THE C^{1} SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION

Ying Liang ${ }^{a}$, XiaoPei $\mathrm{Li}^{a, \dagger}$ and YuZhen Mi^{a}

Abstract

By constructing a structure operator quite different from before, and using the Schauder's fixed point theory, the existence and uniqueness of the C^{1} solutions of the high dimensional Feigenbaum-like functional equations are discussed.

Keywords Feigenbaum-like functional equations; Schauder's fixed point; existence; uniqueness.

MSC(2000) 35D, 35C.

1. Introduction

The second kind of Feigenbaum functional equation (1.1) with initial value condition in interval $[0,1]$ is an important form of iterative equations .

$$
\left\{\begin{array}{l}
f(x)=\frac{1}{\lambda} f(f(\lambda x)), 0<\lambda<1 \tag{1.1}\\
f(0)=1 \\
0 \leq f(x) \leq 1, x \in[0,1]
\end{array}\right.
$$

The case of the continuous single-peak solutions was considered in [1-3] and[5-7], also the precise solution was considered in some functional space. Certainly, these discussions are very important to the dynamical systems, but being iterative equations, we also focus on the no-monotone continuous case. In this paper, we consider the C^{1} solution of the Feigenbaum-like functional equation

$$
\begin{equation*}
f(x)=\frac{1}{\lambda+1} f^{2}(\lambda x)+\frac{\lambda}{\lambda+1} g(x) \tag{1.2}
\end{equation*}
$$

where $g(x)$ is a given function, $f(x)$ is an unknown function, and $f(x), g(x)$ are the differentiable function of the high dimensional space $\mathbf{R}^{n}, 0<\lambda<1$. We use the different methods from [1-3] and[5-7].

2. Preliminaries

Suppose $C^{0}\left(B, \mathbf{R}^{n}\right)=\left\{f: B \rightarrow \mathbf{R}^{n}, f\right.$ is continuous $\}$, where B is a compact convex subset of \mathbf{R}^{n}. let $|\cdot|_{n}$ be a norm of $\mathbf{R}^{n},|\cdot|_{n \times n}$ be a norm of $\mathbf{R}^{n \times n}$. Clearly

[^0]$C^{0}\left(B, \mathbf{R}^{n}\right)$ is a Banach space with the norm $\|\cdot\|_{c^{0}}$, where $\|f\|_{c^{0}}=\sup _{x \in B}|f(x)|_{n}$, for $f \in C^{0}\left(B, \mathbf{R}^{n}\right)$. Let $C^{1}\left(B, \mathbf{R}^{n}\right)=\left\{f: B \rightarrow \mathbf{R}^{n}, f\right.$ is continuous and continuously differentiable $\}$, then $C^{1}\left(B, \mathbf{R}^{n}\right)$ is a Banach space with the norm $\|\cdot\|_{c^{1}}$, where $\|f\|_{c^{1}}=\sup _{x \in B}|f(x)|_{n}+\sup _{x \in B}\left|f^{\prime}(x)\right|_{n \times n}$, for $f \in C^{1}\left(B, \mathbf{R}^{n}\right)$.

Being a closed subset of $C^{1}\left(B, \mathbf{R}^{n}\right), C^{1}(B, B)$ defined by $C^{1}(B, B)=\{f \in$ $\left.C^{1}\left(B, \mathbf{R}^{n}\right), f(B) \subseteq B, \forall x \in B\right\}$ is a complete space.

Lemma 2.1. Suppose that $\varphi \in C^{1}(B, B)$ and

$$
\begin{gather*}
\left|\varphi^{\prime}(x)\right|_{n \times n} \leq M, \forall x \in B \tag{2.1}\\
\left|\varphi^{\prime}\left(x_{1}\right)-\varphi^{\prime}\left(x_{2}\right)\right|_{n \times n} \leq M^{\prime}\left|x_{1}-x_{2}\right|_{n}, \forall x_{1}, x_{2} \in B \tag{2.2}
\end{gather*}
$$

where M and M^{\prime} are positive constants. Then

$$
\begin{gather*}
\left|\left(\varphi^{n}\left(x_{1}\right)\right)^{\prime}-\left(\varphi^{n}\left(x_{2}\right)\right)^{\prime}\right|_{n \times n} \leq M^{\prime}\left(\sum_{i=n-1}^{2 n-2} M^{i}\right)\left|x_{1}-x_{2}\right|_{n} \tag{2.3}\\
\left|\left(\varphi^{2}\left(\lambda x_{1}\right)\right)^{\prime}-\left(\varphi^{2}\left(\lambda x_{2}\right)\right)^{\prime}\right|_{n \times n} \leq \lambda^{2} M^{\prime}\left(M+M^{2}\right)\left|x_{1}-x_{2}\right|_{n} \tag{2.4}
\end{gather*}
$$

where any x_{1}, x_{2} in $B,\left(\varphi^{n}\right)^{\prime}$ is the Jacobian matrix denoting $d \varphi^{n} / d x$.
Proof. The methods of proof in (2.3) are similar to paper [8], but the conditions are weaker than that of [8]. Now we proof (2.4).

For any x_{1}, x_{2} in B,

$$
\begin{aligned}
& \left|\left(\varphi^{2}\left(\lambda x_{1}\right)\right)^{\prime}-\left(\varphi^{2}\left(\lambda x_{2}\right)\right)^{\prime}\right|_{n \times n} \\
= & \left|\varphi^{\prime}\left(\varphi\left(\lambda x_{1}\right)\right)\left(\varphi\left(\lambda x_{1}\right)\right)^{\prime}-\varphi^{\prime}\left(\varphi\left(\lambda x_{2}\right)\right)\left(\varphi\left(\lambda x_{2}\right)\right)^{\prime}\right|_{n \times n} \\
\leq & \left|\varphi^{\prime}\left(\varphi\left(\lambda x_{1}\right)\right)\left(\varphi\left(\lambda x_{1}\right)\right)^{\prime}-\varphi^{\prime}\left(\varphi\left(\lambda x_{2}\right)\right)\left(\varphi\left(\lambda x_{1}\right)\right)^{\prime}\right|_{n \times n} \\
& +\left|\varphi^{\prime}\left(\varphi\left(\lambda x_{2}\right)\right)\left(\varphi\left(\lambda x_{1}\right)\right)^{\prime}-\varphi^{\prime}\left(\varphi\left(\lambda x_{2}\right)\right)\left(\varphi\left(\lambda x_{2}\right)\right)^{\prime}\right|_{n \times n} \\
\leq & \lambda M \mid\left(\varphi^{\prime}\left(\varphi\left(\lambda x_{1}\right)\right)-\left(\left.\varphi^{\prime}\left(\varphi\left(\lambda x_{2}\right)\right)\right|_{n \times n}+M\left|\left(\varphi\left(\lambda x_{1}\right)\right)^{\prime}-\left(\varphi\left(\lambda x_{2}\right)\right)^{\prime}\right|_{n \times n}\right.\right. \\
\leq & \lambda M M^{\prime}\left|\varphi\left(\lambda x_{1}\right)-\varphi\left(\lambda x_{2}\right)\right|_{n}+\lambda^{2} M M^{\prime}\left|x_{1}-x_{2}\right|_{n} \\
\leq & \lambda^{2} M^{2} M^{\prime}\left|x_{1}-x_{2}\right|_{n}+\lambda^{2} M M^{\prime}\left|x_{1}-x_{2}\right|_{n} \\
\leq & \lambda^{2} M^{\prime}\left(M+M^{\prime}\right)\left|x_{1}-x_{2}\right|_{n} .
\end{aligned}
$$

Thus (2.4)holds.
Lemma 2.2. Suppose that $\varphi_{1}, \varphi_{2} \in C^{0}\left(B, \boldsymbol{R}^{n}\right), \varphi_{1}(x), \varphi_{2}(x)$ satisfy (2.1) and $\varphi(\lambda x):=\varphi^{(\lambda)}(x)$. Then

$$
\begin{equation*}
\left|\varphi_{1}^{2(\lambda)}-\varphi_{2}^{2(\lambda)}\right|_{n} \leq(M+1)\left|\varphi_{1}^{(\lambda)}-\varphi_{2}^{(\lambda)}\right|_{n} \tag{2.5}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
\left|\varphi_{1}^{2(\lambda)}-\varphi_{2}^{2(\lambda)}\right|_{n}= & \sup _{x \in B}\left|\varphi_{1}^{2}(\lambda x)-\varphi_{2}^{2}(\lambda x)\right|_{n} \\
\leq & \sup _{x \in B} \mid\left(\varphi_{1}\left(\varphi_{1}(\lambda x)\right)-\left.\varphi_{1}\left(\varphi_{2}(\lambda x)\right)\right|_{n}\right. \\
& +\sup _{x \in B}\left|\varphi_{1}\left(\varphi_{2}(\lambda x)\right)-\varphi_{2}\left(\varphi_{2}(\lambda x)\right)\right|_{n} \\
\leq & M\left|\varphi_{1}^{(\lambda)}-\varphi_{2}^{(\lambda)}\right|_{n}+\left|\varphi_{1}^{(\lambda)}-\varphi_{2}^{(\lambda)}\right|_{n} \\
= & (M+1)\left|\varphi_{1}^{(\lambda)}-\varphi_{2}^{(\lambda)}\right|_{n} .
\end{aligned}
$$

Thus(2.5)holds.

Lemma 2.3. Suppose that $\varphi_{1}, \varphi_{2} \in C^{1}(B, B)$. Then

$$
\begin{align*}
& \left|\left(\varphi_{1}^{2(\lambda)}\right)^{\prime}-\left(\varphi_{2}^{2(\lambda)}\right)^{\prime}\right|_{n \times n} \\
\leq & 2 \lambda M\left|\left(\varphi_{1}^{(\lambda)}\right)^{\prime}-\left(\varphi_{2}^{(\lambda)}\right)^{\prime}\right|_{n \times n}+\lambda M M^{\prime}\left|\varphi_{1}^{(\lambda)}-\varphi_{2}^{(\lambda)}\right|_{n} \tag{2.6}
\end{align*}
$$

Proof. Because

$$
\begin{aligned}
& \left|\left(\varphi_{1}^{2(\lambda)}\right)^{\prime}-\left(\varphi_{2}^{2(\lambda)}\right)^{\prime}\right|_{n \times n} \\
\leq & \sup _{x \in B}\left\{\left|\varphi_{1}^{\prime}\left(\varphi_{1}(\lambda x)\right)\left(\varphi_{1}(\lambda x)\right)^{\prime}-\varphi_{2}^{\prime}\left(\varphi_{2}(\lambda x)\right)\left(\varphi_{1}(\lambda x)\right)^{\prime}\right|_{n \times n}\right\} \\
& +\sup _{x \in B}\left\{\left|\varphi_{2}^{\prime}\left(\varphi_{2}(\lambda x)\right)\left(\varphi_{1}(\lambda x)\right)^{\prime}-\varphi_{2}^{\prime}\left(\varphi_{2}(\lambda x)\right)\left(\varphi_{2}(\lambda x)\right)^{\prime}\right|_{n \times n}\right\} \\
\leq & \lambda M \sup _{x \in B}\left\{\left|\varphi_{1}^{\prime}\left(\varphi_{1}(\lambda x)\right)-\varphi_{2}^{\prime}\left(\varphi_{2}(\lambda x)\right)\right|_{n \times n}+\lambda^{n} M\left|\varphi_{1}^{\prime}(\lambda x)-\varphi_{2}^{\prime}(\lambda x)\right|_{n \times n}\right\} \\
\leq & \lambda M \sup _{x \in B}\left|\varphi_{1}^{\prime}\left(\varphi_{1}(\lambda x)\right)-\varphi_{1}^{\prime}\left(\varphi_{2}(\lambda x)\right)\right|_{n \times n} \\
& +\lambda M \sup _{x \in B} \mid \varphi_{1}^{\prime}\left(\varphi_{2}(\lambda x)-\left.\varphi_{2}^{\prime}\left(\varphi_{2}(\lambda x)\right)\right|_{n \times n}+\lambda M\left|\varphi_{1}^{\prime}(\lambda x)-\varphi_{2}^{\prime}(\lambda x)\right|_{n \times n}\right. \\
\leq & 2 \lambda M\left|\left(\varphi_{1}^{(\lambda)}\right)^{\prime}-\left(\varphi_{2}^{(\lambda)}\right)^{\prime}\right|_{n \times n}+\lambda M M^{\prime}\left|\varphi_{1}^{(\lambda)}-\varphi_{2}^{(\lambda)}\right|_{n} .
\end{aligned}
$$

Thus (2.6)holds.

3. Main results

For given constants $M_{1}>0$ and $M_{2}>0$, let

$$
\begin{aligned}
\mathcal{A}\left(M_{1}, M_{2}\right)= & \left\{\varphi \in C^{1}(B, B):\left|\varphi^{\prime}(x)\right|_{n \times n} \leq M_{1}, \forall x \in B,\right. \\
& \left.\left|\varphi^{\prime}\left(x_{1}\right)-\varphi^{\prime}\left(x_{2}\right)\right|_{n \times n} \leq M_{2}\left|x_{1}-x_{2}\right|_{n} \forall x_{1}, x_{2} \in B\right\} .
\end{aligned}
$$

Theorem 3.1. (Existence) Given positive constants M_{1}, M_{2} and $g \in \mathcal{A}\left(M_{1}, M_{2}\right)$, if there exists constants $K_{1}, K_{2}, 0 \leq K_{1} \leq 1$ and $K_{2} \geq \frac{1}{2}$, such that

$$
\begin{aligned}
& \left(P_{1}\right) \quad K_{1}^{2}+M_{1} \leq K_{1} \\
& \left(P_{2}\right) \quad K_{2}\left(K_{1}+K_{1}^{2}\right)+M_{2} \leq K_{2}
\end{aligned}
$$

then equation(1.2) has a solution f in $\mathcal{A}\left(K_{1}, K_{2}\right)$.
Proof. Define $T: \mathcal{A}\left(K_{1}, K_{2}\right) \rightarrow C^{1}(B, B)$ as follow:

$$
T f(x)=\frac{1}{\lambda+1} f^{2}(\lambda x)+\frac{\lambda}{\lambda+1} g(x), \quad \forall x \in B
$$

where $f \in \mathcal{A}\left(K_{1}, K_{2}\right)$, then $f(\lambda x) \in \mathcal{A}\left(\lambda K_{1}, \lambda K_{2}\right)$. Because $f, f(\lambda x)$ and g are continuously differentiable for all $x \in B$, then $T f$ is also continuously differentiable for all $x \in B$. By condition $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$, for any x_{1}, x_{2} in B, thus

$$
\begin{aligned}
\left|(T f(x))^{\prime}\right|_{n \times n} & \leq \frac{1}{\lambda+1}\left|\left(f^{2}(\lambda x)\right)^{\prime}\right|_{n \times n}+\frac{\lambda}{\lambda+1}\left|g^{\prime}(x)\right|_{n \times n} \\
& \leq \frac{1}{\lambda+1} \left\lvert\,\left(\left.f^{\prime}(f(\lambda x))(f(\lambda x))^{\prime}\right|_{n \times n}+\frac{\lambda}{\lambda+1}\left|g^{\prime}(x)\right|_{n \times n}\right.\right. \\
& \leq \frac{\lambda}{\lambda+1}\left(K_{1}^{2}+M_{1}\right) \leq \lambda K_{1} \leq K_{1}
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
& \left|\left(T f\left(x_{1}\right)\right)^{\prime}-\left(T f\left(x_{2}\right)\right)^{\prime}\right|_{n \times n} \\
= & \left|\frac{1}{\lambda+1}\left(f^{2}\left(\lambda x_{1}\right)\right)^{\prime}+\frac{\lambda}{\lambda+1} g^{\prime}\left(x_{1}\right)-\frac{1}{\lambda+1}\left(f^{2}\left(\lambda x_{2}\right)\right)^{\prime}-\frac{\lambda}{\lambda+1} g^{\prime}\left(x_{2}\right)\right|_{n \times n} \\
\leq & \left.\left.\left.\frac{\lambda}{\lambda+1}\left|\left(f^{2}\left(\lambda x_{1}\right)\right)^{\prime}-\left(f^{2}\left(\lambda x_{2}\right)\right)^{\prime}\right|_{n \times n}+\frac{\lambda}{\lambda+1} \right\rvert\, g^{\prime}\left(x_{1}\right)\right)-g^{\prime}\left(\lambda x_{2}\right)\right)\left.\right|_{n \times n} \\
\leq & \frac{\lambda^{2}}{\lambda+1} K_{2}\left(K_{1}+K_{1}^{2}\right)\left|x_{1}-x_{2}\right|_{n}+\frac{\lambda}{\lambda+1} M_{2}\left|x_{1}-x_{2}\right|_{n} \\
\leq & \frac{\lambda}{\lambda+1}\left(K_{2}\left(K_{1}+K_{1}^{2}\right)+K_{2}\right)\left|x_{1}-x_{2}\right|_{n} \\
\leq & \lambda K_{2}\left|x_{1}-x_{2}\right|_{n} \\
\leq & K_{2}\left|x_{1}-x_{2}\right|_{n}
\end{aligned}
$$

Thus $T: \mathcal{A}\left(K_{1}, K_{2}\right) \rightarrow \mathcal{A}\left(K_{1}, K_{2}\right)$ is a self-diffeomorphism.
Now we prove the continuity of T under the norm $\|.\|_{c^{1}}$. For arbitrary $f_{1}, f_{2} \in$ $\mathcal{A}\left(K_{1}, K_{2}\right), f_{i}(\lambda x) \in \mathcal{A}\left(\lambda K_{1}, \lambda K_{2}\right) i=1,2$ and $f(\lambda x):=f^{(\lambda)}(x)$,

$$
\begin{aligned}
& \left|T f_{1}-T f_{2}\right|_{n} \\
\leq & \sup _{x \in B}\left\{\left|\frac{1}{\lambda+1} f_{1}^{2}(\lambda x)+\frac{\lambda}{\lambda+1} g(x)-\frac{1}{\lambda+1} f_{2}^{2}(\lambda x)-\frac{\lambda}{\lambda+1} g(x)\right|_{n}\right\} \\
= & \frac{1}{\lambda+1} \sup _{x \in B}\left\{\left|f_{1}^{2}(\lambda x)-f_{2}^{2}(\lambda x)\right|_{n}\right\} \\
\leq & \frac{1}{\lambda+1}\left(K_{1}+1\right)\left|f_{1}^{(\lambda)}-f_{2}^{(\lambda)}\right|_{n}, \\
& \left|\left(T f_{1}\right)^{\prime}-\left(T f_{2}\right)^{\prime}\right|_{n \times n} \\
\leq & \sup _{x \in B}\left\{\left|\frac{1}{\lambda+1}\left(f_{1}^{2}(\lambda x)\right)^{\prime}+\frac{\lambda}{\lambda+1} g^{\prime}(x)-\frac{1}{\lambda+1}\left(f_{2}^{2}(\lambda x)\right)^{\prime}-\frac{\lambda}{\lambda+1} g^{\prime}(x)\right|_{n \times n}\right\} \\
= & \sup _{x \in B}\left\{\frac{1}{\lambda+1}\left|\left(f_{1}^{2}(\lambda x)\right)^{\prime}-\left(f_{2}^{2}(\lambda x)\right)^{\prime}\right|_{n \times n}\right\} \\
\leq & \frac{1}{\lambda+1}\left\{\lambda K_{1} K_{2}\left|f_{1}^{(\lambda)}-f_{2}^{(\lambda)}\right|_{n}+2 \lambda K_{1}\left|\left(f_{1}^{(\lambda)}\right)^{\prime}-\left(f_{2}^{(\lambda)}\right)^{\prime}\right|_{n \times n}\right\} .
\end{aligned}
$$

Let

$$
E_{1}=\frac{1}{\lambda+1}\left(K_{1}+1\right)+\frac{\lambda}{\lambda+1} K_{1} K_{2}, E_{2}=\frac{2 \lambda}{\lambda+1} K_{1}, E=\max \left\{E_{1}, E_{2}\right\}
$$

Then we have

$$
\begin{align*}
\left\|T f_{1}-T f_{2}\right\|_{c^{1}} & =\sup _{x \in B}\left|T f_{1}(x)-T f_{2}(x)\right|_{n}+\sup _{x \in B}\left|\left(T f_{1}(x)\right)^{\prime}-\left(T f_{2}(x)\right)^{\prime}\right|_{n \times n} \\
& \leq E_{1}\left|f_{1}^{(\lambda)}-f_{2}^{(\lambda)}\right|_{n}+E_{2}\left|\left(f_{1}^{(\lambda)}\right)^{\prime}-\left(f_{2}^{(\lambda)}\right)^{\prime}\right|_{n \times n} \\
& \leq E\left|f_{1}-f_{2}\right|_{n}+E\left|\left(f_{1}\right)^{\prime}-\left(f_{2}\right)^{\prime}\right|_{n \times n} \\
& =E\left\|f_{1}-f_{2}\right\|_{c^{1}}, \tag{3.1}
\end{align*}
$$

which gives continuity of T .
It is easy to show that $\mathcal{A}\left(K_{1}, K_{2}\right)$ is a compact convex subset of $C^{1}(B, B)$. By the

Schauder's fixed point theorem, we assert that there is a mapping $f \in \mathcal{A}\left(K_{1}, K_{2}\right)$, such that

$$
f(x)=T f(x)=\frac{1}{\lambda+1} f^{2}(\lambda x)+\frac{\lambda}{\lambda+1} g(x), \quad \forall x \in B
$$

This completes the proof.
Theorem 3.2. (Uniqueness) Suppose that $\left(P_{1}\right)$ and $\left(P_{2}\right)$ are satisfied, also we suppose that $\left(P_{3}\right): E<1$, then for arbitrary function g in $\mathcal{A}\left(M_{1}, M_{2}\right)$, equation (1.2) has a unique solution $f \in \mathcal{A}\left(K_{1}, K_{2}\right)$.

Proof. The existence of equation(1.2) in $\mathcal{A}\left(K_{1}, K_{2}\right)$ is given by theorem 3.1, from the proof of theorem 3.1, we see that $\mathcal{A}\left(K_{1}, K_{2}\right)$ is a closed subset of $C^{1}(B, B)$, by (3.1) and $\left(\mathrm{P}_{3}\right)$, we see that

$$
T: \mathcal{A}\left(K_{1}, K_{2}\right) \rightarrow \mathcal{A}\left(K_{1}, K_{2}\right)
$$

is a contraction. Therefore T has a unique fixed point $f(x)$ in $\mathcal{A}\left(K_{1}, K_{2}\right)$, that is, equation(1.2) has a unique solution in $\mathcal{A}\left(K_{1}, K_{2}\right)$, this proves theorem.

4. Example

Suppose $B:=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2} \leq 1, x_{i} \in \mathbf{R}, i=1,2\right\} \subset \mathbf{R}^{2}$. Clearly B is a compact convex subset of \mathbf{R}^{2}. We can choose

$$
g(x):=g\left(x_{1}, x_{2}\right)=\left(g_{1}\left(x_{1}, x_{2}\right), g_{2}\left(x_{1}, x_{2}\right)\right)=\left(\frac{1}{24} x_{1}^{2}, \frac{1}{16} x_{1} x_{2}\right)
$$

then $g(x) \in C^{1}(B, B)$.
Consider the equation

$$
\begin{equation*}
f(x)=\frac{2}{3} f^{2}\left(\frac{1}{2} x\right)+\frac{1}{3} g(x), x \in B \tag{4.1}
\end{equation*}
$$

It is in the form of (1.2) where $\lambda=\frac{1}{2}$.
Since

$$
g^{\prime}(x)=\left(\begin{array}{cc}
\frac{1}{12} x_{1} & 0 \\
\frac{1}{16} x_{2} & \frac{1}{16} x_{1}
\end{array}\right)
$$

then

$$
\left|g^{\prime}(x)\right|_{2 \times 2}=\max _{x \in B}\left(\frac{1}{12}\left|x_{1}\right|, \frac{1}{16}\left(\left|x_{1}\right|+\left|x_{2}\right|\right)\right) \leq \frac{1}{8}
$$

For any $x, y \in B$, let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$, we can obtain

$$
g^{\prime}(x)=\left(\begin{array}{cc}
\frac{1}{12} x_{1} & 0 \\
\frac{1}{16} x_{2} & \frac{1}{16} x_{1}
\end{array}\right), g^{\prime}(y)=\left(\begin{array}{cc}
\frac{1}{12} y_{1} & 0 \\
\frac{1}{16} y_{2} & \frac{1}{16} y_{1}
\end{array}\right)
$$

then

$$
\left|g^{\prime}(x)-g^{\prime}(y)\right|_{2 \times 2}=\max _{x, y \in B}\left(\frac{1}{12}\left|x_{1}-y_{1}\right|, \frac{1}{16}\left(\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|\right)\right) \leq \frac{\sqrt{2}}{12}|x-y|_{2}
$$

thus $g \in \mathcal{A}\left(\frac{1}{8}, \frac{\sqrt{2}}{12}\right)$.
By condition $\left(\mathrm{P}_{1}\right)$, there is

$$
K_{1}^{2}-K_{1}+\frac{1}{8} \leq 0
$$

then $K_{1} \in\left(\frac{1-\frac{\sqrt{2}}{2}}{2}, \frac{1+\frac{\sqrt{2}}{2}}{2}\right)$, we can choose $K_{1}=0,5$.
Simily, by condition $\left(\mathrm{P}_{2}\right)$, there is

$$
K_{2}\left(\frac{1}{2}+\frac{1}{4}\right)+\frac{\sqrt{2}}{12} \leq K_{2}
$$

then $K_{2} \in\left(\frac{\sqrt{2}}{3},+\infty\right)$, we can choose $K_{2}=0.6$. Then by theorem 3.1 , there is a continuously differentiable solution of equation(4.1) in $\mathcal{A}(0.5,0.6)$.

References

[1] H. Epstein, New proofs of the existence of the Feigenbaum function, Comm., Math. phys., 106 (1986), 395-426.
[2] J. P. Eokmann and P. Wittwer, A computer assisted proof of the Feigenbaum conjectures, J. Stat. phys., 46 (1987), 455-477.
[3] O. E. Lanford III , A computer assisted proof of the Feigenbaum conjectures, Bull. Amer. Math Soc., 6 (1987), 427-434.
[4] X. P. Li, A Class of Iterative Equation on a Banach Space,Journal of Sichuan University(N. SCI.E), 41 (3)(2004), 505-510.
[5] B. D. Mestel, A. H. Osbaldestin and A. V. Tstgvintsev, Continued fractions and solutions of the Feigenbaum-Cvitanovie equation, C. R. Acad. Sci. Paris, 334 (2002), 683-688. Sci., 125B:1 (2005), 130-136.
[6] P. J. Mccarthy, The general exact bijective continuous solution of Feigenbaum's functional equation, Comm. Math.Phys., 91 (1983), 431-443.
[7] C. J. Thompson and J. B. Mcguire, Asymptotic and essentially singular solution of the Feigenbaum equation, J. Stat. phys., 27 (1982), 183-200.
[8] W. N. Zhang, Discussion on the differentiable solutions of the iterated equation, Nonlinear Analysis:Theory, Mathods \& Applications, vol.15, 4(1990), 387-398.

[^0]: \dagger the corresponding author: Lixp27333@sina.com(X.Li)
 ${ }^{a}$ Mathematics and Computational School,Zhanjiang Normal University, Zhanjiang, Guangdong, 524048, China
 The authors were Supported by Youth Item of Zhanjiang Normal University(QL1002) ,China.

