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CYCLICITY OF SEVERAL QUADRATIC

REVERSIBLE SYSTEMS WITH CENTER OF
GENUS ONE
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Abstract By using the Chebyshev criterion to study the number of zeros of
Abelian integrals, developed by M. Grau, F. Mañosas and J. Villadelprat in
[2], we prove that the cyclicity of period annulus of the quadratic reversible
systems with center of genus one, classified as (r8), (r13) and (r16) by S.
Gautier, L. Gavrilov and I. D. Iliev in [1], under quadratic perturbations is
two. These results partially give a positive answer to the conjecture 1 in [1].
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1. Introduction and Main Result

It is well known that all quadratic systems with at least one center can be classified
as four types: Hamiltonian (QH

3 ), reversible (QR
3 ), generalized Lotka-Volterra (QLV

3 )
and of codimension four (Q4). One of interesting questions is that how many limit
cycles could be produced from the annulus (or annuli) surrounding the center (or
centers) under small quadratic perturbations ? Such a maximal number is called
the cyclicity of the annulus (or annuli). If we restrict our attention to the limit
cycles bifurcated from the open annulus (not from the graphics), then the problem
is solved completely for QH

3 , and partially for other 3 classes. S. Gautier, L. Gavrilov
and I. D. Iliev presented a program in [1] to solve this problem for QR

3 and QLV
3

with centers of genus one, i. e. centers whose (generic complexified) period orbits
are elliptic curves. Note that an algebraic phase curve is called generic, if it does
not contain a singular point of the vector field in its closure, and the generic level
sets of the first integral of Q4 are always elliptic. At the end of section 5 of [1] there
is also a program to solve this problem for Q4.

A quadratic reversible system with a center at the origin has the form

ż = −iz + az2 + 2|z|2 + bz̄2, a, b ∈ R, z = x + iy. (1.1)

The authors of [1] classify quadratic reversible centers of genus one into 18 cases
(r1)-(r18), in terms of the values a and b in (1.1), and gave the following conjecture.
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Conjecture ([1]) The period annulus around the center at the origin in (r1)-(r18)
has the following cyclicity under small quadratic perturbations: three for cases (r1)
with a∗ < a < 4, (r3) with 7

3 < a < 4, (r4) with 4 < a < 5, (r5) with a = 4, (r6)
with a > 4 and (r10), and two otherwise.

Here a∗ = 2.0655 · · · is determined from a transcendental equation in [3].
This conjecture was proved completely for cases (r1)-(r3), (r7), (r9)-(r12), (r14)-

(r15), (r17)-(r18), and partially for cases (r4)-(r6), see the recent survey paper [4]
and references therein for detailed introduction. The main result in this paper is
the following theorem.

Theorem 1.1. The cyclicity of the period annulus around the center at the origin
in cases (r8), (r13) and (r16) under small quadratic perturbations is two.

This theorem gives a positive answer to the above conjecture for the open cases
(r8), (r13) and (r16).

2. Preliminaries

To study the cyclicity of period annulus, we need to estimate the number of zeros of
corresponding (generalized) Abelian integrals, and normally the procedure involves
some quite complicated computations, such as Picard-Fuchs equations and Riccati
equations. In [2] the authors generalized an idea of [5], and use Shebyshev criterion
of certain functions to study the number of zeros of Abelian integrals by some purely
algebraic computations. Note that this method is valid for some restricted forms of
the first integrals.

We first introduce the definition of Chebyshev property, and show how to use it
for studying Abelian integrals.

Definition 2.1. (see [6] and [2] for instance) Let f0, f1, . . . , fn−1 be analytic func-
tions on an open interval L of R.

(a) (f0, f1, . . . , fn−1) is a Chebyshe system (for short, a T-system) on L if any
nontrivial linear combination

α0f0(x) + α1f1(x) + · · · + αn−1fn−1(x)

has at most n-1 isolated zeros for x ∈ L.
(b) (f0, f1, . . . , fn−1) is a complete Chebyshev system (for short, a CT-system)

on L if (f0, f1, . . . , fk−1) is a T-system for all k = 1, 2, . . . , n.
(c) (f0, f1, . . . , fn−1) is an extend complete Chebyshev system (for short, an

ECT-system) on L, if for all k = 1, 2...n, any nontrivial linear combination

α0f0(x) + α1f1(x) + · · · + αk−1fk−1(x)

has at most k − 1 isolated zeros for x ∈ L, counted with multiplicities.

Definition 2.2. (see [6] and [2] for instance) Let f0, f1, . . . , fk−1 be analytic func-
tions on an open interval L of R. The continuous Wronskian of (f0, f1, . . . , fk−1) at
x ∈ L is

W [f ]k(x) := det(f i
j(x))06i,j6k−1 =

∣
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Lemma 2.1. (see [6] for instance) (f0, f1, . . . , fn−1) is an ECT-system on L if and
only if for each k = 1, 2, . . . , n,

W [f ]k(x) 6= 0 for all x ∈ L.

Now we consider a Hamiltonian function with the form

H(x, y) = A(x) + B(x)y2m, (2.1)

where H is an analytic function in some open subset of the plane that has a local
minimum at the origin. Without loss of generality, we fix H(0, 0) = 0, and then
we get a period annulus by the set of ovals γh ⊂ {(x, y) |H(x, y) = h}, which is
parameterized by the energy levels h ∈ (0, h0) for h0 ∈ (0,∞]. We denote the
projection of γh on the x-axis by (xℓ, xr), it is easy to verify that xA′(x) > 0 for
any x ∈ (xℓ, xr)\{0}. According to this, we define σ as an analytic involution
(σ ◦ σ = Id and σ 6= Id), which satisfies

A(x) = A(σ(x)) for all x ∈ (xℓ, xr). (2.2)

Lemma 2.2. (Theorem B of [2]) Let us consider the Ablian integral,

Ii(h) =

∫

γh

fi(x)y2s−1dx, i = 0, 1, . . . , n − 1

where, for each h ∈ (0, h0), γh is the oval surrounding the origin inside the level
curve {A(x)+B(x)y2m = h}. Let σ be the involution associated to A, and we define

li(x) =

(

fi

A′B
2s−1

2m

)

(x) −
(

fi

A′B
2s−1

2m

)

(σ(x)).

Then (I0, I1, . . . , In−1) is an ECT-system on (0, h0) if (l0, l1, . . . , ln−1) is a CT-
system on (0, xr) and s > m(n − 2).

Lemma 2.3. (Lemma 4.1 of [2]) Let γh be an oval inside the level curve {A(x) +
B(x)y2 = h}, and we consider a function F such that F/A

′

is analytic at x = 0.
Then, for any k ∈ N,

∫

γh

F (x)yk−2dx =

∫

γh

G(x)ykdx,

where G(x) = 2
k
(BF

A
′ )

′

(x) − (B
′

F
A′

)(x).

We will use Lemma 2.5 to change the form of Abelian integrals such that the
condition s > m(n − 2) in Lemma 2.4 is satisfied.

Besides, the concepts of the resultant between two polynomials and the Sturm’s
Theorem are used in our proof. More details about them are given in the appendix
of [2]. For polynomials with integer coefficients the computation of resultant and
making use of the Sturm’s Theorem can be done by Maple precisely.

3. Proof of Theorem 1.1

According to the formulas derived in page 520 of [1], the number of limit cycles
of such perturbations is bounded by the number of zeros of the related generat-
ing integral (Abelian integrals). For cases (r8), (r13) and (r16) the corresponding



442 L. Chen, X. Ma, G. Zhang and C. Li

generating integrals are listed as follows:

(r8) I(t) =
∫

H=0
x−2(µ1 + µ2x

−3 + µ3x
3)ydx,

H = 1
2y2 + 1

12 − 1
3x3 − tx4, t ∈ (− 1

4 , 0).

(r13) I(t) =
∫

H=0
(µ1 + µ2x

−4 + µ3x
4)ydx,

H = 1
2y2 + 1

12 + 1
4x4 − tx3, t ∈ (1

3 ,∞).

(r16) I(t) =
∫

H=0
x−2(µ1 + µ2x

4 + µ3x
−4)ydx,

H = 1
2y2 + 1

4 + 1
12x4 − tx, t ∈ (1

3 ,∞).

In above list µ1, µ2 and µ3 are arbitrary constants. It is easy to know that in
all above three cases the center of the corresponding vector field is located at the
point (x, y) = (1, 0).

3.1. Proof for case (r8)

To make use of the Chebyshev criterion (Lemma 2.4), we replace x by x + 1, which
moves the center to the origin. Thus, equivalently to (r8), we consider

I(h) =

∫

H̃=h

[µ3(x + 1) + µ1(x + 1)−2 + µ2(x + 1)−5] ydx,

H̃(x, y) = A(x) + B(x)y2 = h, h ∈ (0,
1

4
),

where

A =
1

12(x + 1)4
− 1

3(x + 1)
+

1

4
=

x2(3x2 + 8x + 6)

12(x + 1)4
, B =

1

2(x + 1)4
.

We rewrite the Abelian integral as I(h) = α0I0 + α1I1 + α2I2, where α0, α1 and
α2 are arbitrary constants, and

Ij(h) =

∫

γh

(x + 1)3j−5ydx, j = 0, 1, 2.

The parameter h ∈ (0, 1
4 ) and the energy level of the polycycle in its outer boundary

is h0 = 1
4 . It is clear that H̃(x, y) has a local minimum at (0, 0). Then there exists

a punctured neighborhood ρ of the origin foliated by γh ⊂ H−1(h). Denote the
projection of ρ on the x-axis by (xℓ, xr) = (xℓ, +∞), where xℓ = −0.37 · · · . Then
we can find a involution σ(x) such that A(x) = A(σ(x)) for all x ∈ (xℓ, +∞).

We are going to apply Lemma 2.4 to prove that (I0, I1, I2) is an ECT-system on
(0, 1

4 ), which implies that I(h) has at most most 2 zeros for h ∈ (0, 1
4 ). However, in

this case m = 1, n = 3 and s = 1, so the hypothesis s > m(n − 2) is not satisfied.
To solve this problem, we note that H̃(x, y) = A(x) + B(x)y2 = h along γh, so we
can rewrite Ij(h) as

Ij(h) = 1
h

∫

γh

(A(x) + B(x)y2)(x + 1)3j−5ydx

= 1
h

∫

γh

A(x)(x + 1)3j−5ydx + 1
h

∫

γh

B(x)(x + 1)3j−5y3dx.
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Then, we apply Lemma 2.5 to the first integral above with k = 3 and F (x) =
A(x)(x + 1)3j−5, and finally we obtain

Ij(h) =
1

h
Ĩj(h) =

1

h

∫

γh

fj(x)y3dx,

where

f0(x) =
(3x2 + 7x + 6)(x3 − 9x − 12)

12(x + 1)9(x2 + 3x + 3)2
,

f1(x) =
6x5 + 44x4 + 138x3 + 225x2 + 192x + 72

12(x + 1)6(x2 + 3x + 3)2
,

f2(x) =
15x5 + 95x4 + 255x3 + 351x2 + 246x + 72

12(x + 1)3(x2 + 3x + 3)2
.

It is clear that (I0, I1, I2) is an ECT-system on (0, 1
4 ) if and only if (Ĩ0, Ĩ1, Ĩ2)

is as well. Now we apply Lemma 2.4 to (Ĩ0, Ĩ1, Ĩ2) with m = 1, n = 3 and s = 2.
Setting

Lj(x) =

(

fj

A′B
3

2

)

(x),

then by direct computations we find

L0(x) = −
√

2(x + 1)2(3x2 + 7x + 6)(x3 − 9x − 12)

2x(x2 + 3x + 3)3
,

L1(x) =

√
2(x + 1)5(6x5 + 44x4 + 138x3 + 225x2 + 192x + 72)

2x(x2 + 3x + 3)3
,

L2(x) =

√
2(x + 1)8(15x5 + 95x4 + 255x3 + 351x2 + 246x + 72)

x(x2 + 3x + 3)3
.

Now, according to Lemma 2.4, we define

lj(x) = Lj(x) − Lj(σ(x)), j = 0, 1, 2,

we need only to check that (l0, l1, l2) is an ECT-system on (0, +∞). Here σ is the
involution associated with A.

In order to compute Wronskians, we let

lj(x) = Lj(x) − Lj(z),

with z = σ(x) as an implicit function.
On the other hand, we have A(x) − A(z) = (x − z)q(x, z), where

q(x, z) = x3(4z3 + 12z2 + 12z + 3) + x2(12z3 + 36z2 + 35z + 8)
x(4z + 1)(3z2 + 8z + 6) + z(3z2 + 8z + 6).

Hence, from A(x) − A(z) = 0 with z < 0 < x we find that x and z = σ(x) satisfy
q(x, z) = 0, and

σ′(x) =
dz

dx
= −q′x(x, z)

q′z(x, z)
.
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By using above expressions, we get that W [l]k(x) = ωk(x, σ(x)), with ωk(x, z)
being a rational function for k = 1, 2, 3. Let us prove that for case (r8)

W [l]k(x) 6= 0 for x ∈ (0, +∞) and k = 1, 2, 3. (3.1)

A sufficient condition to obtain (3.1) is to show that ωk(x, z) = 0 and q(x, z) = 0
have no common solutions for xℓ < z < 0 < x < +∞ and k = 1, 2, 3.

The resultant with respect to z between q(x, z) and the numerator of ω1(x, z) is
r1(x) = 8

√
2x(x2 + 3x + 3)3(x + 1)9p1(x) with

p1(x) = 30233088 + 655050240x+ 6643406160x2 + 42041838240x3

+186803282970x4 + 622012446972x5 + 1618576036119x6

+3391133671314x7 + 5853400628247x8 + 8482308483096x9

+10488391859088x10 + 11223353230344x11 + 10515406708386x12

+8697571272720x13 + 6374037383604x14 + 4132005936624x15

+2353669697952x16 + 1165527404352x17 + 494911700199x18

+177277496754x19 + 52530785745x20 + 12566323920x21

+2349011270x22 + 327342936x23 + 31550796x24

+1832760x25 + 46008x26.

Applying Sturm’s Theorem, we can assert that p1(x) 6= 0 for all x ∈ (0, +∞). Thus,
ω1(x, z) = 0 and q(x, z) = 0 have no common roots.

In the same way, we can calculate the resultant with respect to z between q(x, z)
and the numerator of ω2(x, z) and get

r2(x) = 27648x3(x2 + 3x + 3)5(x + 1)33p2(x),

where p2(x) is a polynomial of degree 56. By applying Sturm’s Theorem, we can
assert that p2(x) 6= 0 for all x ∈ (0, +∞). Thus, ω2(x, z) = 0 and q(x, z) = 0 have
no common roots.

Similar computation shows that the resultant with respect to z between q(x, z)
and the numerator of ω3(x, z) is

r3(x) = 8916100448256000
√

2x6(x2 + 3x + 3)8(x + 1)78p3(x),

where p3(x) is a polynomial of degree 92. By applying Sturm’s Theorem again,
we can check that p3(x) does not vanish for x ∈ (0, +∞). Thus, ω3(x, z) = 0 and
q(x, z) = 0 have no common roots.

Therefore, we have proved that (3.1) holds. As we explained above, by using
Lemmas 2.3 and 2.4 we give a proof of Theorem 1.1 in case (r8).

3.2. Proof for case (r13)

The proof of Theorem 1.1 for case (r13) is basically the same as for case (r8) above,
so we only list the expressions of fj(x) and Lj(x) for j = 0, 1, 2. Note that the
denominator of Lj(x) contains some fractional power, so we need to use a technique
to solve this problem, and this technique is borrowed from [2].

Changing x by (x + 1), we find out that the case (r13) is equivalent to

I(h) = α0I0(h) + α1I1(h) + α2I2(h),
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where Ij(h) =
∫

γh

(x + 1)4j−4ydx, j = 0, 1, 2; and

H(x, y) = A(x) + B(x)y2 = h, h ∈ (0,∞),

where

A(x) =
1

12(x + 1)3
+

1

4
(x + 1) − 1

3
=

x2(3x2 + 8x + 6)

12(x + 1)3
, B(x) =

1

2(x + 1)3
.

By the similar procedure we find

f0(x) =
2(5x5 + 35x4 + 105x3 + 164x2 + 134x + 48)

9(x + 1)7(x + 2)2(x2 + 2x + 2)2
,

f1(x) =
2(6x6 + 45x5 + 1474 + 273x3 + 300x2 + 182x + 48)

9(x + 2)2(x2 + 2x + 2)2(x + 1)3
,

f2(x) =
2(x + 1)(12x6 + 85x5 + 259x4 + 441x3 + 436x2 + 230x + 48)

9(x + 2)2(x2 + 2x + 2)2
.

From A(x) = A(z) we find x and z = σ(x) satisfy

q(x, z) = 3x3(z3 + 3z2 + 3z + 1) + x2(9z3 + 27z2 + 27z + 8)
+x(9z3 + 27z2 + 26z + 6) + 3z3 + 8z2 + 6z = 0,

where −1 < z < 0 < x < +∞.
Since the denominator of Lj(x) contains some fractional power, we let

u =
√

x + 1, v =
√

z + 1,

where 0 < v < 1 < u < +∞, and u and v satisfy

q̃(u, v) = 3(uv)6 − u4 − (uv)2 − v4 = 0, (3.2)

and
du

dv
= −u(−2u2 − v2 + 9u4v6)

v(−u2 − 2v2 + 9u6v4)
.

Thus, instead of Lj(x), we use Lj(u), where

L0(u) =
16

√
2u3(5u10 + 10u8 + 15u6 + 9u4 + 6u2 + 3)

9(u2 − 1)(u2 + 1)3(u4 + 1)3
,

L1(u) =
16

√
2u11(6u12 + 9u10 + 12u8 + 15u6 + 3u4 + 2u2 + 1)

9(u2 − 1)(u2 + 1)3(u4 + 1)3
,

L2(u) =
16

√
2u19(12u12 + 13u10 + 14u8 + 15u6 − 3u4 − 2u2 − 1)

9(u2 − 1)(u2 + 1)3(u4 + 1)3
.

We similarly define lj(u) = Lj(u) − Lj(v), where v = σ̃(u) is determined im-
plicitly by (3.2), and check that (l0, l1, l2) is an ECT-system on u ∈ (1, +∞) and
v ∈ (0, 1).

Accordingly, we have that W [l]k(u) = ωk(u, σ̃(u)), with ωk(u, v) being a rational
function of u and v.
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The resultant with respect to u between q̃(u, v) and the numerator of ωk(u, v)
is rk(v), where

r1(v) = c1v
34(v − 1)3(v + 1)3(v2 + 1)9(v4 + 1)9p1(v),

r2(v) = c2v
106(v − 1)8(v + 1)8(v2 + 1)16(v4 + 1)16p2(v),

r3(v) = c3v
244(v − 1)15(v + 1)15(v2 + 1)25(v4 + 1)25p3(v),

where c1, c2 and c3 are nonzero constants, p1(v), p2(v) and p3(v) are polynomials
in v of degree 140, 264 and 452 respectively. Applying Sturm’s Theorem by Maple,
we can assert that pk(v) 6= 0 for v ∈ (0, 1) and k = 1, 2, 3. This finishes the proof
of Theorem 1.1 for case (r13).

3.3. Proof for case (r16)

The procedure is the same as case (r13), so we only list the different expressions.
Replace x by (x + 1), the case (r16) is equivalent to

I(h) = α0I0(h) + α1I1(h) + α2I2(h),

where Ij(h) =
∫

γh

(x + 1)4j−6ydx, j = 0, 1, 2; and

H(x, y) = A(x) + B(x)y2 = h, h ∈ (0,∞),

where

A(x) =
(x + 1)3

12
+

1

4(x + 1)
− 1

3
=

x2(x2 + 4x + 6)

12(x + 1)
, B(x) =

1

2(x + 1)
.

By similar computations we find

f0(x) =
2(15x3 + 58x2 + 82x + 48)

9(x + 1)7(x + 2)2(x2 + 2x + 2)2
,

f1(x) =
2(2x6 + 16x5 + 56x4 + 119x3 + 162x2 + 130x + 48)

9(x + 1)3(x + 2)2(x2 + 2x + 2)2
,

f2(x) =
2(4x6 + 32x5 + 112x4 + 223x3 + 266x2 + 178x + 48)(x + 1)

9(x + 2)2(x2 + 2x + 2)2
.

From A(x) = A(z) we find x and z = σ(x) satisfy

q(x, z) = x3(z + 1) + x2(z2 + 5z + 4) + x(z3 + 5z2 + 10z + 6) + z3 + 4z2 + 6z = 0,

where −1 < z < 0 < x < +∞.
Let

u =
√

x + 1, v =
√

z + 1,

where 0 < v < 1 < u < +∞, and u and v satisfy

q̃(u, v) = (uv)2(u4 + u2v2 + v4) − 3 = 0, (3.3)

and
du

dv
= − v(3u4 + 2u2v2 + v4)

u(3v4 + 2u2v2 + u4)
.
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Instead of Lj(x), we use Lj(u), where

L0(u) =
16

√
2(15u6 + 13u4 + 11u2 + 9)

9u7(u2 − 1)(u2 + 1)3(u4 + 1)3
,

L1(u) =
16

√
2u(2u12 + 4u10 + 6u8 + 15u6 + 11u4 + 7u2 + 3)

9(u2 − 1)(u2 + 1)3(u4 + 1)3
,

L2(u) =
16

√
2u9(4u12 + 8u10 + 12u8 + 15u6 + 9u4 + 3u2 − 3)

9(u2 − 1)(u2 + 1)3(u4 + 1)3
.

We similarly define lj(u) = Lj(u) − Lj(v), where v = σ̃(u) is determined im-
plicitly by (3.3), and to check that (l0, l1, l2) is an ECT-system on u ∈ (1, +∞) and
v ∈ (0, 1).

We also have that W [l]k(u) = ωk(u, σ̃(u)), with ωk(u, v) being a rational function
of u and v.

The resultant with respect to u between q̃(u, v) and the numerator of ωk(u, v)
is rk(v), where

r1(v) = c1(v − 1)3(v + 1)3(v2 + 1)9(v4 + 1)9p1(v),
r2(v) = c2 v6(v − 1)8(v + 1)8(v2 + 1)16(v4 + 1)16p2(v),
r3(v) = c3 v6(v − 1)15(v + 1)15(v2 + 1)25(v4 + 1)25p3(v),

where c1, c2 and c3 are some nonzero constants, p1(v), p2(v) and p3(v) are polyno-
mials in v of degree 176, 284 and 456 respectively. Applying Sturm’s Theorem by
Maple, we can assert that pk(v) 6= 0 for v ∈ (0, 1) and k = 1, 2, 3. This finishes the
proof of Theorem 1.1 for case (r16).

Thus, we have proved Theorem 1.1 completely.
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[6] P. Mardešić, Chbyshev system and the versal unfolding of the cusp of order n,
Travaux en cours, vol. 57, Hermann, Paris, 1998.


