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Abstract In this paper, we study a seventh degree polynomial differential

system with full linear terms and cubic terms. The conditions of infinity

to be a center and to be a fine focus of the highest order are given and

it is proved that this system has eight limit cycles in the neighborhood of

infinity. Moreover, the conditions of infinity to be an isochronous center for a

rational system associated the seventh degree polynomial differential system

are obtained.
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1. Introduction

In the last decades, being concerned with Hilbert’s 16th problem and the mono-
tonicity of period solutions, the bifurcation of limit cycles, center and the isochronous
center problems for differential systems are researched actively. In the case of critical
points on the finite plane, a lot of work has been done(see, for instance [3, 4, 5, 9, 16]
and the references therein). For the case of infinity, several researches are concen-
trated on the following 2n+ 1 degree system

dx
dt =

2n
∑

k=0

Xk(x, y) + (δx− y)(x2 + y2)n

dy
dt =

2n
∑

k=0

Yk(x, y) + (x + δy)(x2 + y2)n

(1.1)

where Xk(x, y), Yk(x, y) are homogeneous polynomials of degree k of x and y. For
this system, the equator Γ∞ on the Poincaré closed sphere is a trajectory of the
system, having no real critical point. Γ∞ is called the closed orbit at infinity or
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the equator in this point of view. As far as bifurcation of limit cycles and center
conditions at infinity are concerned, several special systems have been studied for
instance: cubic systems in [2, 10, 12]; fifth degree systems in [8, 17].

In the first part of this paper, we investigate problems of centers and bifurcation
of limit cycles at infinity for the following seventh degree system with full linear
terms and cubic terms

dx
dt = A10x+A01y +A30x

3 +A21x
2y + A12xy

2 +A03y
3 + (δx− y)(x2 + y2)3,

dy
dt = B10x+B01y +B30x

3 +B21x
2y +B12xy

2 +B03y
3 + (x+ δy)(x2 + y2)3,

(1.2)
where δ, A10, A01, A30, A21, A12, A03, B30, B10, B01, B21, B12, B03 are real con-
stants. We prove that there are eight limit cycles bifurcated from infinity.

In [13], we gave the conditions of infinity to be an isochronous center for a special
case of n = 2 of the following real rational systems

dx
dt = 1

(x2+y2)n
[

2n
∑

k=0

Xk(x, y) − y(x2 + y2)n],

dy
dt = 1

(x2+y2)n
[

2n
∑

k=0

Yk(x, y) + x(x2 + y2)n]

(1.3)

and proved firstly that the real rational system has an isochronous at infinity. We
also discussed the isochronous center problem for another case of n = 2 of (1.3) in
the complex field in [6] and that n = 1 of (1.3) in the real field in [7]. In the second
part of this paper, we consider the following rational system, which is a special case
(n = 3) of system (1.3) if δ = 0 and, has the same center conditions and bifurcation
of limit cycles at infinity to system (1.2):

dx
dt = 1

(x2+y2)3 [A10x+A01y +A30x
3 +A21x

2y +A12xy
2

+A03y
3 + (δx− y)(x2 + y2)3],

dy
dt = 1

(x2+y2)3 [B10x+B01y +B30x
3 +B21x

2y +B12xy
2

+B03y
3 + (x + δy)(x2 + y2)3].

(1.4)

By computation of period constants, the necessary conditions of infinity of system
(1.4) to be an isochronous center are obtained. By using several methods and skills,
we prove the conditions are also sufficient.

2. Preliminaries

Consider a complex polynomial differential system of the form

dz
dT = z +

∞
∑

k=2

Zk(z, w) = Z(z, w),

dw
dT = −w −

∞
∑

k=2

Wk(z, w) = −W (z, w),
(2.1)

where z, w, T are complex variables and

Zk(z, w) =
∑

α+β=k

aαβz
αwβ , Wk(z, w) =

∑

α+β=k

bαβw
αzβ.

By means of transformation

z = x+ yi, w = x− yi, T = it, i =
√
−1 (2.2)
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system (2.1) can be transformed into the following system

dx
dt = −y +

∞
∑

k=2

Xk(x, y)

dy
dt = x+

∞
∑

k=2

Yk(x, y).
(2.3)

We say that system (2.1) is the associated system of system (2.3) and vise versa.
It is obvious that system (2.3) is real if and only if the coefficients of system (2.1)
satisfy conjugate conditions, i.e.,

aαβ = bαβ , α ≥ 0, β ≥ 0, α+ β ≥ 2. (2.4)

By means of transformation

z = reiθ , w = re−iθ , T = it (2.5)

system (2.1) is then transformed into

dr
dt = ir

2

∞
∑

m=1

∑

α+β=m+2

(aα,β−1 − bβ,α−1)e
i(α−β)θrm,

dθ
dt = 1 + 1

2

∞
∑

m=1

∑

α+β=m+2

(aα,β−1 + bβ,α−1)ei(α−β)θrm.

(2.6)

For the complex constant h, |h| ≪ 1, we write the solution of (2.6) satisfying the
initial-value condition r|θ=0 = h as

r = r̃(θ, h) = h+

∞
∑

k=2

vk(θ)hk (2.7)

and denote

τ(ϕ, h) =

∫ ϕ

0

dt

dθ
dθ

=

∫ ϕ

0

[1 +
1

2

∞
∑

m=1

∑

α+β=m+2

(aα,β−1 + bβ,α−1)e
i(α−β)θr̃(θ, h)m]−1dθ.

(2.8)

Definition 2.1 (see [14]). For any complex constant h, |h| ≪ 1, the origin of system
(2.1) or (2.3) is called a complex center if r̃(2π, h) ≡ h. The origin is called a complex
isochronous center if r̃(2π, h) ≡ h, τ(2π, h) ≡ 2π.

Obviously, the complex center (complex isochronous center) and the center
(isochronous center) is equivalent when the system is real.

Lemma 2.1 (see [1]). For system (2.1), we can derive uniquely the following formal
series:

ξ = z +
∞
∑

k+j=2

ckjz
kwj , η = w +

∞
∑

k+j=2

dk,jw
kzj, (2.9)

where ck+1,k = dk+1,k = 0, k = 1, 2, · · · , such that

dξ

dT
= ξ +

∞
∑

j=1

pj ξ
j+1ηj ,

dη

dT
= −η −

∞
∑

j=1

qj η
j+1ξj . (2.10)
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Definition 2.2 (see [11, 14]). Letµ0 = 0, µk = pk − qk, τk = pk + qk k = 1, 2, · · · .
µk and τk are called k-th singular point value and k-th period constant of the origin
of system(2.1) and (2.3) respectively.

The methods to calculate µk is give in [11, 15] and that of τk is given in [14].

Lemma 2.2 (see [11, 14]). For system (2.1) or (2.3), the origin is a complex center
if and only if µk = 0, k = 1, 2, 3, · · · , and it is a complex isochronous center if and
only if µk = τk = 0, k = 1, 2, 3, · · · .

Consider the real perturbed system of (2.3) of the form

dx
dτ = −δx− y +

∞
∑

k=2

Xk(x, y),

dy
dτ = x− δy +

∞
∑

k=2

Yk(x, y).
(2.11)

Under the polar coordinates x = r cos θ, y = r sin θ, system (2.11) is reduced to

dr

dθ
= r

−δ +
∞
∑

k=2

rk−1ϕk+1(θ)

1 +
∞
∑

k=2

rk−1ψk+1(θ)
, (2.12)

where

ϕk+1(θ) = cos θXk(cos θ, sin θ) + sin θYk(cos θ, sin θ),

ψk+1(θ) = cos θYk(cos θ, sin θ) − sin θXk(cos θ, sin θ),

k = 1, 2, . . . . For sufficiently small h, let

d(h) = r(2π, h) − h, (2.13)

be the Poincaré succession function, where r = r(θ, h) =
∞
∑

m=1
vm(θ, δ)hm is the

solution of (2.12) associated with the initial-value condition r(0, h) = h. It is
evident that

v1(θ, δ) = e−δθ, vm(0, δ) = 0, m = 2, 3, · · · (2.14)

As we know, if v1(2π, δ) 6= 1 in the expression (2.13) then the origin is called a
strong focus of system (2.11); if v1(2π, δ) = 1, and v2(2π, δ) = v3(2π, δ) = · · · =
v2k(2π, δ) = 0, v2k+1(2π, δ) 6= 0, then the origin is called a fine focus of order k and
the quantity of v2k+1(2π, δ) is called the k-th focal value at the origin (k = 1, 2, · · · );
if v1(2π, δ) = 1 and v2k+1(2π, δ) = 0 for any positive integer k, then the origin is
called a center.

Lemma 2.3. ([8]) For system (2.11)|δ=0 and (2.1), the first non-vanishing focal
value and the first non-vanishing singular point value of the origin are related by

v2m+1(2π, 0) = iπµm. (2.15)
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3. Center conditions and bifurcation of limit cycles

By transformations

x =
ξ

(ξ2 + η2)4
, y =

η

(ξ2 + η2)4
, (3.1)

t = (x2 + y2)−3τ. (3.2)

system (1.2) becomes a system of the form

dξ
dτ = − δ

7ξ − η + (ξ2 + η2)
12

[(−ξ2

7 + η2)(A30ξ
3 +A21ξ

2η +A12ξη
2 +A03η

3)
− 8

7ξη(B30ξ
3 +B21ξ

2η +B12ξη
2 +B03η

3)]

+[(−ξ2

7 + η2)(A10ξ +A01η) − 8
7ξη(B10ξ +B01η)](ξ

2 + η2)20

dη
dτ = ξ − δ

7η + (ξ2 + η2)
12

[(ξ2 − η2

7 )(B30ξ
3 +B21ξ

2η +B12ξη
2 +B03η

3)
− 8

7ξη(A30ξ
3 +A21ξ

2η +A12ξη
2 +A03η

3)]

+[(−η2

7 + ξ2)(B10ξ +B01η) − 8
7ξη(A10ξ +A01η)](ξ

2 + η2)20.
(3.3)

Since infinity of system (1.2) correspond to the origin of system (3.3), only need
to discuss the properties at the origin of system (3.3) can we obtain the relative
properties at infinity of system (1.2). Moreover, it is easy to see that the origin of
system (3.3) is a strong focus if δ 6= 0.

In order to make use of method of singular point values ([11]) to consider the
conditions of the origin to be a center, we perform the transformation z = ξ +
i η, w = ξ − i η to reduce system (3.3)|δ=0 into its associated complex system

dz
dT = z + 1

7w
20z21(3w(a01w + a10z) + 4z(b10w + b01z))

+ 1
7w

12z13(3w(a03w
3 + a12w

2z + a21wz
2 + a30z

3)
+4z(b30w

3 + b21w
2z + b12wz

2 + b03z
3))

dw
dT = −[w + 1

7w
21z20(4w(a01w + a10z) + 3z(b10w + b01z))

+ 1
7w

13z12(4w(a03w
3 + a12w

2z + a21wz
2 + a30z

3)
+3z(b30w

3 + b21w
2z + b12wz

2 + b03z
3))]

(3.4)

where the relations of coefficients of the two systems are as follows:

a10 = 1
2 (−A01 − iA10 − iB01 +B10), b10 = a10,

a01 = 1
2 (A01 − iA10 + iB01 +B10), b01 = a01,

a30 = 1
8 (A03 + iA12 −A21 − iA30 + iB03 −B12 − iB21 +B30), b30 = a30,

a03 = 1
8 (−A03 + iA12 +A21 − iA30 − iB03 −B12 + iB21 +B30), b03 = a03,

a21 = 1
8 (−3A03 − iA12 −A21 − 3iA30 − 3iB03 +B12 − iB21 + 3B30), b21 = a21,

a12 = 1
8 (3A03 − iA12 +A21 − 3iA30 + 3iB03 +B12 + iB21 + 3B30), b12 = a12.

(3.5)
According to [15], we obtain the following recursive formula to compute the

singular point values of the origin of system (3.4).

Lemma 3.1. For system (3.4), the singular point values µm ( m = 1, 2 · · · ) are
determined by following recursive formula:

c[0, 0] = 1
when(u = v > 0) or u < 0, or v < 0,
c[u, v] = 0
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else
c[u, v] = 1

−u+v [(b01(1 + 4u− 3v)c[−22 + u,−20 + v] + (a10(−1 + 3u− 4v) + b10(1 +
4u− 3v))c[−21 + u,−21+ v] + a01(−1 + 3u− 4v)c[−20 + u,−22+ v] + b03(1 + 4u−
3v)c[−16 + u,−12 + v] + (a30(−1 + 3u− 4v) + b12(1 + 4u− 3v))c[−15 + u,−13 +
v] + (a21(−1 + 3u− 4v) + b21(1 + 4u− 3v))c[−14 + u,−14 + v] + (a12(−1 + 3u−
4v)+ b30(1 + 4u− 3v))c[−13 + u,−15+ v] + a03(−1 + 3u− 4v)c[−12 + u,−16+ v])].

µm = 1
7 [(b01c[−22 +m,−20 +m]− a10c[−21 +m,−21 +m] + b10c[−21 +m,−21 +

m] − a01c[−20 +m,−22 +m] + b03c[−16 +m,−12 +m] − a30c[−15 +m,−13 +
m]+ b12c[−15+m,−13+m]− a21c[−14+m,−14+m]+ b21c[−14+m,−14+m]−
a12c[−13 +m,−15 +m] + b30c[−13 +m,−15 +m] − a03c[−12 +m,−16 +m])].

Using the recursive formula of Lemma 3.1 and computing with the computer
algebra system-Mathematica, we calculate the first 98 singular point values at the
origin of system (3.4) and simplify them, then we get the theorem below.

Theorem 3.1. The first 98 singular point values of the origin of system (3.4) are
given as follows:

µ7 = 0
µ14 = 1

7 (−a21 + b21)
µ21 = 1

7 (−a10 + b10)
µ28 = 1

7 (a12a30 − b12b30)
case1 : a30b30 6= 0,
µ35 = − 1

14 (a01a30 − b01b30)(−3 + p)
µ42 = 1

14 (a03a
2
30 − b03b

2
30)(−3 + p)

µ49 = µ56 = · · · = µ98 = 0
case2 : a30 = b30 = 0
µ35 = 1

14 (a12b01 − a01b12)
µ42 = 0
µ49 = 1

56 (a01a12b03 − a03b01b12)
µ56 = − 1

56 (a2
12b03 − a03b

2
12)(a21 + b21)

µ63 = − 3
112 (a2

12b03 − a03b
2
12)(a10 + b10)

µ70 = − 1
336 (a03b03 − 4a12b12)(−a2

12b03 + a03b
2
12)

µ77 = µ84 = µ91 = 0
µ98 = 3

80a
2
12b

2
12(a

2
12b03 − a03b

2
12)

others µk (k < 98) are zero, where p is a constant satisfying a12 = p b30, b12 = p a30

when a30b30 6= 0 . In the above expression of µk , we have already let µ1 = µ2 =
· · · = µk−1 = 0, k = 2, 3, · · · , 98.

Since the expression of µk of Theorem 3.1 is brief, it is easy to get the following
result.

Theorem 3.2. The first 98 singular point values at the origin of system (3.4) are
zero if and only if one of the following four conditions holds:

(I) a21 = b21, a10 = b10, a12 = 3b30, b12 = 3a30, a30b30 6= 0; (3.6)

(II) a21 = b21, a10 = b10, a12a30 = b12b30, a03a
2
30 = b03b

2
30,

a30 b30 6= 0, a12 6= 3b30, b12 6= 3a30;
(3.7)

(III) a21 = b21, a10 = b10, a30 = b30 = 0, a12b01 = b12a01,
a03a

2
30 = b03b

2
30 a12b12 6= 0;

(3.8)
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(IV) a21 = b21, a10 = b10, a30 = b30 = a12 = b12 = 0; (3.9)

By using the method of [11] we have

Lemma 3.2. All the elementary Lie-invariants of system (3.4) are given as follows:

a21, b21, a10, b10
a30b30, a12b12, a03b03,
a30a12, b30b12, a01a30, b01b30, a01b12, b01a12,
a2
30a03, b

2
30b03, a30b12a03, b30a12b03, b

2
12a03, a

2
12b03.

In Theorem 3.2, if condition (I) holds, system (3.4) has a first integral with the
form
F (z, w) = 4w28z28/(2a01z

20w22 +4b10z
21w21 +2b01z

22w20 +a03z
12w16 +4b30z

13w15

+ 2b21z
14w14 + 4a30z

15w13 + b03z
16w12 + 1);

If condition (II) or (III) holds, from Lemma 3.2 and [11, Theorem 2.6], then
we have all the singular point values are zero, therefore the origin of system (3.4)
is a center;

If condition (IV ) holds, then system (3.4) has a first integral with the form

F (z, w) = 4w28z28/(1 + a03w
16z12 + 2b21w

14z14 + b03w
12z16 + 2a01w

22z20

+4b10w
21z21 + 2b01w

20z22).

From Theorem 3.2 and the above discussion, then we obtain the following.

Theorem 3.3. For system (3.4), all the singular point values at the origin are zero
if and only if the first 98 singular point values at the origin are zero, i.e., one of the
four conditions of Theorem 3.2 holds. Correspondingly, for system (3.4) or system
(3.3)|δ=0, the origin to be a complex center if and only if one of the four conditions
given by Theorem 3.2 holds.

It is easy to obtain the following corollary.

Corollary 3.1. The origin of system (3.3) is a center, correspondingly, the infinity
of system (1.2)is a center, i.e., the trajectories in the sufficiently small neighborhood
of Γ∞ are all closed orbits if and only if δ = 0 and one of the four conditions given
by Theorem 3.2 holds.

From Theorem 3.1, Theorem 3.3 and expression (2.15), we have the following.

Theorem 3.4. The highest order of weak focus at the origin of system (3.3)|δ=0

is 98. The origin of system (3.3)|δ=0 is a weak focus of order 98, i.e., v1(2π, 0) =
1, v3(2π, 0) = v5(2π, 0) · · · = v89(2π, 0) = 0, v197(2π, 0) 6= 0 if and only if

a21 = b21 = a10 = b10 = a01 = b01 = a30 = b30 = 0,
a03b03 = 4a12b12, a12b12 6= 0.

(3.10)

Proof. v197(2π, 0) = iπµ98 6= 0 implies a12b12 6= 0 and a2
12b03 − a03b

2
12 6= 0. If

a2
12b03−a03b

2
12 6= 0, then from Theorem 3.1, the origin of system (3.3)|δ=0 is a weak

focus of order at most 49. By a12b12 6= 0, and consider µ35 = 0 of the case 2 of
Theorem 3.1, we can let a01 = sa12, b01 = sb12. Substituting a01 = sa12, b01 = sb12
into µ49 of the case 2 of Theorem 3.1, it is not difficult to obtain the conclusion of
the theorem.

From Theorem 3.4, then through structuring and computing carefully, the the-
orem about bifurcation of limit cycles at infinity is obtained as follow.
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Theorem 3.5. If δ and the coefficients of system (3.4) satisfy (accordingly, the
coefficients of system (3.3)are determined):

δ = −ǫ9,
a12 = 1 +

√
ǫ1i, b12 = 1 −√

ǫ1i,
a30 = b30 = 0,
a03 = (−2 + ǫ2)(−i+

√
ǫ1), b03 = (−2 + ǫ2)(i+

√
ǫ1),

a21 = ǫ4 − ǫ8i, b21 = ǫ4 + ǫ8i,
a10 = −ǫ3 + ǫ7i, b10 = −ǫ3 − ǫ7i,
a01 = −ǫ5 − (ǫ6 + ǫ5

√
ǫ1)i, b01 = −ǫ5 + (ǫ6 + ǫ5

√
ǫ1)i,

where ǫi i = 1, 2, · · · , 9 are small parameters satisfying

0 < ǫ9 ≪ ǫ8 ≪ · · · ≪ ǫ2 ≪ ǫ1 ≪ 1, (3.11)

then system (3.3) has 8 limit cycles in the neighborhood of the origin. Correspond-
ingly, in the neighborhood of infinity, system (1.2) has 8 limit cycles.

Proof. According to (2.14), the first focal value at the origin of perturbed system
(3.3) is as follow

v1(2π, δ) − 1 = e−2πδ/7 − 1 =
2π

7
ǫ9 + o(ǫ9).

For the sake of convenience, other focal values of perturbed system are denoted by
v2k+1(2π). Based on (2.15) and Theorem 3.1, we obtain the below focal values at
the origin of system (3.3) after computing carefully:

v1(2π) − 1 = 2π
7 ǫ9 + o(ǫ9),

v29(2π) = − 2π
7 ǫ8,

v43(2π) = 2π
7 ǫ7,

v71(2π) = −π
7 ǫ6,

v99(2π) = π
14ǫ5 + o(ǫ5),

v113(2π) = −π
7 ǫ4 + o(ǫ4),

v127(2π) = 3π
14 ǫ3 + o(ǫ4),

v141(2π) = − π
21ǫ2 + o(ǫ2),

v197(2π) = 3π
20 + o(1),

(3.12)

From the above expressions we know that signs of any two successive nonzero
focal values are alternate positive and negative. The absolute value of the former
focal value is far less than the absolute value of the later. According to classical
Multiple Hopf Bifurcation Theory, the conclusion of the theorem follows.

4. Isochronous center at infinity of the system

We now discuss the conditions of infinity to be an isochronous center of system
(1.4).

As reported before, system (1.4) has the same center conditions as that of system
(1.2). Only under the condition δ = 0, infinity of system (1.2) may be a center, so
we let conveniently δ = 0 in the following discussion. Namely, the following system
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is investigated:

dx
dt = 1

(x2+y2)3 [A10x+A01y +A30x
3 +A21x

2y +A12xy
2 +A03y

3 − y(x2 + y2)3],
dy
dt = 1

(x2+y2)3 [B10x+B01y +B30x
3 +B21x

2y +B12xy
2 +B03y

3 + x(x2 + y2)3].

(4.1)
It is obvious that by transformation (3.1), system (4.1) is changed into system

(3.3)|δ=0. Since transformation (3.1) is a homeomorphism without any time rescal-
ing, we see that the conditions for center (isochronous center) at infinity of system
(4.1) are the same as that at the origin of system (3.3)|δ=0. So we only need to
investigate conditions of isochronous centers at the origin of system (3.3)|δ=0 or
conditions of complex isochronous center at the origin of system (3.4).

From [14, Theorem 3.1] we have that

Lemma 4.1. For system (3.4), the period constant τj can be determined by the
following recursive formulas:
c(1, 0) = d(1, 0) = 1; c(0, 1) = d(0, 1) = 0;
if k < 0 or j < 0 or (j > 0 and k = j + 1) then c(k, j) = 0, d(k, j) = 0;
else
c(k, j) = − 1

7(j−k+1) (28b01c(k − 22, j − 20) + 3b01jc(k − 22, j − 20) − 4b01kc(k −
22, j− 20)− 21a10c(k− 21, j− 21)+21b10c(k− 21, j− 21)+4a10jc(k− 21, j− 21)+
3b10jc(k− 21, j− 21)− 3a10kc(k− 21, j− 21)− 4b10kc(k− 21, j− 21)− 28a01c(k−
20, j− 22)+4a01jc(k− 20, j− 22)− 3a01kc(k− 20, j− 22)+28b03c(k− 16, j− 12)+
3b03jc(k − 16, j − 12) − 4b03kc(k − 16, j − 12) − 7a30c(k − 15, j − 13) + 21b12c(k −
15, j− 13)+4a30jc(k− 15, j− 13)+3b12jc(k− 15, j− 13)− 3a30kc(k− 15, j− 13)−
4b12kc(k− 15, j − 13)− 14a21c(k− 14, j − 14) + 14b21c(k− 14, j − 14) + 4a21jc(k−
14, j− 14)+3b21jc(k− 14, j− 14)− 3a21kc(k− 14, j− 14)− 4b21kc(k− 14, j− 14)−
21a12c(k − 13, j − 15) + 7b30c(k − 13, j − 15) + 4a12jc(k − 13, j − 15) + 3b30jc(k −
13, j−15)−3a12kc(k−13, j−15)−4b30kc(k−13, j−15)−28a03c(k−12, j−16)+
4a03jc(k − 12, j − 16) − 3a03kc(k − 12, j − 16));

d(k, j) = − 1
7(j−k+1) (28a01d(k−22, j−20)+3a01jd(k−22, j−20)−4a01kd(k−

22, j−20)+21a10d(k−21, j−21)−21b10d(k−21, j−21)+3a10jd(k−21, j−21)+
4b10jd(k− 21, j− 21)− 4a10kd(k− 21, j− 21)− 3b10kd(k− 21, j− 21)− 28b01d(k−
20, j−22)+4b01jd(k−20, j−22)−3b01kd(k−20, j−22)+28a03d(k−16, j−12)+
3a03jd(k− 16, j − 12)− 4a03kd(k − 16, j − 12) + 21a12d(k − 15, j − 13)− 7b30d(k −
15, j−13)+3a12jd(k−15, j−13)+4b30jd(k−15, j−13)−4a12kd(k−15, j−13)−
3b30kd(k− 15, j− 13)+ 14a21d(k− 14, j− 14)− 14b21d(k− 14, j− 14)+3a21jd(k−
14, j−14)+4b21jd(k−14, j−14)−4a21kd(k−14, j−14)−3b21kd(k−14, j−14)+
7a30d(k − 13, j − 15)− 21b12d(k − 13, j − 15) + 3a30jd(k − 13, j − 15) + 4b12jd(k −
13, j−15)−4a30kd(k−13, j−15)−3b12kd(k−13, j−15)−28b03d(k−12, j−16)+
4b03jd(k − 12, j − 16) − 3b03kd(k − 12, j − 16));

p(j) = 1
7 (−24b01c(j−21, j−20)+ b01jc(j−21, j−20)+24a10c(j−20, j−21)−

17b10c(j − 20, j − 21) − a10jc(j − 20, j − 21) + b10jc(j − 20, j − 21) + 31a01c(j −
19, j − 22) − a01jc(j − 19, j − 22) − 24b03c(j − 15, j − 12) + b03jc(j − 15, j − 12) +
10a30c(j − 14, j − 13) − 17b12c(j − 14, j − 13) − a30jc(j − 14, j − 13) + b12jc(j −
14, j − 13) + 17a21c(j − 13, j− 14)− 10b21c(j − 13, j − 14)− a21jc(j − 13, j− 14) +
b21jc(j−13, j−14)+24a12c(j−12, j−15)−3b30c(j−12, j−15)−a12jc(j−12, j−
15) + b30jc(j − 12, j − 15) + 31a03c(j − 11, j − 16) − a03jc(j − 11, j − 16));

q(j) = 1
7 (−24a01d(j − 21, j − 20) + a01jd(j − 21, j − 20) − 17a10d(j − 20, j −

21)+24b10d(j−20, j−21)+a10jd(j−20, j−21)−b10jd(j−20, j−21)+31b01d(j−
19, j − 22)− b01jd(j − 19, j − 22)− 24a03d(j − 15, j − 12) + a03jd(j − 15, j − 12)−
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17a12d(j − 14, j − 13) + 10b30d(j − 14, j − 13) + a12jd(j − 14, j − 13) − b30jd(j −
14, j− 13)− 10a21d(j − 13, j− 14)+ 17b21d(j − 13, j− 14)+ a21jd(j − 13, j− 14)−
b21jd(j−13, j−14)−3a30d(j−12, j−15)+24b12d(j−12, j−15)+a30jd(j−12, j−
15) − b12jd(j − 12, j − 15) + 31b03d(j − 11, j − 16) − b03jd(j − 11, j − 16));

τj = p(j) + q(j).

Based on the four center conditions of the origin of system (3.4), we investigate
the complex isochronous center conditions of system (3.4) by the following four
cases.

1. The center condition (3.6)
Since a30 b30 6= 0, then from expression (3.6), we put expression a12 = 3 b30, b12 =

3 a30, a21 = b21 = r21, a10 = b10 = r10 into recursive formulas given by Lemma 4.1
and computing by the two cases a01 = b01 = 0 and a01b01 6= 0 respectively, therefore
we get the theorem below.

Theorem 4.1. For system (3.4), the first 98 period constants of the origin are as
follows:

Case1 a01 = b01 = 0,
τ7 = 0, τ14 = 2r21, τ21 = 2r10, τ28 = τ35 = 0,
τ42 = −6(a03a

2
30 + b03b

2
30), τ49 = τ56 = · · · = τ98 = 0,

Case2 a01b01 6= 0,
τ7 = 0, τ14 = 2r21, τ21 = 2r10, τ28 = 0, τ35 = 3(a01a30 + b01b30),
τ42 = 15

4 (a03a
2
30 − b03b

2
30)s, τ56 = τ63 = 0,

τ70 = − 1
48a30b30s

2(192a30b30 − s4), τ77 = 0,
τ84 = − 800

49 a
2
30b

2
30s

2(6a30b30g + s2), τ91 = 0,

τ98 = − 205a30b30s10

82944 ,
τk = 0, k 6= 7i, i < 14, i ∈ N.

(4.2)

where s and g are constants satisfying a01 = sb30, b01 = −sa30 and a03 = gb230, b03 =
ga2

30 respectively. In the above expression of τk , we have already assumed that
τ1 = · · · = τk−1 = 0, k = 2, 3, · · ·98.

For case 2 of the theorem, a01b01 6= 0 implies s 6= 0. It reduces that τ98 =

− 205a30b30s10

82944 6= 0. From expression (4.2) it is obtained the following result.

Theorem 4.2. Under condition ( 3.6), the first 98 period constants of the origin
of system (3.4) are zero if and only if

a21 = b21 = a10 = b10 = a01 = b01 = 0, a03a
2
30 + b03b

2
30 = 0, a30b30 6= 0. (4.3)

If expression (4.3) holds, system (3.4) becomes

dz
dT = z + 4

7b03w
12z17 + 15

7 a30w
13z16 + 13

7 b30w
15z14 + 3

7a03w
16z13

dw
dT = −(w + 4

7a03z
12w17 + 15

7 b30z
13w16 + 13

7 a30z
15w14 + 3

7b03z
16w13)

(4.4)

Considering a03a
2
30 + b03b

2
30 = 0, a30b30 6= 0, we assume that a03 = qb230, b03 =

−qa2
30, where q is a pure imaginary. Hence, system (4.4) becomes

dz
dT = z − 4

7a30
2qw12z17 + 15

7 a30w
13z16 + 13

7 b30w
15z14 + 3

7 b30
2qw16z13,

dw
dT = −(w + 4

7b30
2qz12w17 + 15

7 b30z
13w16 + 13

7 a30z
15w14 − 3

7a30
2qz16w13).

(4.5)
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For the above system we assume that a30 = b30 = 1, otherwise we can choose a
proper complex constant α + iβ and perform transformations z = (α + iβ)z1, w =
(α − iβ)w1 to bring system (4.5) to the case of a30 = b30 = 1. Hence, the system
turns into

dz
dT = z − 4

7qw
12z17 + 15w13z16

7 + 13w15z14

7 + 3
7qw

16z13,
dw
dT = −(w + 4

7qz
12w17 + 15z13w16

7 + 13z15w14

7 − 3
7qz

16w13)
(4.6)

Under the transformation z = reiθ, w = re−iθ, t = −i T , system (4.6) takes the
form

dr
dt = − 1

14 ie
−4iθ

(

e8iθq + q + 2e2iθ − 2e6iθ
)

r29
dθ
dt = 1 + g(θ)r28,

(4.7)

where g(θ) = 1
2

(

e−2iθ + e2iθ
) (

e−2iθq − e2iθq + 4
)

= 2 cos(2θ)(s sin(2θ) + 2), s =
q
i = −iq. The first integral of system (4.7) is of the form

r56

2g(θ)r28 + 1
= C (4.8)

where C is a constant.
By (4.8), then for system (4.7), the solution satisfying initial condition r|θ=0 = h

is

r28 =
g(θ)h56+

√
g(θ)2h112+8h84+h56

8h28+1

= 2h56 cos(2θ)(s sin(2θ)+2)√
4(s sin(2θ)+2)2(1−sin2(2θ))h112+8h84+h56

(4.9)

Substituting (4.9) into (4.7), we have that

dt

dθ
= 1 − h56g(θ)√

g(θ)2h112+8h84+h56

= 1 − 2h56 cos(2θ)(s sin(2θ)+2)√
4(s sin(2θ)+2)2(1−sin2(2θ))h112+8h84+h56

(4.10)

Since
∫ 2h56 cos(2θ)(s sin(2θ)+2)√

4(s sin(2θ)+2)2(1−sin2(2θ))h112+8h84+h56
dθ

=
∫ h56(s sin(2θ)+2)√

4(s sin(2θ)+2)2(1−sin2(2θ))h112+8h84+h56
d sin(2θ),

so
∫ 2π

0
dt
dθdt = 2π. So, the origin of system (4.4) is a complex isochronous center.

Theorem 4.3. Under the center condition ( 3.6), the origin of system (3.4) to
be a complex isochronous center (correspondingly, infinity of system (4.1) is an
isochronous center) if and only if condition (4.3) holds.

2. The center condition (3.7)
Since a30b30 6= 0, from expression (3.7) we can let a12 = hb30, b12 = ha30, a03 =

kb230, b03 = ka2
30, a01 = sb30, b01 = sa30, a21 = b21 = r21, a10 = b10 = r10. Putting

the above expression into the recursive formulas given by Lemma 4.1, after compu-
tation carefully we find that the first 42 period constants are as follows:

τ14 = 2r21,
τ21 = 2r10,
τ28 = a30b30(−3 + h)(1 + h),
τ35 = −6a30b30s,
τ42 = 8a2

30b
2
30k,

others τm = 0, m < 42,m ∈ N.

(4.11)
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Considering that a12 6= 3b30, b12 6= 3a30, obviously, under condition (3.7), the first
42 period constants at the origin of system (3.4) are zero if and only if

a21 = b21 = a10 = b10 = a01 = b01 = a03 = b03 = 0, a12 = −b30, b12 = −a30.
(4.12)

Theorem 4.4. Under condition (3.7), the origin of system (3.4) is a comlex
isochronous center (correspondingly, infinity of system (4.1) is an isochronous cen-
ter) if and only if (4.12) holds.

Proof. Necessity has already been explained, now we are proving the sufficiency.
If (4.12) holds, system (3.4) becomes

dz
dT = z − 1

7a30w
13z16 + 1

7b30w
15z14

dw
dT = −(w − 1

7b30z
13w16 + 1

7a30z
15w14),

(4.13)

Let z = reiθ , w = re−iθ, then we have

θ =
1

2i
(logz − logw). (4.14)

Differentiating both sides of (4.14) with respect to T along the trajectories of system
(4.13), we obtain

dθ

dT
=

1

2i
(
1

z

dz

dT
+

1

w

dw

dT
) = −i. (4.15)

namely,
dθ

dt
= i

dθ

dT
= 1. (4.16)

Therefore, the origin of system (4.13) is a complex isochronous center.
3. The center condition (3.8)
Since a12b12 6= 0, from expression (3.8) we can let a30 = b30 = 0, a01 =

sb12, b01 = sa12, a03 = gb212, b03 = ga2
12, a21 = b21 = r21, a10 = b10 = r10. Putting

the above expression into the recursive formulas given by Lemma 4.1, after comput-
ing we have τ28 = a12b12 6= 0. Therefore, under the center condition (3.8), the origin
of system (3.4) (corresponding to infinity of system (4.1)) is not an isochronous cen-
ter.

4. The center condition (3.9)
Substituting condition a30 = b30 = a12 = b12 = 0, a21 = b21 = r21, a10 = b10 =

r10 into the recursive formulas given by Lemma 4.1 and computing, then we obtain
the first 42 period constants of system (3.4) as following:

τ14 = 2r21,
τ21 = 2r10,
τ42 = 2a01b01,

(4.17)

and others are zero.
From τ14 = τ21 = τ42 = 0 we get that a21 = b21 = a10 = b10 = a01 = b01 = 0.

Theorem 4.5. Under condition (3.9), the origin of system (3.4) is a complex
isochronous center (correspondingly, infinity of system (4.1) is an isochronous cen-
ter) if and only if

a21 = b21 = a30 = b30 = a03 = a12 = a10 = b10 = a01 = b01 = 0 (4.18)
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Proof. We only need to prove the sufficiency. Under the condition of the theorem,
system (3.4) becomes

dz
dT = z + 4

7b03w
12z17 + 3

7a03w
16z13

dw
dT = −(w + 4

7a03z
12w17 + 3

7b03z
16w13).

(4.19)

Similar to the discussion of system (4.5), we can put that a03 = b03 = 1, then the
system turns into

dz
dT = z + 4

7w
12z17 + 3

7w
16z13

dw
dT = −(w + 4

7z
12w17 + 3

7z
16w13).

(4.20)

By transformation z = reiθ, w = re−iθ, t = −i T , system (4.20) becomes:

dr
dt = 1

14e
−4iθ

(

e8iθ − 1
)

r29
dθ
dt = 1 + cos(4θ)r28.

(4.21)

The first integral of system (4.21) is

4r56

2 cos(4θ)r28 + 1
= C, (4.22)

and C is a constant.
By (4.22), the solution of system (4.21) satisfying initial condition r|θ=0 = h is

r28 =
cos(4θ)h56 +

√

cos2(4θ)h112 + 2h84 + h56

2h28 + 1
. (4.23)

Substituting (4.23) into (4.21) and we get

dt

dθ
= 1 − h28 cos(4θ)

√

cos2(4θ)h56 + 2h28 + 1
. (4.24)

From
∫ 2π

0
h28 cos(4θ)√

cos2(4θ)h56+2h28+1
dθ = 0 we have that

∫ 2π

0
dt
dθdt = 2π. Thus the origin

of system (4.19) is a complex isochronous center and infinity of system (4.1) is an
isochronous center accordingly.

Summing up the above discussion, we get the following main theorem in this
section.

Theorem 4.6. Infinity of system (1.4) is an isochronous center if and only if δ = 0
and one of conditions (4.3), (4.12),(4.18) holds.
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