the proof of Theorem 1.1.

Proof of Corollary 1.1. We consider the Neumann case. In the absence of
the constraint (1.21) we cannot use the variational formulation as in the proof of
Theorem 1.1. We need to consider (2.15) under the condition ⟨ψ′⟩ ̸= 0. Then the
problem is reduced to the case λ = 0 in (2.15) since

0 =

∫
Ω

∆ψ′dx− β

∫
Ω

∆ϕdx = τλ

∫
Ω

ψ′dx.

If L0 has no zero eigenvalues, we apply Lemma 3.1 in Morita & Ogawa [13] to
obtain the simplicity of the zero eigenvalue of L. In the remaining part we prove
the assertion that L0 has no zero eigenvalue if L has the simple zero eigenvalue. By
(2.15) we solve

d∆ϕ+ f ′(u∗)ϕ− 1

τ
ϕ+ βψ′ = 0, (3.19)

∆ψ′ − β∆ϕ = 0 (3.20)

with
⟨ψ′⟩ = 1

From (3.20)
ψ′ − βϕ = ⟨ψ′⟩ − β⟨ϕ⟩ = 1− β⟨ϕ⟩.

Thus (3.19) turns to be

− L0[ϕ] = d∆ϕ+ f ′(u∗)ϕ− dϕ− 1− τd

τ
⟨ϕ⟩ = β (3.21)

(recall β =
√

(1− τd)/τ). Let ϕ̃ be a solution to (3.21). Then (ϕ, ψ′) = (ϕ̃, βϕ̃ −
β⟨ϕ̃⟩ + 1) gives an eigenfunction of L corresponding to the simple zero eigenvalue.
If L0 has a zero eigenvalue µk = 0 with the corresponding eigenfunction φk, then
⟨φk⟩ = 0 by the solvability condition for (3.21). Thus

(ϕ, ψ′) = (ϕ̃, βϕ̃− β⟨ϕ̃⟩+ 1) + (φk, βφk)

also gives an eigenfunction. This contradicts the simplicity of the zero eigenvalue.
Combining this observation with the assertion of Theorem 1.1, we conclude the
proof of the corollary for the Neumann case.
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As for the periodic boundary conditions we use Lemma 3.1 in Morita & Ogawa
[13] again, that is, if L0 has a simple zero eigenvalue with the eigenfunction ϕ =
u∗x, then the zero eigenvalues of L has the geometric multiplicity 2. Then, to
complete the proof, we use the above argument for the Neumann case with a slight
modification. Since the argument is simple, we leave the detail to the readers.

Proof of Corollary 1.2. Let (u∗(x), v∗(x)) be a nonconstant solution of (1.11)
with (1.12). If the first eigenvalue µ1 of the linearized operator L0 for u

∗ is negative,
then Theorem 1.1 tells the nonconstant solution is unstable. Thus, it suffices to
consider the eigenvalue problem for L0. In the Neumann case the proof for the
desired result for L0 follows from Theorem 3 of Suzuki & Tasaki [15] or the argument
in Gurtin & Matano [7].

Here, we give a proof for the periodic case. For the nonconstant solution u∗,
assume u∗x has two zeros in (0, L). L0 has a zero eigenvalue and the corresponding
eigenfunction u∗x. We also consider the Rayleigh quotient

R00[ζ] :=
K00[ζ]

∥ζ∥2
, K00[ζ] =

∫ L

0

{d|ζx|2 − (f ′(u∗)− d)ζ2}dx

and the associate eigenvalue problem

L00[ζ] = −(ζxx + f ′(u∗)ζ − dζ) = σζ,

with the periodic boundary conditions. Then L0[u
∗
x] = L00[u

∗
x] = 0. Since u∗x has

two zeros in (0, L), the first and the second eigenvalues σ1, σ2 satisfy

σ1 < σ2 < 0.

We let ζ1 and ζ2 be the corresponding eigenfunctions. Then we can take c so that
⟨cζ1 + ζ2⟩ = 0. Thus

K0[cζ1 + ζ2] = c2K00[ζ1] +K00[ζ2] = c2σ1∥ζ1∥2 + σ2∥ζ2∥2 < 0

This implies the instability of the solution.
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