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CAUCHY PROBLEM FOR THE ZAKHAROV
SYSTEM ARISING FROM ION-ACOUSTIC
MODES WITH LOW REGULARITY DATA*

Boling Guo!, Lijia Han?*' and Zaihui Gan?

Abstract We prove local well-posedness results for the Zakharov System
Arising from Ion-Acoustic Modes in two spacial dimension with large initial
data in low regularity Sobolev space (Hl UH%) x L? x H™'. Using ”derivative
sharing”, the local well-posedness results in (H* U H%_‘s) x H® x H™**° are
also obtained, for any 0 < § < %
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1. Introduction

In this paper, we consider the Cauchy problem for the Zakharov System Arising
from Ton-Acoustic Modes (IZS) in two spacial dimension:

1 _
iAp + A2 +ialp +iBp + =V Vn =0, (1.1)
nu — An+m + =V - Vip =0, (1.2)
410(07 Q]‘) = 900(1‘)7”‘(0"13) = ?’lo(ﬂ?), nt(oa'r) = 77/1(-77), (13)

where ¢(t,z) is a complex valued function of (¢,z) € Ry x R? | Ry := [0, +00], ¢*
is the complex conjugation of ¢. n(t, ) is a real valued function of (¢,z) € Ry x R?,
«, 3,7 and w are real constants 8 < 0,w > 0,7 =+/—1,

OG0 O
o 8m1’8x2 ’ h 8$27 axl ’ h 8%% 8x§

The system of (1.1) and (1.2) arises in the study of plasma physics, which describes
the modulation instability and collapse of wave in the dynamics of strong Langmuir
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turbulence. In physics, it can be used to discuss the modulation instability of lower-
hybrid waves in the auroral region of the Earth’s ionosphere. We can refer to [15]
for the physical background of this mode.

The local well-posedness of classical Zakharov system

{ié’t—l—AE—nE:O,

angy — An = A|E|? (1.4)

in 2 dimension space were wildly studied by many authors. Most of them used
the Fourier restriction norm method. Bourgain-Colliander in [4] proved the local
well-posedness for (1.4) in spaces which comprise the energy space and they also
obtained global well-posedness in the energy space under some assumption. Later,
the local result was improved by Ginibre-Tsutsumi-Velo in [6] to H'/2 x L? x H~1.
Recently, applying angular frequency decomposition, Bejenaru-Herr-Holmer-Tataru
in [2] improved the local result to L? x H~/2 x H=3/2 one-half derivative better
than [6]. They also show it is the space of optimal regularity in the sense that the
data-to-solution map fails to be smooth at the origin for any rough pair of spaces
in the L2-based Sobolev scale. And soon Bejenaru-Herr in [3] extend their previous
work to higher dimension case.

For (IZS) equation (1.1)—(1.3), using compactness method, Guo and Yuan [7]
studied the well-posedness of smooth solutions and showed that (1.1)-(1.3) has
a unique global solution, when the initial data belongs to H™12 x H™t!l x H™,
m € N. However, there is no result about (1.1)—(1.3) with low regularity data. In
this paper, we will consider the local well-posedness for system (1.1) —(1.3). We get
the following results:

Theorem 1.1. When the initial data (©o,no,n1) belong to (H* UH?2) x L2 x H™,

1
then there exists a constant T and a unique solution (p,n) € X N Hf«’o to the
Cauchy problem of (1.1)=(1.3). The space H? s defined as the Banach space of

all pairs of space-time distributions (¢, n)
¢ € C([0,T]; H' UH*(R* C)),
n e C([0,T); H'(R%;R)) N C*([0, T); H'"*(R* R)), (1.5)

endowed with the standard norm defined as
||(<P7”)||§{7k;,z = |\<P|\2m([07T];Hlqu) + 1207 0,03, m0) + el F oo o 77,111y (1.6)

The definition of Xt can be found in Definition 2.1 and Remark 2.1.
Moreover, the map (g, no,n1) — (@, n) is locally Lipschitz-continuous.

Corollary 1.1. In fact, we can also prove that, when the initial data (o, n0,n1)
belong to (H* UH%_(S) X HO x H0 for all0 <6 < % then there exists a unique

1
solution (p,n) € X3NH2 % 4o the Cauchy problem of (1.1)—(1.3). The definition
of X% can also be found in Definition 2.1 and Remark 2.1.

Remark. Using "derivative sharing”, we can obtain this Corollary from similar
proof as Theorem 1.1(See case 1 in Proposition 3.3 for detail).

Our main tools in this paper are angular frequency decomposition and dyadic
Bourgain space. It seems that if we apply the method in [2] directly to solve equation
(1.1)~(1.3), we can only solve the problem with initial data in H* x HY/? x H~1/2,



Zakharov system arising from Ion-Acoustic modes 13

which is worse than our Theorem 1.1 and 1.2. We will treat the low frequency part
specially in this paper.

Now I will give a sketch explanation on our proof. First we apply the standard
procedure to factor the wave operator in order to derive a first order system (see
also [6]). Suppose that (¢, n) is a sufficiently regular solution to (IZS), we define
v =n+i(V)"'9n, where (V) = (1 — A)Y/2, then we can write Eq. (1.1)-(1.3) as
following:

ip; + AN +iBAT o = —iap + 1AV - V(Rev)), (1.7)
— vy + (Vv = —iw(V) " HVe* - Vo] + (V) Rev + iy(v — Rev) (1.8)

In this way, if (¢,v) is a solution to Eq. (1.7)—(1.8) with the initial data (v, vo),
we can obtain a solution to the original system (IZS) by setting n = Rev. So it
is convenient for us to study the system (1.7)—(1.8) instead of the original system
(1.1)-(1.3).

Then we write Eq. (1.7)—(1.8) into integral equation (3.1) and (3.2). Then

we show the linear estimates for the semigroup Sz = €2ef2 "4y and integral

operator 1% (f) := fg Sg(t — 1) f(7)dr. (see Proposition 3.1 and 3.2)

Next we show multilinear estimates for the nonlinear term. Noticing that, in Eq.
(1.7), there is one order derivative in each of ¢ and v, and there is also two order
negative derivative before them. Using Bourgain space method we can see the so
called "highx high — low interactions” will occur, which is the worst case. Our idea
is dividing the nonlinear term into high frequency part and low frequency part, then
estimate them in different space, respectively. So we will estimate || P2 A7 [V -
ﬁ(Rev)}HX(.)s - and [|[P<; AT [V - V(Rev)]|ly,,i = 1,2, respectively, where Y; is

»i9

used to control low frequency term, while Xég 51
INT Rl

term (see Proposition 3.3 and 3.4 for detail).

is used to control high frequency

2. Notations and function spaces

In the sequel C will denote a universal positive constant which can be different at
each appearance. z < y (for z, y > 0) means that z < Cy, and = ~ y stands for
z <y and y < z. Throughout this work we will denote dyadic numbers 2™, n € Z
by capital letters, this means, we write N = 2", L = 2! and so on.

For any s € R, define homogeneous Sobolev space H*(R?) as (—A)~*/2L? and
define inhomogeneous Sobolev space H*(R?) as (1 — A)~%/2L?, respectively.

Next we introduce the Littlewood-Paley decomposition. Let n € C§° be an even,
non-negative function with the property n(§) = 1 for |£] < 1 and suppn C [—2,2].
Then write 7, = n and ny(§) = n(%) — 77(%) for N = 2" > 2. In this way we have
1 =73 y>;nn~. Define dyadic frequency localization operators Py by

Py f(z) = Z;  [nn (€) Zu f ()] (2).

Define operator P<ys, P> as

Poy = Z Py, Py = Z Py. (2.1)
N<M N>M
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Then we can define the inhomogeneous(homogeneous) Besov space Bg,l (R) (B3 1(R))(see
[16]) as the completion of ./(R) with respect to the semi-norm

By, = > L*|Prgl e,

L>1
—+o0
lollgg, = > LlPrgla, L=2', 1€Z (22)

L=—oc0

We follow the notation in [2] and denote the Fourier support of Py by the
corresponding letter:

Iy :{(577—) GRz xR | |£‘ SQ}?
In={(&7)eR*xR | N/2< |¢] <2N}.

Moreover, for dyadic L > 1 we define the modulation localization operators as
following

F(Spu)(r,6) = no(r + [€*) Fu(r,€) (2.3)
FWru)(r,€) = 1o (1 + [€]) Fu(r, §) (2.4)

and the corresponding Fourier supports

A ={(&7) eR*xR| |7+ || <23,
Ap={(7)eR*xR|L/2<|r+|¢* <2L}, L>2,

and respectively

Ti={(7) eR* xR | |1+ ]| <2},
Tr={¢n)eR*xR|L/2<|r+[¢||<2L}, L>2.

We also define an equidistant partition of unity in R,

1=3"85 i) =ns—i)(Dns—r) (2.5)
JEL kEeZ
Finally, for A € N we define an equidistant partition of unity on the unit circle,
A-1
Af
122/6;4’ BJA() BJ( )"’ﬁ] (7r)

j=0
Define
6 =70 =2, 3G+ Nl=m + 50 ~2),—7 + 7 +2)].
(5

We observe that
operators Qj ,

4 € @;-4. We introduce the angular frequency localization

Fo(QF1)(€) = B(0)Fuf(€), &= [€|(cosb,sin).
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The operators (qu)(t, x) localize functions in frequency to the sets
A _ : 2 A
Q= {(|{[cos 8, [{]sinf,7) e R xR | 6 € OF }.

For A € N we can now decompose v : R? x R — C as
A-1
A
w= Z Qj u.
j=0

Now we define our resolution space. For ,b € R, 1 < p < oo,

Definition 2.1.

2 1
D\ 2
lullxs,, = (0 N (D2 LIsPyully,)")

N>1 L>1
2 1
P\ 2
lullxg,, = (D0 N (D2 L Iwepvull,) ")’
' N>1 L>1
lully, = [IP<;Vullxs | <Y LY?||SLP<,VullL,
22t >
lully, = IP<iVullxs | <D LY?||Sp P Vullr,
2301 L>1
lullxs = 1Paullxs , +llullvs + l[ullvz,
22
lullxss = 1P>aullxs 4 llullyy + [lully,-
27%2

For T > 0, we define the time-localized spaces X§b7p(T) and Xg/}g,p(T) as

lullxs, = inf {Jwllxs, . w®) =u(t) on 0,7},
5,b,p

lullxy, = it {lwlxy  w®) =u@®) on 0.7} (26
5,b,p

Remark 2.1. The class Xt in the statement of Theorem 1.1 can be chosen as all
(p,n) such that p € X¥(T), n € X(%/z,l(T) and Oyn € XKV1,1/2,1(T>-

From the definitions of v in Eq.(1.7)-(1.8), we can see if v € ng1/2 (1) is
a solution of Eq.(1.7)-(1.8), then n = Rev € ng/l/m(T) and Oyn = (V)Imv €
XKVLI/QJ(T). Conversely, if n € ng/i/z’l(T) and Oyn € XEVM/QJ(T), then from the
definition of v, it is easy to see that v € X", | (T).

The class X9 in the statement of Corollary 1.2 can be chosen as all (p,n) such
that ¢ € X%5(T), n € X({VUQJ(T) and Oyn € XKV1+6,1/2,1(T)'

Since Schwartz functions .#(R? x R) is dense in ng_l and X(}’,‘Qh respectively.
It is enough to prove most of our estimates for smooth functions.
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3. Linear and multilinear estimates

For f € #(Ry x R?) and t € Ry, let
192 (f)(t) = / Sp(t — 7)f(7)dr,
Y (F)(t) = /0 Wt — 7)f(r)dr.

where Sg(t) = e"2ePA B <0, W(t) = e {V),
We will write Eq. (1.7)—(1.8) into an integral equation

#(t) = Sa(t)po —iI% (ap +i67' Vi V(Rev)]), (3.1)
o(t) = Wty — il (=iw(V) " [Ve" - V] + (V) 'Rev + iy(v — Rev)).  (3.2)

Set ¢ is a smooth time cutoff function satisfying
¥ e CE(R), supp ¥ C [<2,2], ¥ =1on[-1,1]. (3.3)

Now we will show linear estimates for equation (3.1), the method is essential due
to Molinet and Riboud [13], see also [10] and [8].

Proposition 3.1. Let s € R, f < 0, then there exists constant C > 0 such that
[(t)Ss()uollxs, < Clluollne, (3.4)
Si5s

where (t) is defined in (3.3).

Proof. From Plancherel’s identity, variable changing, and Young’s inequality, we
have

1S5 Pa () (€2 7114 ug) | 12
i (r — I (1ED 2 (5 w(e)e ™6 g
—Ine () () 2 (w(e)e "6 gl

_pel 8L _
< sup L (n) Fi(b (t)e ) 2 Nl (€T 2- (3.5)
From the definition of X*°

1 )
3,5,1

[0)Sa(Buollxs,

Nl

<( 30 8 (X LA (DTl sup s F:wtt)e )12

N>1 L>1
1
— 2 1 —|t 18]
<(2 Nl (Ih@liE: )" Do L sup llne Fult)e ) e
N>1 >1 &N

1 —|¢|LEL
<lluollzr S° L* sup [lnp Fo(w(t)e )| 2.
>1 &N
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Since B2/1 is a multiplication algebra, 1) € 32 1 as well as e7l € Bl/2 and B;/f

has scaling invariance, we have

1 —|t| Lk
N L% sup [l Fi(wt)e )| 2
>1 &N

_|¢118 H
Slle s 2||Bl/2||1/)|\L°°+||1/JHBI/2||€ e g,

<C. (3.6)
Then we obtain
l()Ss(t)uoll s, . < Clluol-. (37)

|
Proposition 3.2. Let s € R, § < 0, then there exists constant C' > 0 such that

1615 fllxs, < Cllfllxs (33)

s,—%,l

Proof. Assume that f € .(R?). Taking the x-Fourier transform we get
t
Xr, (D)Y(t )/ Sa(t — 1) f(r,x)dr
115 (=t+7) i
=so(0xe. Ovi0) [ e [ E R nsma©ia. 69
Setting w(7) = Sa(—7)f(7, z), we infer that

e, (D (2) / Ss(t — ) f(r.z)dr

6 - eitT _ 6725‘
—55(6) . (000 | et ) = —drde]. (3.10)
R it + 1z
We have
()1 s,
2\ %
=( 3 V(X L ey (€D Felke)n) ) (3.11)
N>1 L>1
where
—1t118]
elt‘l’ —e €2 )
ke(t) = w(t)/ Ww(f)dr (3.12)
R IT+ IGE
From the definition of X 1, we only need to estimate
ZU Inz (7Y (1€) Ze (ke ()2, S L™ 2z (r)nn (1€]) £ (€, ez, -

L>1 L>1
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We will consider it by four different cases.

—[t]18]

eitt'_l . 1—e &% .
ke =v0) [ hawar o [
<t it’ + 16 vi<1 it + 162
—1#1181
eltt , , e €2 o ,
vl [t o) [
[t|>1 it’ + 1€ |t/|>1 it" + 12
=1+ 1T +1II-1V.
> L e (€D F(IV) 22
L>1
L] [ (§)w (&, )HL2
<ZL2 bup/|771v &) F(p(t)e 167 ) Pdr - (/ ; €t
L>1 €~N ‘t/lzl |t ‘
<O L7# np(m)nn (€D )l z
L>1
Where in the second inequality, we use equation (3.6).
For term I11, using the technique in (3.6), we have
> Ly () (1€)-7 (D) 2z
L>1
w(7)
<> Ll (r)nn (€D [+ (=1 Xier1 ) [z
L>1 1T+ W' ’
w(t') p
<3 L ey |s|>|6||\ R
L>1 Les
nn (1€ 2
<y ] (\/l) ()2 2
= i L
<3 L s (rnn (€D (E, Dz
L>1

18]

')

(3.13)

(3.14)

For term I, we divide into two cases. When GE > 1, notice ¢ € C§° we have

ZL L ()N |£|)yt(II)HL2

L>1

—[t]]8] ‘

< 3 2 sup s iy () F(w (01— e )

L>1
D(E, )| 12
(/ ([ (§)w (€ )HLgdt/)
t/]<1 '] +1

<C Y L nu(r)nw (€D, ).z

L>1

L2

(3.15)
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When % < 1, using Taylor’s expansion and notice that 7 < 1, we have

S LA ()nn (€D Z D] e

L>1
1B\ v (gDt .,
L2 d
g 5 sz ) [ ) e P
L 4l g tn — 181y v (€Dt
<X 0w v, /M(|§| ) ol
1
<3 IOl s S L s (P (e (e Dl 2
n>1 L>1
<C Y L2 nn(mnn ()i ez (3.16)

L>1
where in the last inequality, we use that ||[t|™)(¢ )||Bl/2 < |1t ()| g2 < C2™.

Using Taylor’s expansion, I = 4(t) [, < 2n>1 n(};’ftim w(t')dt', so
T€r2

S L e (v (€D Dz
L>1
t"p(t)
( n! >L2

<ZZL2 |

< O e L (€6 e

']
vi<t [it’ + (5|

I (1€)w(E, 1)

n>1 L>1
<O L s ()€ Tz - (3.17)
L>1
O

For equation (3.2), From [2], we directly have

Lemma 3.1 ([2]). Let s € R, for all 0 < T < 1 there exists constant C' > 0 such
that

IW(@)uollxw, () < Clluollm-, (3.18)
b,

and such that for f € . (R? x R), we have

1Y fllxw, ) <Clflixw | (1) (3.19)
Y

201

Next we introduce some trilinear estimates. Define

IF.1.99) = [ 161 = @or(@)ealG)dcrdca (3.20)
where ¢; = (&;,7:),i = 1,2, we have:
Lemma 3.2. Let f,g1,g2 € L* with || f|z2 = llg1llz2 = llg2llz2= = 1 and

supp(f) € 1 NTy, supplgr) C AL Ty NQA (= 1,2). (3.21)
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The frequencies N, N1, No satisfy 64 < N < Ny ~ Na, then the following estimate

.95 (3.22)

b g gl < ity ()

holds.

Remark. The detail proof can be found in Proposition 4.2 in [2].

Lemma 3.3 ([2]). Let f,qg1,92 € L* with ||f||z2 = |g1]lz2 = |lg2]lz2 = 1 and
supp(f) C Y NIn, supp(gr) CALNTN  (j=1,2). (3.23)

The frequencies N, N1, Ny and modulations L, L1, Ly satisfy 1 < Ny < No. Then

for all L, Ly, Ly > 1 we have

1
1(fg0,92) S LELE LN ()" (3.24)
Lemma 3.4 ([2]). (Bilinear Strichartz estimates)
(a)Let vi,ve € L2(R®) be dyadically Fourier-localized such that
supp(Fwv;) C Ap Ny
For Ly,Ls > 1, N1, No > 1. Then the following estimate holds:

Nivs 1 1
lorellzeey < (5) L2 L lenllcelfee] o (3.25)

(b)Let u,v € L*(R3) be dyadically Fourier-localized such that
supp(Fu) C T NTy, supp(Fv) C A, NTx,.

For L, L1 > 1, N,Ny > 1. Then the following estimate holds:
min{ N, N;}\3 1 1
Juolzncesy & (Y L8 L e oo (3.20

Proposition 3.3.
-1
V) (0-Volllxs | ()

2712
<C(IP>2¢llxs . +[P<iVellxs | Dllvlxw, - (3:27)
1.5 .50 0,551

Ja

*

Proof. By dulity and (X5, ) = X5, . (X7 ) = X,

Zs—bpr LS P <

00, 8,b € 0o, We can deduce Proposition 3.3 to the following trilinear estimates
hold for all v, ¢, go € .7 (R? x R):

I(Fv, FVPsosp, Fgo) < || Poaglxs | vllxw_ gellxs . (3.28)
2012t 0331 20121
I(Fv, FP1Vp, 7 g2) < [PaiVollxs | vllxw, lgallxs | - (3.29)
301201 0,731 301301

Let g1 = VP>3¢, by definition of the norms, we dyadically decompose

v=> SPyv, gi= Y S Pngi i=12 (3.30)
N,L N;,L;
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Set gL“N = .FSL,Pn.gi (i=1,2), vN = FS Pyv and Nt = ZS1 Py, o,
then ng’Nl Nyt Ni (N > 4). We have the identity

I(Fv, FVP>op, Fgo) = Z Z T(WEN ghoNe gla N2y (3.31)
N124, L,Ly,L2>1
N,Ny>1

First, we prove (3.28), we divide the summation into three cases:
Casel:(highx high — low interactions) Assume N ~ N; > Ny > 1.

This case is the worst, since we have no method to absorb the derivative in .
The technique we use here can be called ”derivative sharing”, where we share the
one order derivative in ¢ to v. From Lemma 3.3 we have

L,N Li,Ni _Lg,N.
I( ’gll 17922 2)

3.5 1/N
SLELPLEN z(ﬁj) JoBN allgh N 2 95>
5 N.
stZLQHL%N—%Nl(Fj) o= N gl N 2 g > 1
<TITITa NG s Ny LN L1,Nq L2,N»
L LE LN NN (Nl) Jo=N gl s llgy> e, (3.32)

where 0 < 6 < % When § = 0, we can prove our Theorem 1.1. Otherwise, we can
prove Corollary 1.2. In the following we only consider § = 0, other case is similar.

noticing that N ~ Nj, Ny, Ny are dyadic number. Let € small enough, from
(3.31) and Schwartz’s inequality, we have

Z Z I( LN’gflaNl gL2,N2)

Ni>4 L,Ly,Ly>1

N,Ng>1,
<< Y (v Y et )
= ]\/v1 1
N12>4,Nz>1 Li>1
5
(N5 > 28 N9 ™ le) Iolxs
La>1 Szt
< SN D L IR
Ny >4 Li>1
N2 1
S () ne (X B e ol
M s
1SN2§N1 L2>1
<ClIPosgllxs . loallxs . lollxw, (3.33)
20120t 20120t 0,551

Similar proof will be used in the following many times.
Case2:(low x high — high interactions) Assume 2!° < N < N; ~ N, From
Lemma 3.2, we obtain

I("N, gy ™M gy ™)
N )%

LB LHLAN () ol g s g2 o
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Notice N1 ~ Ny, we have

[( L,N gfl N1’g§2,N2)

5 5 s N3
SLELFLANH () Mallo™ ™ st 1o g™ 1

5 5 11 N\ i
<LELFLENIN N () et el s (330

The case low x high — high interactions is similar to case 2, we omit the detail
here.
Case3:(low frequency ) Assume N < 1.

In this case, we must have Ny ~ Ny. First, assume L = max{L, L1, Ly}, from
(3.25), we have

Ly,N- L2, N:
|I(LN’911 1922 2)|

S R S

Ny 2
<LiL3 (52 ) Ml el e 93> oo
5 5 11
SLELPLENG N (E) loE Nl s llgy> 2l (3.35)
Second, assume Ly = max{L, L1, Lo}, from (3.26), we have

Lq,N Ly,N:
|I( L]\/v7.gll7 179227 2)‘

S R S 2

1 1/ N
<Lt (E) A P P P

5.5 5 1 1/N\3
SLELPLENENG (57) oVl ot e oz - (3.36)

From symmetry, when Lo = max{L, L1, Lo}, we also have

|I( N7gfl7N1’gsz,N2)‘

5 5 1 1/N\3
<LELELANENG (3) I N sl e e (337

To summation, from the proof in (3.33), we obtain (3.28) as desired.

For (3.29), Set g3 = VP<1¢. The proof is similar to above. Notice that N7 < 1,
then the integral vanishes unless N ~ Ny. We divide the summation into two cases:
(a) N ~ Ny <1, this case reduces to case 3 above( see (3.35) and (3.36)), we have

Li,N1 _Ls,N.
|I(LN931 Y997 2)|

<L{ELEELE 0PN | 12| Py Vb ™ o 052 ™2 2. (3.38)

(b) N ~ Nz > 1, this case reduces to case 1 above( see (3.32)), we have
Li,N: _La,N
|I(LN931 ' 9” 2)|
S rani (M L,N Li,Ny L3,Na
SLFLELEN (J) I M 1P v sl

Similarly, from (3.33), we obtain (3.29) as desired.
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Proposition 3.4.

Hﬁng* .V(pngf’

B
<(IP>2¢llxs | +I1PiVellxs | +I1PiVellxs | )% (3.39)
201201 201201 201201

Proof. We also apply the dyadic decomposition in Proposition 3.3. Let g; =
p, g2 = ¢*, by definition of the norms, we have

v=> S.Pyv, gi= Y SpPng, i=12 (3.40)
N,L N;,L;
then we have
Vo'V H
H<V> oV X e (D)
1
= Z Z H (VS1, Py @" - V51, P )Hx s (1)
NiorNg~1 Lq,Lo>1 0,— %5 ,00
+ Y Y H (VS1, Py, - VS1, Py, )wa5 -
N1,N2>>1 L1,La>1 0,— 5,00
- Y Y s z > B a1
NyorNo~1 Ly,Lo>1 N1,No>1L;y,Lo>1

We will estimate term A directly. Without loss of generality, assume Ny ~ 1.

1 _
= (VS1,Pr,¢" - VS5, Py, H
H<v>( L2 Phaf” - VL PNip) X, (@)

<[P - TSP, L

Set gi'M = ZS; Py, Vg and gb>™N2 = Z5; Py, Ve*, v1'N = Z S, Py, then
similar to the proof of (3.29), we divide into two cases:

(a) N ~ Ny < 1, this case reduces to (3.38), we have

L,,N Lo,N:
|I( LNagll 17g22 2)|

<LE L L 05N ]| Py Toh ™ | 12| Py Vo 22 2. (3.42)
(b) N ~ Nz > 1, this case reduces to equation (3.32). From Lemma 3.3, we have

|I ,UL,N7g1Ll,N1,92Lz’N2)|

53 5 5 1/Nj\s
SLELFELEN 2(@ 05N el g5 o

N
B LELENE (M) PP T N s s, (349
From (3.42) and (3.43), we obtain

oY A<lelxs, el (3.44)

i1
Ni~1Ly,La>1 2
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If we assume Ny ~ 1, then we have

oY A<lelxs, el (3.45)

1
Na~1Lq,L2>1

[N

To summation, (3.51), (3.44) and (3.45) means (3.39) as desired.
Noticing that

Vi -Vf=V-(f2Vf), (3.46)

S0
B :Hm - (S, Pn, '@VSL2PN2<P*)HXw @ (3.47)
§H5L1PN190 : V5L2PN2<P*HXw @’ (3.48)

for term B, we treat it using the same way as in Proposition 3.3.

Set gl Nt = .ZS; | Py, and gQLQ’N2 = F 81, PN, Vi, vlN = Z S Py, similar
to Proposition 3.3, we divide into two cases:
(a)N ~ Ny 2 N; > 1, this case reduces to (3.32).

Lqi,N Lo, N.
I(’Uvgl17 17.9227 2)

2 : L,N _Li,N1 _L2,N>
S I(’U agl a92 )
L>1.N>1

< Y L

L>1,N>1

5 5

2Ly L1 M

No

Sler

11 3 ;
NENG () IV oo™ ™ e llo™ e (3.49)

.

(6)21% < N < Ny ~ No, this case reduces to (3.34).

I(v, g0, gy ™)

§ : L,N _Li,N1 _L2,N>
S I(U 791 a92 )
L>1,N>1

5 11 N1
< Y LPLPFLENENI N () ot el e ™M e (350)
L>1,N>1

Similar to (3.33), from duality we have

> X Bl (351)

1
Ni,Ny>>1Ly,La>1 20!
Proposition 3.5. Fori=1,2, we have

(V)" (V)

v; < C([[P>29l x +[[P<1 Vel x

(352
. x5, I (3.52)

S
1
27 o

‘0’(
w0

1

ol

s

|

Proof. From the definition of Y;, we have

(V)™ (vV o)

v S HP51(UV<P)||X§ 5

5
EviE
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So (3.52) deduces to the following trilinear estimates hold for all v, p, g» € . (R? x
R):

I(Fv, FPoaV, FPsiga) < | Poavllxs . lollxw losllxs .

, 5 0,551

5
lollxw_ llg2llxs
1 0,55 ,1 0,551

S
1
3

I(Fv, 7PV, 7 Pgig2) < |[P<iVeollx

ol

5

V=0
e
w‘1
e
S

The idea is similar to the estimates for term A in Proposition 3.4, see (3.49), (3.50),
we do not show detail proof here.
(I

4. Proof of Theoreml1.1

Lemma 4.1. Let s,be R, 0<b< % There exists a constant C' > 0 such that for
all T € (0,1] the estimate

1_
I fllxs, () <CT? be”XS1 (T) (4.1)
s,b,1 1
Syg
holds for all uw € X p1(T). Specially, we have

1f1lxs
s

1
, (1) <CT2|flxs, (1) (4.2)
L, 5,31
Moreover, the embedding X%, (T) C C([0,T); H*) is continuous, i. e. there
=T
exists a constant C > 0 such that for all T € (0,1] it holds

sup ||f()lus < Cllfllxs | (- (4.3)
0<t<T 5.1

for all f € XSSl (T).
19
The results are completely right, if we substitute X, |(T) with X¥, (T).
T

1
8,51

Proof. (4.1) and (4.3) can be found in [2].
For (4.2), from embedding Theorem , we have

1

2
lullxs |y < (30 N*IPvulls, )" < Clullzg
A N>2

1
S CT?||ullLgnm; < CTl/ZHUHXj%J(T)‘

Proof of Theorem1.1. We consider the following mapping: .
Fi: plt) = Sp(t)po — i (ap +i 71V T(Rev)] ),
Ty = v(t) = W(t)vg — iV (—iw(V)‘l[Vgo* Vo] + (V) ' Rev + iy(v — Rev)).
From Proposition 3.1, we have
122500l oy < IP2200 5 (4.4)

1
PR

¥
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From Proposition 3.2 and equation (4.2), we have

|1 P>21% ()| x . (T)

1

1) < Ol P20l xs
1

s
1
5

[N

1
3,

1
< CTz|| P29l x (1)

Nl=0

1

N=

Notice the definition of V, we have
Vi - V(Rev) = V- (RevVep),

then from Proposition 3.2, lemma 4.1 and Proposition (3.4) we have

|Pso 5% (A*l[w : W(Rev)}) lxs oy
20201

<[5 Poa (A7 'V (RevV) ) s
Ev

()

[N

2 2

<) RevVo)lixs

1

1 —
<CT2 | (V) H(RevVe)| x (T)

,00

[N

,—

—
w‘v‘

1
<CT% ||<P||XS(T)HU||X(¥Vl (1)
5,
From (4.4)—(4.6), we obtain

[1P>2F16| x5

1
3021

Next,

1Ss(H)pollvy < IP<1VepollLz < [|[P<iwoll g

Similar to (4.5), we have
1
17%% () Iy, < OT |l
Similar to (4.6), from Proposition 3.5, we have
15 (L v TR <77
7% (5 V- TReo)] I < T ellcsn Iollx,
From (4.8)—(4.10), we obtain

1
1710l < 1P<aoll g + T ellxs @y (lollxw, () +1)-

o,

|

By the same way, we have
1
1716l < 1P<1oll g + T llellxs ey (lollxw, ) +1)-
=

Combine (4.7), (4.11) and (4.12), we have

1
1Z2¢llxs < [1P<agolln + P20l 3 + THlelxs ey (ol ey +1-

1
T < ||P22%00||H% + T ||¢||XS(T)(||U||X(‘)/E’%,1(T) +1).

(4.5)

(4.6)

(4.10)

(4.11)

(4.12)

(4.13)
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Finally, we consider the second equation (3.2). From Lemma 3.1, we have

||W(t)vo\|xg‘/l (1) = llvoll 2 (4.14)

3

From Lemma 4.1 and Lemma 3.1, we have

1
I —Rev + iv(v — Rev H
H ((V) i )) X:‘T’%’I(T)
1
SH—ReU—I—iV v — Rev H
(V) ( ) Xy L)
1
<CTHollxw, ) (4.15)
1,

From Lemma 3.1 and Proposition 3.4

|7 (y v 9%)

1 _
C|yve el
S P

Xo,%,l(T)
< T lpllss () (4.16)

So we have
1
1 Z20llxw, () < llvollee + T lellxs @) (el xs ) +1)- (4.17)
Y

In conclusion, from (4.13), (4.17) and standard iteration argument, we can con-

struct a unique solution (¢, v) € Bxs ()0, ||eol| y oD% Bgil ()0, Clluoll2) for
H2UH 1

Eq. (3.1)-(3.2). In addition, we can also show local Lipschitz continuity for the
map (o, v9) — (p,v).
The proof for Corollary 1.2 is similar, we do not show the detail here. O
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