
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 2, Number 1, February 2012 pp. 1–10

NUMERICAL SOLUTION OF LR FUZZY
HUNTER-SAXETON EQUATION BY USING

HOMOTOPY ANALYSIS METHOD
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Abstract In this paper, a LR fuzzy Hunter-Saxton equation is solved by
using the homotopy analysis method (HAM). The approximation solution of
this equation is calculated in the form of series which its components are
computed by applying a recursive relation. The existence and uniqueness
of the solution and the convergence of the proposed method are proved. A
numerical example is studied to demonstrate the accuracy of the presented
method.
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1. Introduction

The Hunter-Saxton equation

utxx ⊕ 2⊙ ux ⊙ uxx ⊕ u⊙ uxxx = 0, t > 0. (1.1)

Models the propagation of weakly nonlinear orientation waves in a massive ne-
matic liquid crystal director field, x being the space variable in a reference frame
moving with the unperturbed wave speed and t being a slow time variable [15].
In this work, we develop the HAM to solve the Eq.(1.1) with the LR fuzzy initial
conditions as follows:

u(0, 0) = (0, 0, 0),

utx(a, x) = (2xex
2

, ex,−e−x),

ut(a, x) = (2axex
2

, aex,−ae−x).

(1.2)

The fuzzy exact solution is u(x, t) = (xet
2

, xet, xe−t).
The paper is organized as follows. In section 2, the homotopy analysis method is

introduced for solving Eq.(1.1). Also, the existence and uniqueness of the solution
and convergence of the proposed method are proved in section 3. An example is
presented in section 4 to illustrate the accuracy of this method.
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To obtain the approximate solution of Eq.(1.1), by integrating three times from
Eq.(1.1) with respect to x, t and using the fuzzy initial conditions we obtain

ũ(x, t)⊕ (−1)⊙ F̃ (x, t)⊕ 2⊙
∫ t

0

∫ x

a

(x− t) ⊙ F1(ũ(x, t)) dt dx

⊕
∫ t

0

∫ x

a

(x− t) ⊙ F2(ũ(x, t)) dt dx,

(1.3)

where,

Di(ũ(x, t)) =
∂iũ(x, t)

∂xi
, i = 1, 2, 3,

F̃ (x, t) =

∫ t

0

∫ x

a

(2xex
2

, ex,−e−x)dx dt⊕
∫ t

0

(2axex
2

, aex,−ae−x) dt,

F1(u(x, t)) = D(ũ(x, t))⊙D2(ũ(x, t)),

F2(u(x, t)) = ũ(x, t)⊙D3(ũ(x, t)).

In Eq.(1.3),we assume F̃ (x, t) is bounded for all t in J = [0, T ] and x in [a, b]
(T, a, b ∈ R).

The terms F1(ũ(x, t)), F2(ũ(x, t)) are Lipschitz continuous with D̂(Fi(ũ), Fi(ũ
∗)) ≤

Li D̂(ũ, ũ∗)(i = 1, 2), where D̂ is the Hausdorff metric [7] and

| x− t |≤ M,
α = T (b− a)M(2L1 + L2).

2. Definitions

The basic definitions of a fuzzy number are given in [1, 4, 6, 7, 8, 12, 13, 14, 15] as
follows:

Definition 2.1. A fuzzy number is a fuzzy set like u : R→ [0, 1] which satisfies:

1. u is an upper semi-continuous function

2. u(x) = 0 outside some interval [a,d]

3. There are real numbers b, c such as a ≤ b ≤ c ≤ d and

3.1 u(x) is a monotonic increasing function on [a, b]

3.2 u(x) is a monotonic decreasing function on [c, d]

3.3 u(x) = 1 for all x ∈ [b, c].

Definition 2.2. A fuzzy number u in parametric form is a pair (u, u) of functions
u(r), u(r), 0 ≤ r ≤ 1, which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and right
continuous at 0,

2. u(r) is a bounded non-increasing left continuous function in (0, 1], and right
continuous at 0,

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.
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Definition 2.3. The membership function u is presented as

u(x) =


uL(x) if x ∈ [a, b]
1 if x ∈ [b, c]
uR(x) if x ∈ [c, d]
0 otherwise

(2.1)

where uL : [a, b] → [0, 1] and uR : [c, d] → [0, 1] are left and right membership
functions of fuzzy number u. Another definition for a fuzzy number is as follows.

Definition 2.4. A fuzzy number Ã is of LR-type if there exist shape functions
L(for left), R(for right) and scalar α ≥ 0, β ≥ 0 with

µ̃A(x) =

{
L(a−x

α ) x ≤ a
R(x−b

β ) x ≥ a
(2.2)

the mean value of Ã, a is a real number, and α, β are called the left and right
spreads, respectively. Ã is denoted by (a, α, β).

Definition 2.5. Let M̃ = (m,α, β)LR and Ñ = (n, γ, δ)LR and λ ∈ R+. Then,

(1) : λM̃ = (λm, λα, λβ)LR

(2) : −λM̃ = (−λm, λβ, λα)LR

(3) : M̃ ⊕ Ñ = (m+ n, α+ γ, β + δ)LR

(4) : M̃ ⊙ Ñ ≃


(mn,mγ + nα,mδ + nβ)LR M̃, Ñ > 0

(mn,nα−mδ, nβ −mγ)LR M̃ > 0, Ñ < 0

(mn,−nβ −mδ,−nα−mγ)LR M̃, Ñ < 0

(2.3)

Definition 2.6. For arbitrary fuzzy numbers ũ, ṽ ∈ E1 , we use the distance (Haus-
dorff metric) [16]

D(u(r), v(r)) = max{ sup
r∈[0,1]

|u(r)− v(r)|, sup |u(r)− v(r)|},

and it is shown [20] that (E1 , D) is a complete metric space and the following
properties are well known:

D(ũ+ w̃, ṽ + w̃) = D(ũ, ṽ), ∀ ũ, ṽ ∈ E1,

D(kũ, kṽ) =| k | D(ũ, ṽ), ∀ k ∈ R, ũ, ṽ ∈ E1,

D(ũ+ ṽ, w̃ + ẽ) ≤ D(ũ, w̃) +D(ṽ, ẽ), ∀ ũ, ṽ, w̃, ẽ ∈ E1.

Definition 2.7. A triangular fuzzy number is defined as a fuzzy set in E1, that is
specified by an ordered triple u = (a, b, c) ∈ R3 with a ≤ b ≤ c such that [u]r =
[ur

−, u
r
+] are the endpoints of r-level sets for all r ∈ [0, 1], where ur

− = a+ (b− a)r
and ur

+ = c− (c− b)r. Here, u0
− = a, u0

+ = c, u1
− = u1

+ = b, which is denoted by u1.
The set of triangular fuzzy numbers will be denoted by E1.

Definition 2.8. Consider x, y ∈ E. If there exists z ∈ E such that x = y+ z then
z is called the H- difference of x and y, and is denoted by x⊖ y. [7]
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Definition 2.9. (see[7]) Let f : (a, b) → E and x0 ∈ (a, b). We say that f
is generalized differentiable at x0 ( Bede-Gal differentiability), if there exists an
element f

′
(x0) ∈ E, such that:

i) for all h > 0 sufficiently small, ∃f(x0+h)⊖ f(x0), ∃f(x0)⊖ f(x0−h) and the
following limits hold:

lim
h→0

f(x0 + h)⊖ f(x0)

h
= lim

h→0

f(x0)⊖ f(x0 − h)

h
= f

′
(x0)

or
ii) for all h > 0 sufficiently small, ∃f(x0) ⊖ f(x0 + h), ∃f(x0 − h) ⊖ f(x0) and

the following limits hold:

lim
h→0

f(x0)⊖ f(x0 + h)

−h
= lim

h→0

f(x0 − h)⊖ f(x0)

−h
= f

′
(x0)

or
iii) for all h > 0 sufficiently small, ∃f(x0 + h) ⊖ f(x0), ∃f(x0 − h) ⊖ f(x0) and

the following limits hold:

lim
h→0

f(x0 + h)⊖ f(x0)

h
= lim

h→0

f(x0 − h)⊖ f(x0)

−h
= f

′
(x0)

or
iv) for all h > 0 sufficiently small, ∃f(x0) ⊖ f(x0 + h), ∃f(x0) ⊖ f(x0 − h) and

the following limits hold:

lim
h→0

f(x0)⊖ f(x0 + h)

−h
= lim

h→0

f(x0)⊖ f(x0 − h)

h
= f

′
(x0)

Definition 2.10. Let f : (a, b) → E. We say f is (i)-differentiable on (a, b) if f is
differentiable in the sense (i) of Definition (2.9) and similarly for (ii), (iii) and (iv)
differentiability.

Definition 2.11. (see[15]) The mapping f : T → En for some interval T is called
a fuzzy process. Therefore, its r-level set can be written as follows:

[f(t)]r = [fr
−(t), f

r
+(t)], t ∈ T, r ∈ [0, 1].

Definition 2.12. (see[15]) Let f : T → En be Hukuhara differentiable and denote
[f(t)]r = [fr

−, f
r
+]. Then, the boundary function fr

− and fr
+ are differentiable ( or

Seikkala differentiable) and

[f
′
(t)]r = [(fr

−)
′
(t), (fr

+)
′
(t)], t ∈ T, r ∈ [0, 1].

2.1. Description of the HAM

Consider,

N [ũ] = 0.

Where N is a nonlinear operator, ũ(x, t) is unknown function and x is an inde-
pendent variable. let ũ0(x, t) denote an initial guess of the exact solution ũ(x, t),
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h ̸= 0 an auxiliary parameter, H1(x, t) ̸= 0 an auxiliary function, and L an auxil-
iary linear operator with the property L[s(x, t)] = 0 when s(x, t) = 0. Then using
q ∈ [0, 1] as an embedding parameter, we construct a homotopy as follows:

(1− q)L[ϕ̃(x, t; q)⊕ (−1)⊙ ũ0(x, t)]⊕ (−1)qhH1(x, t)⊙N [ϕ̃(x, t; q)]

= Ĥ[ϕ̃(x, t; q); ũ0(x, t),H1(x, t), h, q].
(2.4)

It should be emphasized that we have great freedom to choose the initial guess
ũ0(x, t), the auxiliary linear operator L, the non-zero auxiliary parameter h, and
the auxiliary function H1(x, t).

Enforcing the homotopy (2.4) to be zero, i.e.

Ĥ1[ϕ̃(x, t; q); ũ0(x, t),H1(x, t), h, q] = 0, (2.5)

we have the so-called zero-order deformation equation

(1− q)L[ϕ̃(x, t; q)⊕ (−1)⊙ ũ0(x, t)] = qhH1(x, t)⊙N [ϕ̃(x, t; q)]. (2.6)

When q = 0, the zero-order deformation Eq.(2.5) becomes

ϕ̃(x; 0) = ũ0(x, t), (2.7)

and when q = 1, since h ̸= 0 and H1(x, t) ̸= 0, the zero-order deformation
Eq.(2.5) is equivalent to

ϕ̃(x, t; 1) = ũ(x, t). (2.8)

Thus, according to (2.7) and (2.8), as the embedding parameter q increases from

0 to 1, ϕ̃(x, t; q) varies continuously from the initial approximation ũ0(x, t) to the
exact solution ũ(x, t). Such a kind of continuous variation is called deformation in
homotopy [2, 3, 5, 9, 10, 11, 18, 19].

Due to Taylor’s theorem, ϕ̃(x, t; q) can be expanded in a power series of q as
follows

ϕ̃(x, t; q) = ũ0(x, t)⊕
∞∑

m=1

ũm(x, t)⊙ qm, (2.9)

where,

ũm(x, t) =
1

m!
⊙ ∂mϕ̃(x, t; q)

∂qm
|q=0 .

Let the initial guess ũ0(x, t), the auxiliary linear parameter L, the nonzero aux-
iliary parameter h and the auxiliary function H1(x, t) be properly chosen so that

the power series (2.9) of ϕ̃(x, t; q) converges at q = 1, then, we have under these
assumptions the solution series

ũ(x, t) = ϕ̃(x, t; 1) = ũ0(x, t)⊕
∞∑

m=1

ũm(x, t). (2.10)

From Eq.(2.9), we can write Eq.(2.6) as follows
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(1− q)⊙ L[ϕ̃(x, t, q)⊕ (−1)⊙ ũ0(x, t)]

= (1− q)⊙ L[
∞∑

m=1

ũm(x, t)⊙ qm]

= q h H1(x, t)⊙N [ϕ̃(x, t, q)]

⇒ L[
∞∑

m=1

ũm(x, t)⊙ qm]− q ⊙ L[
∞∑

m=1

ũm(x, t)⊙ qm]

= q h H1(x, t)⊙N [ϕ̃(x, t, q)].

(2.11)

By differentiating (2.11) m times with respect to q, we obtain

{L[
∞∑

m=1

ũm(x, t)⊙ qm]⊕ (−1)⊙ q ⊙ L[
∞∑

m=1

ũm(x, t)⊙ qm]}(m)

= {q h H1(x, t)⊙N [ϕ̃(x, t, q)]}(m)

= m!⊙ L[ũm(x, t)⊕ (−1)⊙ ũm−1(x, t)]

= h H1(x, t) m⊙ ∂m−1N [ϕ̃(x, t; q)]

∂qm−1
|q=0 .

Therefore,

L[ũm(x, t)⊕ (−1)⊙ χmũm−1(x, t)] = hH1(x, t)⊙ℜm(ũm−1(x, t)), (2.12)

where,

ℜm(ũm−1(x, t)) =
1

(m− 1)!
⊙ ∂m−1N [ϕ̃(x, t; q)]

∂qm−1
|q=0, (2.13)

and,

χm =

{
0 m ≤ 1,
1 m > 1.

Note that the high-order deformation Eq.(2.12) is governing the linear operator
L, and the term ℜm(ũm−1(x, t)) can be expressed simply by (2.13) for any nonlinear
operator N .

To obtain the approximation solution of Eq.(1.3), according to HAM,
let

N [ũ(x, t)] =ũ(x, t)⊕ (−1)⊙ F̃ (x, t)

⊕ 2⊙
∫ t

0

∫ x

a

(x− t)⊙ F1(ũ(x, t)) dt dx

⊕
∫ t

0

∫ x

a

(x− t)⊙ F2(ũ(x, t)) dt dx,

so,
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ℜm(ũm−1(x, t)) =ũm−1(x, t)⊕ (−1)⊙ F̃ (x, t)

⊕ 2⊙
∫ t

0

∫ x

a

(x− t)⊙ F1(ũ(x, t)) dt dx

⊕
∫ t

0

∫ x

a

(x− t)⊙ F2(ũ(x, t)) dt dx.

(2.14)

Substituting (2.14) into (2.12)

L[ũm(x, t)⊕ (−1)⊙ χmũm−1(x, t)]

= hH1(x, t)⊙ [ũm−1(x, t)⊕ 2⊙
∫ t

0

∫ x

a

(x− t)⊙ F1(ũ(x, t)) dt dx

⊕
∫ t

0

∫ x

a

(x− t)⊙ F2(ũ(x, t)) dt dx⊕ (χm − 1)⊙ F̃ (x, t)].

(2.15)

We take an initial guess ũ0(x, t) = −F̃ (x, t), an auxiliary linear operator Lũ = ũ,
a nonzero auxiliary parameter h = −1, and auxiliary function H1(x, t) = 1. This is
substituted into (2.15) to give the recurrence relation

ũ0(x, t) = F̃ (x, t) =

∫ t

0

∫ x

a

(2xex
2

, ex,−e−x)dx dt

⊕
∫ t

0

(2axex
2

, aex,−ae−x) dt,

ũn+1(x, t) = 2⊙
∫ t

0

∫ x

a

(x− t)⊙ F1(ũn(x, t)) dt dx

⊕
∫ t

0

∫ x

a

(x− t)⊙ F2(ũn(x, t)) dt dx, n ≥ 1.

(2.16)

3. Existence solution and convergence of HAM

Theorem 3.1. Let 0 < α < 1, then equation (1.3), has a unique solution.

Proof. Let ũ and ũ∗ be two different solutions of (1.3) then

D(ũ, ũ∗) = D(F̃ (x, t)⊕ (−2)⊙
∫ t

0

∫ x

a

(x− t) ⊙ F1(ũ(x, t)) dt dx

⊕ (−1)⊙
∫ t

0

∫ x

a

(x− t)⊙ F2(ũ(x, t)) dt dx,

F̃ (x, t)⊕ (−2)⊙
∫ t

0

∫ x

a

(x− t)
⊙

F1(ũ
∗(x, t)) dt dx

⊕ (−1)⊙
∫ t

0

∫ x

a

(x− t) ⊙ F2(ũ
∗(x, t)) dt dx)

≤ TM(b− a)(2L1 + L2) D̂(ũ, u∗) = αD̂(ũ, u∗).
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From which we get (1 − α)D(ũ, ũ∗) ≤ 0. Since 0 < α < 1, then D(ũ, ũ∗) = 0.
Implies ũ = ũ∗ and completes the proof.

Theorem 3.2.

ϕk+1(x, t) = F̃ (x, t)⊕
k+1∑
i=1

[2⊙
∫ t

0

∫ x

a

(x− t) ⊙ F1(ũi(x, t)) dt dx

⊕
∫ t

0

∫ x

a

(x− t) ⊙ F2(ũi(x, t)) dt dx], k ≥ 0.

D(ϕk+1(x, t), ϕk(x, t))

= D(F̃ (x, t)⊕
∑k+1

i=1 [2⊙
∫ t

0

∫ x

a
(x− t) ⊙ F1(ũi(x, t)) dt dx

⊕
∫ t

0

∫ x

a
(x− t)⊙ F2(ũi(x, t)) dt dx],

F̃ (x, t)⊕
∑k+1

i=1 [2⊙
∫ t

0

∫ x

a
(x− t) ⊙ F1(ũi−1(x, t)) dt dx

⊕
∫ t

0

∫ x

a
(x− t)⊙ F2(ũi−1(x, t)) dt dx])

= D(ϕk(x, t)⊕ 2⊙
∫ t

0

∫ x

a
(x− t) ⊙ F1(ũk(x, t)) dt dx

⊕
∫ t

0

∫ x

a
(x− t) ⊙ F2(ũk(x, t)) dt dx , ϕk(x, t))

= D(2⊙
∫ t

0

∫ x

a
(x− t) ⊙ F1(ũk(x, t)) dt dx

⊕
∫ t

0

∫ x

a
(x− t) ⊙ F2(ũk(x, t)) dt dx , 0̃)

≤ D(ũk(x, t), 0̃) ≤ αkD(F̃ , 0̃)

=⇒ D(ϕk+1(x, t), ϕk(x, t)) ≤ αk+1D(F̃ , 0̃)

=⇒
∑∞

k=0 D(ϕk+1(x, t), ϕk(x, t)) ≤ αk+1D(F̃ , 0̃)
∑∞

k=0 α
k.

4. Numerical example

In this section, we compute a numerical example which is solved by the HAM. The
program has been provided with Mathematica 6.

Algorithm:

u0 = F̃ (x, t) =

∫ t

0

∫ x

a

(2xex
2

, ex,−e−x)dx dt⊕
∫ t

0

(2axex
2

, aex,−ae−x) dt

= (f01 , f02 , f03).

For i = 0, i ≤ n, i++ , if [D2(fi1) > 0 and D2(fi3) > 0,

D(ũi(x, t)) = (
∂fi1
∂x

,
∂fi2
∂x

,
∂fi3
∂x

), D(ũi(x, t)) = (
∂fi3
∂x

,
∂fi2
∂x

,
∂fi1
∂x

)];

If[D4(fi1) > 0 and D4(fi3) > 0, D2(ũi(x, t)) = (
∂2fi1
∂x2

,
∂2fi2
∂x2

,
∂2fi3
∂x2

),
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D2(ũi(x, t)) = (
∂2fi3
∂x2

,
∂2fi2
∂x2

,
∂2fi1
∂x2

)];F1(ui(x, t)) = D(ũi(x, t))⊙D2(ũi(x, t));

If [
∂5fi1
∂x5

> 0 and
∂5fi3
∂x5

> 0, D3(ũi(x, t)) = (
∂5fi1
∂x5

,
∂5fi2
∂x5

,
∂5fi3
∂x5

),

D3(ũi(x, t)) = (
∂5fi3
∂x5

,
∂5fi2
∂x5

,
∂5fi1
∂x5

)];F2(u(x, t)) = ũ(x, t)⊙D3(ũ(x, t));

ũi+1(x, t) = 2⊙
∫ t

0

∫ x

a

(x− t)⊙ F1(ũi(x, t)) dt dx

⊕
∫ t

0

∫ x

a

(x− t)⊙ F2(ũi(x, t)) dt dx;

Example 4.1. Consider the fuzzy hunter-Saxeton equation as follows:

utxx ⊕ 2⊙ ux ⊙ uxx ⊕ u⊙ uxxx = 0̃.

Table 1 Numerical results for Example 4.1

x App.Sol (n = 3) Errors(D̂)
0.01 0.0101130 0.00001253
0.02 0.0204544 0.00005032
0.05 0.0528836 0.00032007
0.1 0.1118610 0.00134369
0.12 0.1372840 0.00198486
0.15 0.1775160 0.00324104
0.2 0.2505650 0.00628427
0.25 0.3318580 0.01851500
0.3 0.4223900 0.01743260
0.35 0.5233110 0.02663750
0.4 0.6359360 0.03920560
0.45 0.7617640 0.05602370
0.5 0.9024930 0.07813260

Table 1 shows that, the approximation solution of the fuzzy Hunter-Saxeton
equation is convergent with 3 iterations by using the HAM.

5. Conclusion

The HAM has been shown to solve effectively, easily and accurately a large class of
nonlinear problems with the approximations which convergent are rapidly to exact
solutions. In this work, the HAM has been successfully employed to obtain the
approximate analytical solution of the fuzzy Hunter-Saxton equation.
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