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THE LONG TIME BEHAVIOR FOR PARTLY

DISSIPATIVE STOCHASTIC SYSTEMS

Xianyun Dua,† and Boling Guob

Abstract In this paper, we consider the long time behaviors for the partly
dissipative stochastic reaction diffusion equations in D ⊂ R

n. The main pur-
pose of this paper is to establish the existence of a compact global random
attractor. The existence of a random absorbing set is first discussed for the
systems and then an estimate on the solutions is derived when the time is large
enough, which ensures the asymptotic compactness of solutions. Finally, we
establish the existence of the global attractor in L

2(D) × L
2(D).
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1. Introduction

The partly dissipative reaction diffusion system of the form

∂

∂t
u + (−µ∆u + λu + αv) = h(u) + f(x), (1.1)

∂

∂t
v + δv − βu = g(x) (1.2)

is often used to describe the signal transmission across axon and is a model of
FitzHugh-Nagumo equation in neurobiology [3, 8, 16]. The asymptotic behavior of
the partly dissipative system was studied by several authors [4, 14, 15, 18]. How-
ever, to the best of our knowledge, there is little study on the existence of the global
attractors of the partly dissipative reaction diffusion system with stochastic distur-
bances. It is worth mentioning that, in the case of lattice systems, the existence
of a random attractor was proved recently in [20] and the deterministic lattice case
was treated in [11] and [12].

In this paper, we instigate the asymptotic behavior of solutions of the following
partly dissipative stochastic reaction diffusion equations with additive white noise

{

du + (−µ∆u + λu + αv)dt = (h(u) + f(x))dt +
∑m

j=1 hjdwj ,

dv + (δv − βu)dt = g(x)dt +
∑m

j=1 h∗
jdwj ,

(1.3)
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where µ, λ, α, δ, β are positive constants, f, g, hj and h∗
j are given functions. The

nonlinear function h(u) satisfies certain dissipative conditions and {wj}
m
j=1 are in-

dependent two-sided real-valued Wiener processes on a probability space which will
be specified later.

Our purpose of this paper is to study the long time behaviors of the stochastic
system (1.3). The notion of random attractors for a stochastic dynamical system is
introduced in [6, 7, 9]. Random attractors are compact invariant sets and depend
on chance, but they move with time. The notion of random attractor is a gener-
alization of the classical concept of global attractors for deterministic dynamical
systems and has been applied to many infinite dimensional stochastic dynamical
systems (see [1, 2, 5, 6, 7, 9, 10, 13, 17]). In our approach, we introduce a station-
ary Ornstein-Ohlenbeck process to transform the stochastic system (1.3) into the
deterministic system with random coefficient. The main difficulty to obtain a global
random attractor for the random dynamical system is the lack of compactness of
the semigroup generated by the partly dissipative stochastic reaction diffusion equa-
tions. We obtain the asymptotic compactness of semigroup S(t, ω) by applying the
method of operator decomposition (see [13]).

This paper is arranged as follows. In section 2, some relevant concepts and
theories are given. In section 3, we introduce the Ornstein-Ohlenbeck process, give
some properties and provide some basic settings about (1.3). Our results generalize
a random dynamical system to proper function space. In section 4, we prove results
on the existence of a unique random attractor of the random dynamical system
generated by (1.3).

2. Preliminaries on random dynamical systems

In this section, we introduce some basic concepts related to random attractors for
stochastic dynamical systems. Let (X, ||.||X) be a separable Hilbert space with Borel
σ−algebra B(X) and (Ω,F , P, (ϑt)t∈R) be the ergodic metric dynamical system.

Definition 2.1. A continuous random dynamical system over (Ω,F , P, (ϑt)t∈R) is
a (B(R+) ×F × B(X))-measurable mapping

S : R+ × Ω × X → X (t, ω, x) → ϕ(t, ω, x)

such that the following properties hold:
(1) S(0, ω, x) = x for all ω ∈ Ω and x ∈ X ;
(2) S(t + s, ω, ·) = S(t, ϑsω, ·) ◦ S(s, ω, ·) for all s, t ≥ 0 and ω ∈ Ω;
(3) S is continuous in t and x.

Definition 2.2. (1) A set-valued mapping ω → D(ω) : Ω → 2X is said to be a
random set if the mapping ω → d(x, D(ω)) is measurable for any x ∈ X . If D(ω) is
closed (compact) for each ω ∈ Ω, the mapping ω → D(ω) is called a random closed
(compact) set. A random set ω → D(ω) is said to be bounded if there exist x0 ∈ X

and a random variable R(ω) > 0 such that

D(ω) ⊂ {x ∈ X : ||x − x0|| ≤ R(ω)} for all ω ∈ Ω.

(2) A random set ω → D(ω) is called tempered if for P-a.s. ω ∈ Ω,

lim
t→0

e−βt sup{||b||X : b ∈ D(ϑ−tω)} = 0 for all β > 0.
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(3) Let D be a collection of random subsets of X and {K(ω)}ω∈Ω ∈ D. Then
{K(ω)}ω∈Ω is called a random absorbing set for S in D if for every B ∈ D and P
-a.e. ω ∈ Ω, there exists tB(ω) > 0 such that

S(t, ϑ−tω, B(ϑ−tω)) ⊂ K(ω) for all t ≥ tB(ω).

Definition 2.3. Let D be a collection of random subsets of X . A random set
{A(ω)}ω∈Ω of X is called a D-random attractor (or D-pullback attractor) for S if
the following conditions are satisfied for P -a.e. ω ∈ Ω.

(i) A(ω) is compact and ω → d(x,A(ω)) is measurable for x ∈ X ;
(ii) {A(ω)}ω∈Ω is invariant, that is,

S(t, ω,A(ω)) = A(ϑtω) for all t ≥ 0.

(iii) {A(ω)}ω∈Ω attracts every set in D, that is, for every B = {B(ω)}ω∈Ω ∈ D,

lim
t→∞

dH(S(t, ϑ−tω, B(ϑ−tω)),A(ω)) = 0,

where dH is the Hausdorff semi-distance.

Lemma 2.1. Let D be a collection of random subsets of X and S a continuous
RDS on X over (Ω,F , P, (ϑt)t∈R). Suppose that {K(ω)}ω∈Ω is a closed random
absorbing set for S in D and S is asymptotically compact in X. Then S has a
unique random attractor {A(ω)}ω∈Ω given by

A(ω) =
⋂

t≥0

⋃

τ≥t

S(τ, ϑ−τω, K(ϑ−τω)).

Let B be a bounded set in a Banach space X . The Kuratowski measure of
non-compactness α(B) of B is defined by

α(B) = inf{d > 0 : B admits a finite cover by sets of diameter ≤ d}.

We define α(B) = ∞, if B is unbounded.

Definition 2.4. [13] A random dynamical system S on a Polish space (X, d) is
almost surely D − α−contracting if

lim
t→∞

α(S(t, ϑ−tω, A(ϑ−tω))) = 0 for A ∈ D.

Lemma 2.2. For a random dynamical system S(t, ω) on a separabal Banach space
(X, ||.||X), if almost surely the following hold:

(1) S(t, ω) = S1(t, ω) + S2(t, ω);
(2) For any tempered random variable a ≥ 0, there exist r(a) (0 ≤ r < ∞),

a.s. such that for the closed ball Ba with radius a in X, S1(t, ϑ−tω, Ba(ϑ−tω)) is
precompact in X for all t > r(a).

(3) ||S2(t, ϑ−tω, u)||X ≤ K(t, ϑ−tω, a), t > 0, u ∈ Ba(ω) and K(t, ω, a) is a
measurable function with respect to (t, ω, x) which satisfies

lim
t→∞

K(t, ϑ−tω, a) = 0.

Then S(t, ω) is almost surely D − α−contracting (see [13]).

Lemma 2.3. Let S(t, ω) be a random dynamical system on a Polish space (X, ||.||X).
Assume that

(1) S(t, ω) has an absorbing set B(ω) ∈ D;
(2) S(t, ω) is almost surely D − α−contracting. Then S(t, ω) possesses a global

random attractor in X.
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3. Solutions of partly dissipative stochastic reac-

tion diffusion equations

In this section, we present the existence and uniqueness of solutions of equation
(1.3) and (1.2). Set L2(D), H1

0 (D) and E = L2(D) × H1
0 (D) with the following

inner products and norms, respectively

(u, v) =

∫

D

uvdx, ||u|| = (u, v)
1

2 ∀u, v ∈ L2(D),

((u, v)) =

∫

D

∇u∇vdx, ||u||H1 = ((u, v))
1

2 ∀u, v ∈ H1
0 (D),

(y1, y2)E = (u1, u2) + (v1, v2), ||y||E = (y, y)
1

2

E ∀yi = (ui, vi)
T ∈ E i = 1, 2.

In the sequel, we consider the probability space (Ω,F , P ) where

Ω = {ω = (ω1, ω2, · · ·ωm) ∈ C(R, Rm) : ω(0) = 0}.

F is the Borel σ-algebra induced by the compact open topology of Ω and P the
corresponding Wiener measure on (Ω,F). Then we identify ω with

w(t) ≡ (w1(t), w2(t), · · ·wm(t)) = ω(t) for t ∈ R.

Define the time shift by

ϑt(·) = ω(· + t) − ω(t), for ω ∈ Ω, t ∈ R.

Then (Ω,F , P, (ϑt)t∈R) is a metric dynamical system.
Let j = 1, 2, · · ·, m. We consider the one-dimensional Ornstein-Uhlenbeck equa-

tion
dzj + λzjdt = dwj(t). (3.1)

It is easy to check that a solution of (3.1) is given by

zj(t) = zj(ϑtωj) ≡ −λ

∫ 0

−∞

eλτ (ϑtωj)(τ)dτ, t ∈ R. (3.2)

Lemma 3.1. For ǫ > 0, there exists a tempered random variable r : Ω → R
+ such

that
m

∑

j=1

(|zj(ϑtωj)|
2 + |zj(ϑtωj)|

q) ≤ eǫ|t|r(ω) for all t ∈ R and ω ∈ Ω,

where q ≥ 2 and r(ω), ω ∈ Ω satisfies

r(ϑtω) ≤ eǫ|t|r(ω) for t ∈ R.

Proof. Let j = 1, 2, · · ·, m. Since |zj(ωj)| is a tempered random variable and the
mapping t → ln |zj(ϑtωj)| is P-a.s.continuous, it follows from Proposition 4.3.3 in
[17] that for ǫj > 0, there is a tempered random variable rj(ωj) > 0 such that

|zj(ωj)| ≤ rj(ωj),
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where rj(ωj) satisfies,

rj(ϑtωj) ≤ eǫj|t|rj(ωj) for P-a.s. ω ∈ Ω and t ∈ R.

Then taking

ǫ1 = ǫ2 = · · · = ǫm =
ǫ

q
,

we have

m
∑

j=1

(|zj(ϑtωj)|
2 + |zj(ϑtωj)|

q) ≤
m

∑

j=1

(|rj(ϑtωj)|
2 + |rj(ϑtωj)|

q)

≤

m
∑

j=1

(e2ǫj|t|r2
j (ωj) + eqǫj |t|r

q
j (ωj))

≤ eǫ|t|
m

∑

j=1

(r2
j (ωj) + r

q
j (ωj)) ≤ eǫ|t|r(ω),

where r(ω) =
∑m

j=1(r
2
j (ωj) + r

q
j (ωj)).

Let z(ϑtω) =
∑m

j=1 hjzj(ϑtωj) and z∗(ϑtω) =
∑m

j=1 h∗
jzj(ϑtωj), by (3.1) we

have

dz + λzdt =

m
∑

j=1

hjdwj , dz∗ + λz∗dt =

m
∑

j=1

h∗
jdwj . (3.3)

Corollary 3.1. Suppose hj , h
∗
j ∈ H2 ∩ W 2,q(D) for j = 1, 2, · · ·, m. For ǫ > 0,

there is a constant c > 0 such that for all t ∈ R, ω ∈ Ω,

||z(ϑtω)||qq + ||z(ϑtω)||2 + ||z∗(ϑtω)||2 + ||∇z(ϑtω)||2 ≤ k1e
ǫ|t|r(ω), (3.4)

||∆z(ϑtω)||qq + ||∆z(ϑtω)||2 + ||z∗(ϑtω)||2 ≤ k2e
ǫ|t|r(ω), (3.5)

||∇z(ϑtω)||2 + ||∇z∗(ϑtω)||2 ≤ k3e
ǫ|t|r(ω), (3.6)

where

k1 = (

m
∑

j=1

||hj ||
q

q−1

q )q−1 +

m
∑

j=1

(||hj ||
2 + ||∇hj ||

2 + ||h∗
j ||

2),

k2 = (

m
∑

j=1

||∆hj ||
q

q−1

q )q−1 +

m
∑

j=1

(||hj ||
2 + ||h∗

j ||
2) and

k3 =

m
∑

j=1

(||∇hj ||
2 + ||∇h∗

j ||
2).

Proof. Since z(ϑtω) =
∑m

j=1 hjzj(ϑtωj), we get

||z(ϑtω)||q ≤

m
∑

j=1

||hj ||q |zj(ϑtωj)| ≤ (

m
∑

j=1

||hj ||
q

q−1

q )
q−1

q (

m
∑

j=1

|zj(ϑtωj)|
q)

1

q .

It follows from Lemma 3.1 that

||z(ϑtω)||qq ≤ (

m
∑

j=1

||hj ||
q

q−1

q )q−1eǫ|t|r(ω).
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Similarly,

||z(ϑtω)||2 ≤ (

m
∑

j=1

||hj||
2)eǫ|t|r(ω),

||z∗(ϑtω)||2 ≤ (

m
∑

j=1

||h∗
j ||

2)eǫ|t|r(ω),

and

||∇z(ϑtω)||2 ≤ (

m
∑

j=1

||∇hj ||
2)eǫ|t|r(ω).

Adding the above three inequalities implies that (3.4) holds. The proofs of the two
inequalities (3.5) and (3.6) are similar and omitted.

Now we show that there is a continuous random dynamical system generated by
the partly dissipative stochastic reaction-diffusion equations with additive noise:

du + (−µ∆u + λu + αv)dt = (h(u) + f(x))dt +

m
∑

j=1

hjdwj , (3.7)

dv + (δv − βu)dt = g(x)dt +
m

∑

j=1

h∗
jdwj , (3.8)

with the boundary condition

u(x, t)|x∈∂D = 0, v(x, t)|x∈∂D = 0, (3.9)

with the initial condition

u(x, 0) = u0(x), v(x, 0) = v0(x). (3.10)

where D ⊂ R
n with smooth boundary ∂D, µ, λ, α, δ, β are positive constants, f, g,

hj and h∗
j are given functions.The nonlinear function h(u) satisfies the following

condition:

h(s)s ≤ −α1|s|
q, |h(s)| ≤ α2|s|

q−1,
∂h(s)

∂s
≤ α3. (3.11)

where α1, α2 and α3 are positive constants. To show that problem (3.7)-(3.10)
generates a random dynamical system, we let n(t) = u(t) − z(ϑtω), m(t) = v(t) −
z∗(ϑtω), where (u, v) is a solution of problem (3.7)-(3.10). Then n(t), m(t) satisfy

∂n

∂t
− µ∆n + λn + αv = µ∆z(ϑtω) − αz∗(ϑtω) + h(u) + f(x), (3.12)

∂m

∂t
+ δm − βn = βz(ϑtω) + (λ − δ)z∗(ϑtω) + g(x), (3.13)

with the initial data (n0, m0) = (u0 − z(ω), v0− z∗(ω)) and homogeneous boundary
conditions.

For each fixed ω ∈ Ω, (3.12)-(3.13) is a deterministic differential equations. By
a Galerkin method, one can show that if h satisfies (3.11), then (3.12)-(3.13) have
a unique solution (n, m) ∈ C([0,∞); L2 × L2) ∩ L2((0, T ); H1 × L2) with (n0, m0)
for every T ≥ 0. Let ϕ0 = (n0, m0) = (u0 − z(ω), v0 − z∗(ω)) and ϕ(t, ω, ϕ0) =
(n(t, ω, ϕ0(ω)), m(t, ω, ϕ0(ω))). Then the process φ = ϕ + (z(ϑtω), z∗(ϑtω)) is the
solution of problem (3.7)-(3.10). Therefore, φ is a continuous random dynamical
system associated with the partly dissipative stochastic reaction-diffusion equations.
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4. Uniform estimates of solutions

Let ϕ = (n, m) be the solution of (3.12)-(3.13). For ω ∈ Ω , we need the priori
estimates of the solution ϕ = (n, m) in E = L2(D) × L2(D).

Lemma 4.1. Assume that f, g ∈ L2 and (3.11) holds. Let B = {B(ω)}ω∈Ω ∈ D,
the collection of all tempered subsets of E and φ0(ω) = (u0(ω), v0(ω)) ∈ B(ω). Then
for P.a.e. ω ∈ Ω, there is TB(ω) > 0 such that for all t ≥ TB(ω),

||φ(t, ϑ−tω, φ0(ϑ−tω))||E ≤ c(1 + r(ω)),

where c is a positive deterministic constant independent of TB(ω) and r(ω) is a
tempered function in Lemma 3.1.

Proof. Taking the inner product of both sides of (3.12) with βn, we find that

1

2
β

d

dt
||n||2 + µβ||∇n||2 + λβ||n||2 + αβ(v, n)

=βµ(∆z(ϑtω), n) − αβ(z∗(ϑtω), n) + β(h(u), n) + β(f, n).
(4.1)

Similarly, taking the inner product of both sides of (3.13) with αv, we obtain

1

2
α

d

dt
||m||2 + δα||m||2 − αβ(n, m)

=αβ(z(ϑtω), m) + (λ − δ)(z∗(ϑtω), m) + α(g, m).
(4.2)

Summing up (4.1) and (4.2), we have

1

2

d

dt
(β||n||2 + α||m||2) + µβ||∇n||2 + λβ||n||2 + δα||m||2

=β(h(u), n) + βµ(∆z(ϑtω), n) − αβ(z∗(ϑtω), n) + αβ(z(ϑtω), m)

+ (λ − δ)(z∗(ϑtω), m) + β(f, n) + +α(g, m).

(4.3)

We now majorize the right-hand side of (4.3) as follows.

β

∫

D

h(u)ndx = β

∫

D

h(u)udx − β

∫

D

h(u)z(ϑtω)dx

≤ −βα1

∫

|u|qdx + βα2

∫

|u|q−1|z(ϑtω)|dx

≤ −
1

2
βα1||u||

q
q + c1||z(ϑtω)||qq,

(4.4)

|βµ(∆z(ϑtω), n)| ≤
1

2
βµ||∇n||2 +

1

2
βµ||∇z(ϑtω)||2, (4.5)

| − αβ(z∗(ϑtω), n)| ≤
λβ

4
||n||2 +

1

λ
βα2||z∗(ϑtω)||2, (4.6)

|β(f, n)| ≤
1

4
βλ||n||2 +

1

λ
β||f ||2, (4.7)

|αβ(z(ϑtω), m)| ≤
1

8
αδ||m||2 +

2

δ
αβ2||z(ϑtω)||2, (4.8)

|(λ − δ)(z∗(ϑtω), m)| ≤
1

8
αδ||m||2 +

2

δα
(λ − δ)2||z∗(ϑtω)||2, (4.9)
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and

|α(g, n)| ≤
1

8
αδ||v||2 +

2

δ
α||g||2. (4.10)

By (4.3)-(4.10), we obtain

d

dt
(β||n||2 + α||m||2) + µβ||∇n||2 + λβ||n||2 + δα||m||2 + βα1||u||

q
q

≤c2(||z(ϑtω)||qq + ||z(ϑtω)||2 + ||z∗(ϑtω)||2 + ||∇z(ϑtω)||2) + c3

≤p0(ϑtω) + c3,

(4.11)

where p0(ϑtω) = c2(||z(ϑtω)||qq + ||z(ϑtω)||2 + ||∇z(ϑtω)||2) and c3 = 2
λ
β||f ||2 +

4
δ
α||g||2. Let ν = min{δ, λ}, σ = min{α, β} and γ = max{α, β}. Then we find

d

dt
(β||n||2 + α||m||2) + ν(β||n||2 + α||m||2) ≤ p0(ϑtω) + c3. (4.12)

Applying Gronwall’s lemma, we find that, for all t ≥ 0

||ϕ(t, ω, ϕ0(ω))||2E ≤
1

σ
(γe−νt||ϕ0(ω)||2E +

∫ t

0

eν(τ−t)p0(ϑτω)dτ +
c3

ν
), (4.13)

where ||ϕ||2E = ||n||2 + ||m||2, ϕ0 = (n0, m0). By replacing ω by ϑ−tω in (4.13) and
by Corollary 3.2 with ǫ = ν

2 , we obtain, for all t ≥ 0,

||ϕ(t, ϑ−tω, ϕ0(ϑ−tω))||2E ≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E +

∫ t

0

eν(τ−t)p0(ϑτ−tω)dτ +
c3

ν
)

≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E +

∫ 0

−t

eντp0(ϑτω)dτ +
c3

ν
)

≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E + c2k1

∫ 0

−t

e
1

2
ντr(ω)dτ +

c3

ν
)

≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E +

2c2k1

ν
r(ω) +

c3

ν
).

(4.14)

By assumption {B(ω)}ω∈Ω ∈ D is tempered and ||z(ω)||2, ||z∗(ω)||2 is also tem-
pered. Therefore, if φ0(ϑ−tω) = (u0(ϑ−tω), v0(ϑ−tω)) ∈ B(ϑ−tω), then there exists
TB(ω) > 0 such that for t ≥ TB(ω),

γe−νt||ϕ0(ϑ−tω)||2E ≤γe−νt(||n0(ϑ−tω)||2 + ||m0(ϑ−tω)||2)

≤γe−νt(||u0(ϑ−tω)||2 + ||z(ϑ−tω)||2 + ||m0(ϑ−tω)||2

+ ||z∗(ϑ−tω)||2)

≤
2c2k1

ν
r(ω) +

c3

ν

(4.15)

It follows from (4.14) and (4.15) that

||ϕ(t, ϑ−tω, ϕ0(ϑ−tω))||2E ≤
1

νσ
(2c2k1 + c3)(1 + r(ω)). (4.16)
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Note that ϕ0 = (n0, m0) = (u0 − z(ω), v0 − z∗(ω)) and φ = ϕ + (z(ϑtω), z∗(ϑtω)),
we have, for t ≥ TB(ω),

||φ(t, ϑ−tω, φ0(ϑ−tω))||2E =||ϕ(t, ϑ−tω, ϕ0(ϑ−tω)) + (z(ω), z∗(ω))||2E

≤2||ϕ(t, ϑ−tω, ϕ0(ϑ−tω))||2E + 2||z(ω)||2 + 2||z∗(ω)||2.

(4.17)

By (3.4) with t = 0 in Corollary 3.1, we have

||z(ω)||2 + ||z∗(ω)||2 ≤ k1r(ω). (4.18)

The result holds from (4.16)-(4.18).

Denote by

S(ω) = {(u, v) ∈ L2(D) × L2(D) : ||u||2 + ||v||2 ≤
2

νσ
(2c2k1 + k1 + c3)(1 + r(ω))}.

Then {S(ω)}ω∈Ω ∈ D is a random absorbing set.

Lemma 4.2. Assume that f, g ∈ L2 and (3.11) holds. Let B = {B(ω)}ω∈Ω ∈ D,
the collection of all tempered subsets of E and φ0(ω) = (u0(ω), v0(ω)) ∈ B(ω). Then
for every T ≥ 0 and for P-a.e. ω ∈ Ω, such that the solutions (u, , v) of problem
(3.7)-(3.10) and (n, m) of (3.12)-(3.13) satisfy, for t ≥ T ,

∫ t

T

eν(s−t)||ϕ(s, ϑ−tω, ϕ0(ϑ−tω))||2Eds ≤ c(1 + r(ω) + ||ϕ0(ϑ−tω)||2Ee−νt)(t − T ),

(4.19)

∫ t

T

eν(s−t)||∇n(s, ϑ−tω, ϕ0(ϑ−tω))||2ds ≤ c(1 + r(ω) + ||ϕ0(ϑ−tω)||2Ee−νt), (4.20)

∫ t

T

eν(s−t)||u(s, ϑ−tω, φ0(ϑ−tω))||qqds ≤ c(1 + r(ω) + ||ϕ0(ϑ−tω)||2Ee−νt), (4.21)

∫ t

T

eν(s−t)||∇u(s, ϑ−tω, φ0(ϑ−tω))||2ds ≤ c(1 + r(ω) + ||ϕ0(ϑ−tω)||2Ee−νt), (4.22)

where ϕ0(ω) = φ0(ω)−(z(ω), z∗(ω)), c is a positive deterministic constant and r(ω)
is a tempered function in Lemma 3.1.

Proof. First, replacing t by T and then replacing ω by ϑ−tω in (4.13), we obtain

||ϕ(T, ϑ−tω, ϕ0(ϑ−tω))||2E

≤
1

σ
(γe−νT ||ϕ0(ϑ−tω)||2E +

∫ T

0

eν(τ−T )p0(ϑτ−tω)dτ +
c3

ν
).
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Multiplying the above by eν(T−t) and by Corollary 3.2 with ǫ = ν
2 , we get

eν(T−t)||ϕ(T, ϑ−tω, ϕ0(ϑ−tω))||2E

≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E +

∫ T

0

eν(τ−t)p0(ϑτ−tω)dτ +
c3

ν
eν(T−t))

≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E +

∫ T−t

−t

eντp0(ϑτω)dτ +
c3

ν
eν(T−t))

≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E + k1

∫ T−t

−t

e
1

2
ντ r(ω)dτ +

c3

ν
)

≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E +

2

ν
k1r(ω) +

c3

ν
).

(4.23)

It follows from (4.23) that
∫ t

T

eν(s−t)||ϕ(s, ϑ−tω, ϕ0(ϑ−tω))||2eds

≤
1

σ
(γe−νt||ϕ0(ϑ−tω)||2E +

2

ν
k1r(ω) +

c3

ν
)(t − T ).

(4.24)

By (4.24), (4.19) holds. By (4.11) and (4.12), we obtain for t ≥ T ,

µβ

∫ t

T

eν(s−t)||∇n(s, ω, ϕ0(ω))||2ds + βα1

∫ t

T

eν(s−t)||u(s, ω, φ0(ω))||qqds

≤σeν(T−t)||ϕ(T, ω, ϕ0(ω))||2E +

∫ t

T

eν(s−t)p0(ϑsω)ds + c3

∫ t

T

eν(s−t)ds.

(4.25)

Replacing ω by ϑ−tω in (4.25), we have that, for t ≥ T ,

µβ

∫ t

T

eν(s−t)||∇n(s, ϑ−tω, ϕ0(ϑ−tω))||2ds

+βα1

∫ t

T

eν(s−t)||u(s, ϑ−tω, φ0(ϑ−tω))||qqds

≤σeν(T−t)||ϕ(T, ϑ−tω, ϕ0(ϑ−tω))||2E

+

∫ t

T

eν(s−t)p0(ϑs−tω)ds + c3

∫ t

T

eν(s−t)ds

≤σeν(T−t)||ϕ(T, ϑ−tω, ϕ0(ϑ−tω))||2E +

∫ 0

T−t

eνsp0(ϑsω)ds +
c3

ν

≤σeν(T−t)||ϕ(T, ϑ−tω, ϕ0(ϑ−tω))||2E +
2

ν
k1r(ω) +

c3

ν
,

(4.26)

where we have used Corollary 3.1. It follows from (4.23) and (4.26) that, we have

µβ

∫ t

T

eν(s−t)||∇n(s, ϑ−tω, ϕ0(ϑ−tω))||2ds ≤ γe−νt||ϕ0(ϑ−tω)||2E +
3

ν
k1r(ω) +

2c3

ν
,

(4.27)

and

βα1

∫ t

T

eν(s−t)||u(s, ϑ−tω, φ0(ϑ−tω))||qqds ≤ γe−νt||ϕ0(ϑ−tω)||2E +
3

ν
k1r(ω) +

2c3

ν
,

(4.28)
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By (4.27) and (4.28), (4.20) and (4.21) holds. By (4.20), we obtain, for all t ≥ T ,

∫ t

T

eν(s−t)||∇u(s, ϑ−tω, φ0(ϑ−tω))||2ds

=

∫ t

T

eν(s−t)||∇n(s, ϑ−tω, ϕ0(ϑ−tω)) + ∇z(ϑs−tω)||2ds

≤2

∫ t

T

eν(s−t)||∇n(s, ϑ−tω, ϕ0(ϑ−tω))||2ds + 2

∫ t

T

eν(s−t)||∇z(ϑs−tω)||2ds

≤2c(1 + r(ω) + ||ϕ0(ϑ−tω)e−νt||2E) + 2

∫ 0

T−t

eντ ||∇z(ϑτω)||2dτ

≤2c(1 + r(ω) + ||ϕ0(ϑ−tω)e−νt||2E) + 2

∫ 0

T−t

e
1

2
ντk3r(ω)dτ

≤2c(1 + r(ω) + ||ϕ0(ϑ−tω)e−νt||2E) +
4

ν
k3r(ω),

(4.29)

where we have used Corollary 3.1. (4.22) holds from (4.29).

Lemma 4.3. Assume that f, g ∈ L2 and (3.11) holds. Let B = {B(ω)}ω∈Ω ∈ D,
the collection of all tempered subsets of E and φ0(ω) = (u0(ω), v0(ω)) ∈ B(ω). Then
for P-a.e. ω ∈ Ω, there exists TB(ω) > 0 such that the solutions (u, , v) of problem
(3.7)-(3.10) and (n, v) of (3.12)-(3.13) satisfy, for t ≥ TB(ω),

∫ t+1

t

||ϕ(s, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2ds ≤ c(1 + r(ω)), (4.30)

∫ t+1

t

||∇n(s, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2ds ≤ c(1 + r(ω)), (4.31)

∫ t+1

t

||u(s, ϑ−t−1ω, φ0(ϑ−t−1ω))||qqds ≤ c(1 + r(ω)), (4.32)

where ϕ0(ω) = φ0(ω)−(z(ω), z∗(ω)), c is a positive deterministic constant and r(ω)
is a tempered function in Lemma 3.1.

Proof. First, replacing t by t + 1 and then replacing T by t in (4.19), we obtain

∫ t+1

t

eν(s−t−1)||ϕ(s, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2Eds

≤c(1 + r(ω) + ||ϕ0(ϑ−t−1ω)||2Ee−ν(t+1)).

(4.33)

Since

||ϕ0(ϑ−t−1ω)||2E =||n0(ϑ−t−1ω)||2 + ||m0(ϑ−t−1ω)||2

≤2||u0(ϑ−t−1ω)||2 + 2||z(ϑ−t−1ω)||2 + 2||v0(ϑ−t−1ω)||2

+ 2||z∗(ϑ−t−1ω)||2,

and ||u0(ϑ−tω)||2, ||z(ϑ−tω)||2, ||v0(ϑ−tω)||2) and ||z∗(ϑ−tω)||2 are tempered, there
is TB(ω) > 0 such that for t ≥ TB(ω),

||ϕ0(ϑ−t−1ω)||2Ee−ν(t+1) ≤ c(1 + r(ω)).
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Hence, from (4.33) we have, for t ≥ TB(ω)

e−ν

∫ t+1

t

||ϕ(s, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2Eds ≤ 2c(1 + r(ω)). (4.34)

By (4.20) and (4.21), we can find that, for t ≥ TB(ω),

∫ t+1

t

||∇n(s, ϑ−tω, φ0(ϑ−tω))||2ds ≤ 2ceν(1 + r(ω)).

∫ t+1

t

||u(s, ϑ−tω, φ0(ϑ−tω))||qqds ≤ 2ceν(1 + r(ω)),

(4.35)

The result follows from (4.34) and (4.35).

Lemma 4.4. Assume that f, g ∈ L2 and (3.11) holds. Let B = {B(ω)}ω∈Ω ∈ D
which is the collection of all tempered subsets of E and φ0(ω) = (u0(ω), v0(ω)) ∈
B(ω). Then for P-a.e. ω ∈ Ω, there exists TB(ω) > 0 such that the solutions (u, , v)
of problem (3.7)-(3.10) satisfy, for t ≥ TB(ω),

∫ t+1

t

||∇u(s, ϑ−t−1ω, φ0(ϑ−t−1ω))||2ds ≤ c(1 + r(ω)), (4.36)

where c is a positive deterministic constant and r(ω) is a tempered function in
Lemma 3.1.

Proof. By Lemma 4.3, for t ≥ TB(ω), s ∈ (t, t + 1), we find that

||∇u(s, ϑ−t−1ω, φ0(ϑ−t−1ω))||2

=||∇n(s, ϑ−t−1ω, ϕ0(ϑ−t−1ω)) + ∇z(ϑs−t−1ω)||2

≤2(||∇n(s, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2 + ||∇z(ϑs−t−1ω)||2).

(4.37)

By Corollary 3.2 with ǫ = ν
2 we get

||∇z(ϑs−t−1ω)||2 ≤ k3e
ν
2
(t+1−s)r(ω) ≤ k3e

ν
2 r(ω). (4.38)

Integrating (4.37) with respect to s over (t, t + 1), by Lemma 4.3 and inequality
(4.38), we have

∫ t+1

t

||∇u(s, ϑ−t−1ω, φ0(ϑ−t−1ω))||2ds

≤2(

∫ t+1

t

||∇n(s, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2ds +

∫ t+1

t

||∇z(ϑs−t−1ω)||2ds)

≤2c(1 + r(ω)) + 2k3e
ν
2 r(ω).

(4.39)

The results holds from (4.39).

Lemma 4.5. Assume that f, g ∈ L2 and (3.11) holds. Let B = {B(ω)}ω∈Ω ∈ D,
the collection of all tempered subsets of E and φ0(ω) = (u0(ω), v0(ω)) ∈ B(ω). Then
for P-a.e. ω ∈ Ω, there exists TB(ω) > 0 such that for t ≥ TB(ω),

||∇u(t, ϑ−tω, φ0(ϑ−tω))||2 ≤ c(1 + r(ω)).

where c is a positive deterministic constant and r(ω) is a tempered function in
Lemma 3.1.
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Proof. Taking the inner product of (3.12) with −∆n in L2, we get that

1

2

d

dt
||∇n||2 + µ||∆n||2 + λ||∇n||2 + α(m,−∆n)

=(h(u),−∆n) + µ(∆z,−∆n) + (f,−∆n) − α(z∗,−∆n).
(4.40)

Note that

−

∫

D

h(u)∆ndx = −

∫

D

h(u)∆udx +

∫

D

h(u)∆z(ϑtω)dx

≤

∫

D

h
′

(u)|∇u|2dx +

∫

D

|h(u)∆z(ϑtω)|dx

≤ α3||∇u||2 + α2

∫

D

|u|q−1|∆z(ϑtω)|dx

≤ c(||∇u||2 + ||u||qq) + c||∆z(ϑtω)||qq,

(4.41)

and

| − α(m,−∆n) + µ(∆z,−∆n) + (f,−∆n) − α(z∗,−∆n)|

≤
µ

2
||∆n||2 + 2

α2

µ
||m||2 + 2µ||∆Z(ϑtω)||2 + 2

1

µ
||f ||2 + 2

α2

µ
||z∗(ϑtω)||2.

(4.42)

It follows from (4.40)-(4.42) that

d

dt
||∇n||2 ≤ c(||m||2 + ||∇u||2 + ||u||qq) + p1(ϑtω), (4.43)

where p1(ϑtω) = c(||∆z(ϑtω)||2 + ||∆z(ϑtω)||qq + ||z∗(ϑtω)||2 + 1). Let TB(ω) is the
positive constant in Lemma 4.1, take t ≥ TB(ω) and s ∈ (t, t + 1). Then integrate
(4.43) over (s, t + 1) to get

||∇n(t + 1, ω, ϕ0(ω))||2 − ||∇n(s, ω, ϕ0(ω))||2

≤

∫ t+1

s

p1(ϑτω)dτ + c

∫ t+1

s

||m(τ, ω, ϕ0(ω))||2dτ

+ c

∫ t+1

s

(||∇u(τ, ω, φ0(ω))||2 + ||u(τ, ω, φ0(ω))||qq)dτ

≤

∫ t+1

t

p1(ϑτω)dτ + c

∫ t+1

t

||m(τ, ω, ϕ0(ω))||2dτ

+ c

∫ t+1

t

(||∇u(τ, ω, φ0(ω))||2 + ||u(τ, ω, φ0(ω))||qq)dτ.

(4.44)

Now first integrating the above with respect to s over (t, t + 1) and then replacing
ω by ϑ−t−1ω we find that

||∇n(t + 1, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2 −

∫ t+1

t

||∇n(s, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2ds

≤

∫ t+1

t

p1(ϑτ−t−1ω)dτ + c

∫ t+1

t

||m(τ, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2dτ

+ c

∫ t+1

t

(||∇u(τ, ϑ−t−1ω, φ0(ϑ−t−1ω))||2 + ||u(τ, ϑ−t−1ω, φ0(ϑ−t−1ω))||qq)dτ.

(4.45)
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Since ||m(τ, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2 ≤ ||ϕ(τ, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2, by Lemmas
4.3 and 4.4 and Corollary 3.2, it follows from (4.45) that for all t ≥ TB(ω),

||∇n(t + 1, ϑ−t−1ω, ϕ0(ϑ−t−1ω))||2 ≤ c(1 + r(ω)) +

∫ t+1

t

p1(ϑτ−t−1ω)dτ

≤ c(1 + r(ω)) +

∫ 0

−1

p1(ϑτω)dτ

≤ c(1 + r(ω)) +

∫ 0

−1

(ck2r(ω)e−
1

2
ντ + c4)dτ

≤ c(1 + r(ω)) +
2

ν
ck1r(ω)e

1

2
ν + c4.

(4.46)

The result follows from (4.46).
In the following, we prove v is precompact in L2(D). For the solutions of (3.7)-

(3.10), we decompose v = m1+m2+z∗(ϑtω) = m1+v∗, where v∗(t, ω) = m2(t, ω)+
z∗(ϑtω), mi (i = 1, 2) solves respectively,

∂

∂t
m1 + δm1 = 0, (4.47)

m1,0(0) = m0 = v0 − z∗(ω) (4.48)

and
∂

∂t
m2 + δm2 = βu + g(x) + (λ − δ)z∗(ϑtω), (4.49)

m2,0(0) = 0. (4.50)

For mi (i = 1, 2) we have the following Lemma.

Lemma 4.6. Assume that f ∈ L2, g ∈ H1
0 and (3.11) holds. Let B = {B(ω)}ω∈Ω ∈

D, the collection of all tempered subsets of E and φ0(ω) = (u0(ω), v0(ω)) ∈ B(ω).
Then for every ε > 0 and for P-a.e. ω ∈ Ω, there exists TB(ω) > 0 such that
the solutions (u, , v) of problem (3.7)-(3.10) and m1, m2 of (4.47)-(4.50) satisfy, for
t ≥ TB(ω),

||m1(t, ϑ−tω, m0(ϑ−tω))||2 ≤ cε, (4.51)

||∇m2(t, ϑ−tω)||2 ≤ c(1 + r(ω)), (4.52)

||∇v∗(t, ϑ−tω, z∗(ϑ−tω))||2 ≤ c(1 + r(ω)), (4.53)

where c is a positive deterministic constant and r(ω) is a tempered function in
Lemma 3.1.

Proof. Taking the inner product of (4.47) with m1 in L2, we obtain

d

dt
||m1|| + 2δ||m1|| = 0, (4.54)

Applying Gronwall’s Lemma, we find that, for all t ≥ 0,

||m1(t, ω, m0(ω))||2 = e−2δt||m0(ω)||2. (4.55)
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Replacing ω by ϑ−tω, we have

||m1(t, ϑ−tω, m0(ϑ−tω))||2 = ||m0(ϑ−tω)||2e−2δt. (4.56)

Multiplying (4.49) by −∆m2 and integrating over (0, t), we obtain

1

2

d

dt
||∇m2||

2 + δ||∇m2||
2

=β(u,−∆m2) + (g,−∆m2) + (λ − δ)(z∗(ϑtω),−∆m2)

≤
δ

2
||∇m2||

2 +
2β2

δ
||∇u||2 +

2

δ
||∇g||2 + +

2

δ
(λ − δ)2||z∗(ϑtω)||2.

(4.57)

Since ν = min{δ, µ}, it follows from (4.57) that

d

dt
||∇m2||

2 + ν||∇m2||
2 ≤

4

ν
(β2||∇u||2 + ||∇g||2 + (λ − δ)2||z∗(ϑtω)||2). (4.58)

By Gronwall’s inequality, we obtain

||∇m2(t, ω)||2 ≤
4

ν
(β2

∫ t

0

eν(s−t)||∇u(s, ω, φ0(ω))||2ds +

∫ t

0

eν(s−t)||∇g||2ds)

+
4

ν
(λ − δ)2

∫ t

0

eν(s−t)||z∗(ϑsω)||2)ds.

(4.59)

Replacing ω by ϑ−tω, we have

||∇m2(t, ϑ−tω)||2 ≤
4

ν
β2

∫ t

0

eν(s−t)||∇u(s, ϑ−tω, φ0(ϑ−tω))||2ds +
4

ν2
||∇g||2

+
4

ν
(λ − δ)2

∫ t

0

eν(s−t)||z∗(ϑs−tω)||2)ds

≤
4

ν
β2c(1 + r(ω) + ||ϕ0(ϑ−tω)||2Ee−νt) +

4

ν2
||∇g||2

+
4

ν
(λ − δ)2

∫ 0

−t

eνs||z∗(ϑsω)||2)ds

≤
4

ν
β2c(1 + r(ω) + ||ϕ0(ϑ−tω)||2Ee−νt) +

4

ν2
||∇g||2

+
4

ν
(λ − δ)2k1

∫ 0

−t

e
1

2
νsr(ω)||2)ds

≤
4

ν
β2c(1 + r(ω) + ||ϕ0(ϑ−tω)||2Ee−νt) +

4

ν2
||∇g||2

+
8

ν2
(λ − δ)2k1r(ω),

(4.60)

where we have used (4.22) with T = 0 and Corollary 3.2. Then there exists TB(ω) >

0, such that for t ≥ TB(ω), we obtain

||∇m2(t, ϑ−tω)||2 ≤ c4 + c5r(ω). (4.61)
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Since v∗(t, ω) = m2(t, ω) + z∗(ϑtω), then we have, for t ≥ TB(ω)

||∇v∗(t, ϑ−tω, v∗0(ϑ−tω))||2 = ||∇v∗(t, ϑ−tω, z∗(ϑ−tω))||2

= ||∇m2(t, ϑ−tω) + ∇z∗(ω)||2

≤ 2||∇m2(t, ϑ−tω)||2 + 2||∇z∗(ω)||2

≤ c4 + c5r(ω)) + k3r(ω).

(4.62)

The results hold from (4.56), (4.61) and (4.62).
Assume that f ∈ L2, g ∈ H1

0 . Then S(t) forms a random dynamical system.
By Lemma 4.1, we have shown that S(t) has a random absorbing set in L2(D) ×
L2(D). By Lemma 4.5, Lemma 4.6 and Lemma 2.6, we get S(t) is almost surely
D − α−contracting in L2(D) × L2(D). We are now in a position to state our main
result.

Theorem 4.1. Assume that f ∈ L2, g ∈ H1
0 and (3.11) holds. Then the problem

of (3.7)-(3.10) has a global random attractor in L2(D)×L2(D), which is a compact
invariant set and attracts every tempred set in L2(D) × L2(D).
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