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BIFURCATION OF LIMIT CYCLES AND
ISOCHRONOUS CENTER AT INFINITY FOR
A CLASS OF DIFFERENTIAL SYSTEMS*

Wentao Huang", Yirong Liu? and Weinian Zhang?

Abstract In this paper, we study a seventh degree polynomial differential
system with full linear terms and cubic terms. The conditions of infinity
to be a center and to be a fine focus of the highest order are given and
it is proved that this system has eight limit cycles in the neighborhood of
infinity. Moreover, the conditions of infinity to be an isochronous center for a
rational system associated the seventh degree polynomial differential system
are obtained.
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Period constant.

MSC(2000) 34C07.

1. Introduction

In the last decades, being concerned with Hilbert’s 16th problem and the mono-
tonicity of period solutions, the bifurcation of limit cycles, center and the isochronous
center problems for differential systems are researched actively. In the case of critical
points on the finite plane, a lot of work has been done(see, for instance [3, 4, 5, 9, 16]
and the references therein). For the case of infinity, several researches are concen-
trated on the following 2n + 1 degree system

dr — $5 X, (e,y) + (52 — y)(a? +42)"
k=0 (1.1)

2n
= L Viley) + (@ + )@ )

where Xi(x,y), Yr(x,y) are homogeneous polynomials of degree k of x and y. For
this system, the equator I'o, on the Poincaré closed sphere is a trajectory of the
system, having no real critical point. I', is called the closed orbit at infinity or
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the equator in this point of view. As far as bifurcation of limit cycles and center
conditions at infinity are concerned, several special systems have been studied for
instance: cubic systems in [2, 10, 12]; fifth degree systems in [8, 17].

In the first part of this paper, we investigate problems of centers and bifurcation
of limit cycles at infinity for the following seventh degree system with full linear
terms and cubic terms

92 — Ayox + A1y + Asox® + Aoy + Aray® + Aosy® + (6x — y)(2? + y?)?,
% = Bioz + Bo1y + B3ox® + Bo12%y + Biaxy? + Bosy® + (z + dy) (2% + 42)3,
(1.2)
where 5, Alo, A()l, Ago, A21, Alg, AQg,BgQ, Blo, BOl, Bgl, 312,303 are real con-
stants. We prove that there are eight limit cycles bifurcated from infinity.
In [13], we gave the conditions of infinity to be an isochronous center for a special
case of n = 2 of the following real rational systems

2n
% = w2 Xi(z,y) —y@@® +y7)"),
o (1.3)

2n
# = et | X Yilwy) +a(e? +47))

and proved firstly that the real rational system has an isochronous at infinity. We
also discussed the isochronous center problem for another case of n = 2 of (1.3) in
the complex field in [6] and that n = 1 of (1.3) in the real field in [7]. In the second
part of this paper, we consider the following rational system, which is a special case

(n = 3) of system (1.3) if 6 = 0 and, has the same center conditions and bifurcation
of limit cycles at infinity to system (1.2):

% = W [Alox + AOly “+ A30I3 “+ A21$2y + A12Iy2
& = (12+y2)3 [Bioz + Boiy + B30£C + B21£U Yy + Braxy?

+Bosy® + (z + y)(«® + 3*)%].

By computation of period constants, the necessary conditions of infinity of system
(1.4) to be an isochronous center are obtained. By using several methods and skills,
we prove the conditions are also sufficient.

2. Preliminaries

Consider a complex polynomial differential system of the form

j—; =z+4 Y. Zi(z,w) = Z(z,w),
) k=2 (2.1)
ﬁ =-w— Z Wk(zaw) = _W(va)v

k=2

where z,w,T are complex variables and
Zy(z,w) Z aag?z” w? , Wi(z,w) Z bagw® 28,
a+pB=k a+pB=k

By means of transformation

z=z+yi,w=z—yi, T =it,i=+v—1 (2.2)
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system (2.1) can be transformed into the following system

&= —y+ k22 Xi(z,y)
o= (2.3)
# =t X Vi),

We say that system (2.1) is the associated system of system (2.3) and vise versa.
It is obvious that system (2.3) is real if and only if the coefficients of system (2.1)
satisfy conjugate conditions, i.e.,

Uap =bag, 20,820, a+p2=2. (2.4)
By means of transformation
z=re" w=re " T =it (2.5)

system (2.1) is then transformed into

E=53 > (tap1—bsa)eeDm,
m=1 a+B=m—+2 (26)

o0
®=1+5> X (aap-1+bga_r)ei@Dm.
m=1 a+B=m+2

For the complex constant h, |h| < 1, we write the solution of (2.6) satisfying the
initial-value condition r|g—g = h as

r=70,h) = h+ i vk (0)h* (2.7)
k=2

and denote

® dt
T(p,h) = /O@dﬂ

® 1 )
i(a—P)0 = m1—1
/O 1+3 > > (@ap-1+bsa-1)e DO, h)™] 7 db.

m=1 a+B=m—+2

(2.8)

Definition 2.1 (see [14]). For any complex constant h, |h| < 1, the origin of system
(2.1) or (2.3) is called a complex center if 7(27, h) = h. The origin is called a complex
isochronous center if 7(27,h) = h, 7(27, h) = 27.

Obviously, the complex center (complex isochronous center) and the center
(isochronous center) is equivalent when the system is real.

Lemma 2.1 (see [1]). For system (2.1), we can derive uniquely the following formal
series:

E=2z+ Z k2wl = w+ Z di jwhz, (2.9)
k4j=2 k+j=2
where cp41,6 = dk11,6 =0, k=1,2,---, such that
d§

— CeJt+1 g — pitled 2.10
o §+j§:1pg§ W =0 jEzqu U (2.10)
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Definition 2.2 (see [11, 14]). Let uo =0, 4 =Pk — qk, Te = P+ qe k= 1,2, - .
i and 73 are called k-th singular point value and k-th period constant of the origin
of system(2.1) and (2.3) respectively.

The methods to calculate py, is give in [11, 15] and that of 74 is given in [14].

Lemma 2.2 (see [11, 14]). For system (2.1) or (2.3), the origin is a complex center
if and only if pp, = 0,k =1,2,3,---, and it is a complex isochronous center if and
only if pyp =1, =0,k=1,2,3,---.

Consider the real perturbed system of (2.3) of the form

=2 (2.11)
W=z —dy+ > Yi(z,y).
k=2

Under the polar coordinates @ = r cosf,y = rsinf, system (2.11) is reduced to

dr =0+ > o (0)
— = h=2 : (2.12)

db =
L4 >0 rh=1p41(0)
k=2

where

©k+1(0) = cos0Xy(cos b, sin ) + sin Y} (cos 6, sin 9),
Yr41(0) = cos 0Y(cos b, sin 0) — sin 0 X, (cos 0, sin 9),

k=1,2,.... For sufficiently small h, let

d(h) =r(2m,h) — h, (2.13)
be the Poincaré succession function, where r = r(6,h) = > v,(0,6)h™ is the
m=1
solution of (2.12) associated with the initial-value condition r(0,h) = h. It is
evident that
v1(0,0) =e %% 0,(0,6) =0, m=2,3,-- (2.14)

As we know, if v1(27,6) # 1 in the expression (2.13) then the origin is called a
strong focus of system (2.11); ifvy (27, 6) = 1, and v2(27,d) = v3(2m,0) = -+ =
vok (27, 0) = 0, vop+1(2m, §) # 0, then the origin is called a fine focus of order k and
the quantity of va11(2m, d) is called the k-th focal value at the origin (k =1,2,---);
if v1(2m,6) = 1 and vap41 (27, ) = 0 for any positive integer k, then the origin is
called a center.

Lemma 2.3. ([8]) For system (2.11)|5=¢ and (2.1), the first non-vanishing focal
value and the first non-vanishing singular point value of the origin are related by

Vam+1(27,0) = im iy, . (2.15)
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3. Center conditions and bifurcation of limit cycles

By transformations

_ § _ n
NGETI R T 3
t= (2 +y?) 7. (3.2)
system (1.2) becomes a system of the form
£ = —%5 —n+ (& + 772)12[(%52 +17°)(A308® + A1 &2 + A126n® + Aosn®)
—7577(233053 + B1£2n + B126n? + Bosn®))]
+[(Z +7?)(A10€ + Aoim) - 8&n(Bro& + Boin))(€2 4 1)
b= - Sn+(+ 772)12[(52 — ) (B30&® + B21£%n + B12én® + Bosn®)
—%@7(2143053 + A &1 + Ar2€n® + Aosn®)]
+[(FE + ) (Bio€ + Boin) — 2&n(A1€ + Ann)] (€2 + n?)°.
(3.3)

Since infinity of system (1.2) correspond to the origin of system (3.3), only need
to discuss the properties at the origin of system (3.3) can we obtain the relative
properties at infinity of system (1.2). Moreover, it is easy to see that the origin of
system (3.3) is a strong focus if § # 0.

In order to make use of method of singular point values ([11]) to consider the
conditions of the origin to be a center, we perform the transformation z = £ +
in, w =& —in to reduce system (3.3)|s=o into its associated complex system

j_; = z+4 %w20221(3w(a01w + a102) + 42(biow + b1 2))
3

+%w12zl3(3w(a03w3 + a1pw?z + agywz? + azpz®)
—|—4z(b30w3 —|— b21w22 + b12w22 —|— b03z3))

‘;—% = —[w+ %w21220(4w(a01w + a102) + 3z(brow + bp12))
+%w13212(4w(a03w3 + a1pw?z + ag wz? + azpz?)
+32(b30w3 + borw?z + bigwz? + bogZS))]

(3.4)

where the relations of coefficients of the two systems are as follows:

ajg = %(—Am —iA19 — iBo1 + Bio), bio = @o,

apy = ?(Am — iAo +iBo1 + Bio), bo1 = Go1,

asg = §(A03 +iA12 — Ag1 — iA3z0 +iBo3 — B1z — iBa1 + Bso), bso = @30,

ap3 = §(—A03 +iA1p + Ag —iAsg — iBog — Bia +iB21 + Bsg), bos = aos,

ag = §(—3A03 — A1z — Ag1 — 3iA30 — 3iBo3 + Bi2 — iBa1 + 3B3¢), b21 = da1,
aiz = g(3Aoz —iA12 + Azy — 3iAs0 + 3iBo3 + Bi2 + iBa21 + 3B3¢), b2 = ara.

(3.5)
According to [15], we obtain the following recursive formula to compute the
singular point values of the origin of system (3.4).

Lemma 3.1. For system (8.4), the singular point values pmy, (m = 1,2---) are
determined by following recursive formula:

c[0,0] = 1
when(u =v > 0) or u <0, or v<0,
clu,v] =0
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else

clu, v] = == [(bor (1 + 4u — 30)c[—22 + u, =20 4 v] + (a10(—1 + 3u — 4v) + bio(1 +
4du —3v))c[—21 4+ u, =21 + v] + ap1 (=1 + 3u — 4v)c[—20 4+ u, =22 + v] + bo3 (1 + 4u —
30)e[—16 + u, —12 + v] + (azo(—1 + 3u — 4v) + b12(1 + 4u — 3v))c[-15 4+ u, —13 +
v] + (@21 (=1 + 3u — 4v) + ba1 (1 + 4u — 3v))c[—14 + u, =14 + v] + (a12(—1 + 3u —
4v) + b3o(1 +4u — 3v))c[—13 + u, =15+ v] + ags(—1 + 3u — 4v)c[—12 + u, —16 + v])].

fim = £[(bo1¢[—22 + m, =20 + m] — aroc[—21 + m, —21 + m] 4 byoc[—21 +m, —21 +
m] — ag1¢[—20 + m, —22 + m| + bozc[—16 + m, —12 + m] — azoc[-15+ m, —13 +
m] 4+ bi2c[=15+m, =13+ m] — agic[—14 +m, =14+ m] + barc[-14 +m, —14 +m] —
a12¢[—13 +m, —15 + m] + bzoc[—13 + m, —15 + m] — apzc[—12 + m, —16 + m])].

Using the recursive formula of Lemma 3.1 and computing with the computer
algebra system-Mathematica, we calculate the first 98 singular point values at the
origin of system (3.4) and simplify them, then we get the theorem below.

Theorem 3.1. The first 98 singular point values of the origin of system (3.4) are
given as follows:

pr =0
M1 = %(—am + bo1)
M2t = T(—alo + b1o)

Hog = 7(@12@30 - b12b30)
casel : asobso # 0,

fag = p56 = -+ = pog =0
case2 : azg = bsop =0

M35 = L4(a12b01 - a01b12)

—

pa2 =0

fa9 = == (ao1a12bos — aosbo1bi2)

Hs6 = —%g(a%%b% - aOBb%%)(aﬂ + ba1)

He3 = —1—%2(%21703 — ap3biy)(aio + b1o)

f70 = — 535 (a03bosz — 4a12b12)(—aiybos + aosbiy)

prr = %84 = po1 =0
f9s = g5aTabTa(aTabos — ao3byy)
others g, (k < 98) are zero, where p is a constant satisfying a12 = pbsp, b12 = pasp

when aspbsg # 0. In the above expression of ur , we have already let p1 = pa =
e =pp—1 =0,k=2,3,---,98.

Since the expression of py, of Theorem 3.1 is brief, it is easy to get the following
result.

Theorem 3.2. The first 98 singular point values at the origin of system (3.4) are
zero if and only if one of the following four conditions holds:

(I) az1 = ba1, a0 = bio, a2 = 3bso, biz = 3aso, azobso # 0; (3.6)

(II) a1 = ba1, aio = b1o, aizazo = bi2bso, ap3a3y = boszb3o, (3.7)
azo bzo # 0, a1z # 3bso, b12 # 3aso;

(III) a21 = ba1, aio = b1o, azo = b3o = 0, a12bo1 = bi2ao1, (3.8)

9 _ 2 .
ap3a3y = bosbgy a12b12 # 0;
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(IV) a21 = ba1, a1p = bio, azo = bzo = a12 = b1z = 0; (3.9)
By using the method of [11] we have

Lemma 3.2. All the elementary Lie-invariants of system (3.4) are given as follows:

a1, b21, 610, b1o

a30b30, a12b12, aozbos,

asoai12, b3obi2, ag1a30, bo1bso, ap1b12, bora12,
a0a03, b3bos, asob12a0s, b3oaiabos, biaaos, a3obos.

In Theorem 3.2, if condition (I) holds, system (3.4) has a first integral with the
form
F(z,w) = 4w? 228 /(2a01 22°w?2 + 4b19 22 w?! 4 2091 222w?0 + a3 212w + 4bzo 2 Bw!®

+ 291 24w 4 dagyzBw'd + boyz'Ow!? + 1);

If condition (II) or (III) holds, from Lemma 3.2 and [11, Theorem 2.6], then
we have all the singular point values are zero, therefore the origin of system (3.4)
is a center;

If condition (I'V') holds, then system (3.4) has a first integral with the form

F(z,w) = 4w®22/(1 + agzw®212 + 201w 21 + bogw!2216 + 2a0; w2220
—|—4b10w21z21 + 2b01w20z22).

From Theorem 3.2 and the above discussion, then we obtain the following.

Theorem 3.3. For system (3.4), all the singular point values at the origin are zero
if and only if the first 98 singular point values at the origin are zero, i.e., one of the
four conditions of Theorem 3.2 holds. Correspondingly, for system (3.4) or system
(3.8)|s=0, the origin to be a complex center if and only if one of the four conditions
given by Theorem 3.2 holds.

It is easy to obtain the following corollary.

Corollary 3.1. The origin of system (3.3) is a center, correspondingly, the infinity
of system (1.2)is a center, i.e., the trajectories in the sufficiently small neighborhood
of s are all closed orbits if and only if § = 0 and one of the four conditions given
by Theorem 3.2 holds.

From Theorem 3.1, Theorem 3.3 and expression (2.15), we have the following.

Theorem 3.4. The highest order of weak focus at the origin of system (3.3)|s=o
is 98. The origin of system (3.3)|s=o is a weak focus of order 98, i.e., v1(2m,0) =
1,v3(27m,0) = v5(27,0) - - - = vgg(2m,0) = 0,v197(27,0) # 0 if and only if

az1 = ba1 = a9 = big = ap1 = bo1 = asg = bzp =0, (3.10)
aozboz = 4a12b12, aisbiz # 0.

Proof. wv197(27,0) = imugs # 0 implies ajabia # 0 and a2ybo3 — ag3bd, # 0. If
a%sboz — ap3b3y # 0, then from Theorem 3.1, the origin of system (3.3)|5—0 is a weak
focus of order at most 49. By aj2b12 # 0, and consider pss = 0 of the case 2 of
Theorem 31, we can let apl = sai2, b01 = Sb12. Substituting apl = sai2, b01 = Sb12
into 49 of the case 2 of Theorem 3.1, it is not difficult to obtain the conclusion of
the theorem. |

From Theorem 3.4, then through structuring and computing carefully, the the-
orem about bifurcation of limit cycles at infinity is obtained as follow.
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Theorem 3.5. If § and the coefficients of system (3.4) satisfy (accordingly, the
coefficients of system (3.3)are determined):

0= — €9,

aj2 = 1+ /e1i, biz =1 — /e1i,

asog = bz =0,

ap3 = (=2 + €2)(—i + \/€1), bos = (=2 + €2) (i + \/&1),
a1 = €4 — €, ba1 = €4 + €31,

aip = —€3 + €7i, byp = —€3 — €7,

agr = —€5 — (€6 + €5/€1)1, bor = —e€5 + (€6 + €5/€1)1,

where €; i =1,2,---,9 are small parameters satisfying
<Kk KeakKe K1, (3.11)

then system (3.3) has 8 limit cycles in the neighborhood of the origin. Correspond-
ingly, in the neighborhood of infinity, system (1.2) has 8 limit cycles.

Proof. According to (2.14), the first focal value at the origin of perturbed system
(3.3) is as follow

2
v1(2m,8) —1 =72/ _ 1 = 77Teg + o(€g).

For the sake of convenience, other focal values of perturbed system are denoted by
vog+1(27). Based on (2.15) and Theorem 3.1, we obtain the below focal values at
the origin of system (3.3) after computing carefully:

v1(2m) — 1 = ZZeg + 0(eg),

g9 (2m) = —Hes,

v43(2m) = e,

v71(27) = —F €,

U99(27T) = ﬁéf, + 0(65), (312)
’U113(27T) = —%64 + 0(64),

’U127(27T) = %63 + 0(64),

V141 (27T) = —277—162 + 0(62),

’U197(27T) = g—g + 0(1),

From the above expressions we know that signs of any two successive nonzero
focal values are alternate positive and negative. The absolute value of the former
focal value is far less than the absolute value of the later. According to classical
Multiple Hopf Bifurcation Theory, the conclusion of the theorem follows. O

4. Isochronous center at infinity of the system

We now discuss the conditions of infinity to be an isochronous center of system
(1.4).

As reported before, system (1.4) has the same center conditions as that of system
(1.2). Only under the condition § = 0, infinity of system (1.2) may be a center, so
we let conveniently § = 0 in the following discussion. Namely, the following system
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is investigated:

de — m[zﬁllow + Aoy + Azoz® + Ag1a?y + Apay® + Aosy® — y(a® + y?)?),
Cfl—? = W[Blofv + Bowy + Bsoa® + Baa?y + Biaay® + Bosy® + z(2? + y?)?].
(4.1)

It is obvious that by transformation (3.1), system (4.1) is changed into system
(3.3)|5=0- Since transformation (3.1) is a homeomorphism without any time rescal-
ing, we see that the conditions for center (isochronous center) at infinity of system
(4.1) are the same as that at the origin of system (3.3)|s—0. So we only need to
investigate conditions of isochronous centers at the origin of system (3.3)|s—p or
conditions of complex isochronous center at the origin of system (3.4).

From [14, Theorem 3.1] we have that

Lemma 4.1. For system (3.4), the period constant 7; can be determined by the
following recursive formulas:

¢(1,0) =d(1,0) = 1;¢(0,1) = d(0,1) = 0;

if k<Oorj<O0or(j>0andk=j+1) then c(k,j) =0, d(k,j) = 0;

else

c(k,j) = —m(%bmc(k — 22,5 — 20) + 3borje(k — 22,5 — 20) — 4borkc(k —
22,] — 20) — 210,100(I€ — 21,] — 21) + 21b100(l€ — 21,] — 21) + 4a10j0(l€ — 21,] — 21) +
3b10jc(k — 21,j — 21) — 3@10/€C(/€ — 21,j — 21) — 4b10kc(k — 21,j — 21) — 28aolc(k —
20, j — 22) 4+ 4ag1je(k — 20, j — 22) — 3agrke(k — 20, j — 22) + 28bozc(k — 16,5 —12) +
3b03jc(k — 16,j — 12) — 4b03kc(k — 16,j — 12) — 7@300(k — 15,j — 13) + 21b126(k —
15,5 —13) +4aszojc(k — 15,5 — 13) 4 3b12jc(k — 15, j — 13) — 3azokc(k — 15, j — 13) —
4b12]€0(l€ - 15,] - 13) - 14a210(l€ - 14,] - 14) + 14b210(l€ - 14,] — 14) + 4a21jc(k —
14,] — 14.) + 3b21jc(k - 14,j— 14) - 3@21/€C(/€ - 14,] - 14) — 4b21]€0(1€ — 14,] — 14) —
21@120(/€ — 13,j — 15) + 7b300(k5 - 13,j — 15) + 4a12jc(k - 13,j — 15) + 3b30jc(k —
13,5 —15) — 3ay2ke(k — 13,5 — 15) — 4bsoke(k — 13, j — 15) — 28agsc(k — 12,5 — 16) +
dagsjc(k — 12,5 — 16) — 3agske(k — 12,5 — 16));

d(k,j) = —m@&mld(k— 22, j —20) +3ag1jd(k — 22, j — 20) — dagr kd(k —
22,7 —20) +21lajod(k — 21,5 —21) — 21b1od(k — 21, j — 21) + 3ajojd(k — 21,5 — 21) +
4b1pjd(k — 21,5 —21) — dayokd(k — 21, j — 21) — 3byokd(k — 21, j — 21) — 28bg1d(k —
20,5 —22) +4bo1jd(k — 20, j — 22) — 3bp1 kd(k — 20, j — 22) 4+ 28agsd(k — 16,5 — 12) +
3a03jd(k — 16,j — 12) — 4a03kd(k — 16,j - 12) + 21@12d(/€ - 15,j - 13) — 7b30d(k —
15,5 —13) +3a12jd(k — 15,5 — 13) 4+ 4bsojd(k — 15, j — 13) — dai2kd(k — 15,5 — 13) —
3b30]€d(l€ — 15,j — 13) + 140,2161(]{3 - 14,] - 14) - 14b21d(k} — 14,] - 14) + 3@21jd(k} —
14,5 —14) + 4bayjd(k — 14, j — 14) — dag1 kd(k — 14, j — 14) — 3barkd(k — 14,5 — 14) +
Tasod(k — 13, — 15) — 21b12d(k — 13,5 — 15) 4+ 3asejd(k — 13,5 — 15) + 4b12jd(k —
13,5 —15) — dasokd(k — 13, j — 15) — 3b12kd(k — 13, j — 15) — 28bozd(k — 12, j — 16) +

p(j) = (~24bore(j — 21, j —20) +borje(j — 21, j — 20) + 24arpe(j — 20, — 21) -
17b106(j - 20,] - 21) - alojc(j — 20,] - 21) + bl()jc(j - 20,] - 21) + 31&01C(j -
19,5 —22) —ap1jc(j — 19,5 — 22) — 24bgsc(j — 15,5 — 12) + bosjc(j — 15,5 — 12) +
10asoc(j — 14,5 — 13) — 17b12c(j — 14,5 — 13) — azoje(j — 14,5 — 13) + biaje(j —
14,5 —13) + 1Tag1¢(j — 13,5 — 14) — 10bo1c(j — 13,5 — 14) — ag1jc(j — 13,5 — 14) +
b21jC(j - 13,]— 14) + 24&12C(j — 12,]— 15) - 3b306(j - 12,]— 15) - a12jc(j - 12,]—
15) + bgpje(j — 12,5 — 15) + 3lagse(j — 11,5 — 16) — agsjc(j — 11,5 — 16));

q(j) = L(~24agd(j — 21,5 — 20) + agrjd(j — 21,5 — 20) — 1Taod(j — 20,5 —
21) +24b1od(j — 20, § —21) + a105d(j — 20, 5 —21) — bygjd(j — 20, j — 21) + 31bo1d(j —
19,5 —22) — bo1jd(j — 19, j — 22) — 24agsd(j — 15,5 — 12) + ap3jd(j — 15,5 — 12) —
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17&12d(j — 14,5 — 13) + 10b30d(j — 14,5 — 13) + al2jd(j — 14,5 — 13) — bgo]d(] —
14,5 —13) — 10a21d(j — 13,5 — 14) + 17bo1d(j — 13, — 14) + a21jd(j — 13,5 — 14) —
ba1jd(j — 13,75 —14) —3azod(j —12,j — 15) 4+ 24b12d(j — 12, j — 15) + asejd(j — 12, j —
15) = bi2jd(j — 12,5 — 15) + 31bosd(j — 11, j — 16) — bozjd(j — 11,5 — 16));

7 = p(j) +q(j)-

Based on the four center conditions of the origin of system (3.4), we investigate
the complex isochronous center conditions of system (3.4) by the following four
cases.

1. The center condition (3.6)

Since asg bgp # 0, then from expression (3.6), we put expression a;2 = 3 bsg, b1z =
3asp, az1 = ba1 = 191,a10 = b1p = r10 into recursive formulas given by Lemma 4.1
and computing by the two cases ag; = bp1 = 0 and ag1bg1 # 0 respectively, therefore
we get the theorem below.

Theorem 4.1. For system (3.4), the first 98 period constants of the origin are as
follows:

Casel apl = b()l = 0,

71 =0, T14 = 2ro1,7T21 = 2110, Tos = 735 = 0,

Ta2 = —6(ao3aiy + bosb3y), Tag = Tse = -+ - = Tos = 0,

Case2 G01b01 75 0,

17 =0, Tia = 211,721 = 2110, T2s = 0,735 = 3(ao1a30 + bo1b3o),

Ta2 = 7 (a03a3o — boabo)s, 756 = Te3 =0, (4.2)
T70 = —ia30b305 (192as0bso — s*), 77 =0,
T8d = — g &301730150 (6&30()309 + 52), T91 = 0,
oy = — Mgl
T, =0, k # Ti,i < 14,7 € N.
where s and g are constants satisfying ap1 = sbso, bo1 = —sazg and agz = gb3,, boz =

ga3, respectively. In the above expression of T , we have already assumed that
Ty =" = Tk_1 :()7]{:2,3798

For case 2 of the theorem, ag1bp; # 0 implies s # 0. It reduces that 95 =

—% # 0. From expression (4.2) it is obtained the following result.

Theorem 4.2. Under condition ( 3.6), the first 98 period constants of the origin
of system (3.4) are zero if and only if

a1 = ba1 = a1p = big = ap1 = bor = 0, agza3y + bozb3y = 0, asobso #0.  (4.3)
If expression (4.3) holds, system (3.4) becomes

j; =74+ 4b03w12 17_|_ 175a30w13216 13b w15 14_|_ 7&0311)16213

Z}}) (w+ (1032’ ’U}17+ 15b 0213w16+ 13a30215w14+ 3b03216w 3)

(4.4)

Considering a03a§0 + b03b§0 = 0, azpbsp # 0, we assume that agz = qb%07 boz =
—qa3,, where ¢ is a pure imaginary. Hence, system (4.4) becomes

2
j’; o — %UIBO qw12217 + 15a30w13216 13b 011)15214 ngO qw16Z13,
l;’l; (U) + 4b30 q212w17 + 15b Z13w16 _|_ 13a 021511) %a302q216w13>'

(4.5)
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For the above system we assume that agg = bsg = 1, otherwise we can choose a
proper complex constant a + ¢ and perform transformations z = (a + i)z, w =
(o — if)w; to bring system (4.5) to the case of azg = bsp = 1. Hence, the system
turns into

dz _ 12,17 | 15w'3210 | 13w!5214 16,13,
g% - qw S wZ;l% —ts wz;l) —t4 qw (46)
d% (’LU+ qz ’(U17+ z7w + z7w 7(]2 w13)
Under the transformation z = re??, w = re™%, t = —i T, system (4.6) takes the
form ) ) ] ]
% _ _ﬁie—élze (eSzOq +q+ 26210 _ 26610) 7,29 (4 7)

o = 1+9(0)r*
where g(0) = 3 (e72 + €%?) (e72q — €?"q + 4) = 2cos(26)(ssin(20) + 2), s =
1 = —iq. The first integral of system (4.7) is of the form

156
—=C 4.8
2g(0)r?8 +1 (48)

where C is a constant.
By (4.8), then for system (4.7), the solution satisfying initial condition r|g—¢g = h
is

28 g(g)h55+\/g(0)2h112+8h84+h56
r° = ST 1 (4.9)

2h°° cos(20) (s sin(260)+2)
\/4(5 sin(260)+2)2(1—sin?(20))h!11248h84 56

Substituting (4.9) into (4.7), we have that

dt _ 1> g(60)
@ =1- \/g(9)2h112+8h84+h56 (410)
-1 2h°6 cos(26) (s sin(260)+2)

 /4(ssin(20)+2)2(1—sin2(20))h 112+ 8h54 4 56

Since
f 2h°6 cos(20) (s sin(260)+2)
\/4 (ssin(260)+2)2(1—sin?(20))h11248h84+ k56
f h?C (ssin(26)42) dsm(29)
\/4(s5in(20)+2)2(1—sin?(20)) R 112 +8h84 4+ 156 ’
SO 0% 4t 4t = 27. So, the origin of system (4.4) is a complex isochronous center.

Theorem 4.3. Under the center condition ( 3.6), the origin of system (3.4) to
be a complex isochronous center (correspondingly, infinity of system (4.1) is an
isochronous center) if and only if condition (4.3) holds.

2. The center condition (3.7)

Since asobsg # 0, from expression (3.7) we can let a19 = hbsg, bi2 = hasp, ags =
kbgo, bog = ka%o, apl = Sbgo, bOl = Sasp,a21 — bgl = 721, Q10 = blO = T10- Putting
the above expression into the recursive formulas given by Lemma 4.1, after compu-
tation carefully we find that the first 42 period constants are as follows:

T4 = 2721,

To1 = 2710,

Tog = a3obso(—3 + h)(1 + h), (4.11)
T35 = —6azpbsos, '

T4 — 8a§0b§0k,
others 7,,, =0, m < 42,m € N.
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Considering that a2 # 3bsg, b1z # 3aso, obviously, under condition (3.7), the first
42 period constants at the origin of system (3.4) are zero if and only if

a21 = ba1 = a19 = big = ap1 = bo1 = apz = boz = 0, a12 = —b3g, b1z = —asp.
(4.12)

Theorem 4.4. Under condition (3.7), the origin of system (3.4) is a comlex
isochronous center (correspondingly, infinity of system (4.1) is an isochronous cen-
ter) if and only if (4.12) holds.

Proof. Necessity has already been explained, now we are proving the sufficiency.
If (4.12) holds, system (3.4) becomes

g—; =z — zagow®2'0 4 Thgow'® 21 (4.13)
2 = —(w — LbgzBw!® + Lagoz'Pw'), :
Let z = e, w = re~*?, then we have
1
0 = o (logz — logw). (4.14)

Differentiating both sides of (4.14) with respect to T along the trajectories of system
(4.13), we obtain
dd 1 1dz  1ldw

ar = %ar Pwar) = (4.15)
namely,
% = i% =1. (4.16)
Therefore, the origin of system (4.13) is a complex isochronous center. O
3. The center condition (3.8)
Since aj2b12 # 0, from expression (3.8) we can let azop = bz = 0, a91 =

sbia, bo1 = sai2, aos = gbly, bos = galy, as = ba1 = ro1, a1o = big = rio. Putting
the above expression into the recursive formulas given by Lemma 4.1, after comput-
ing we have To8 = a12b12 # 0. Therefore, under the center condition (3.8), the origin
of system (3.4) (corresponding to infinity of system (4.1)) is not an isochronous cen-
ter.

4. The center condition (3.9)

Substituting condition aszp = bgo = aijg = blg = 0, a1 = bgl = 721, A10 = blO =
r10 into the recursive formulas given by Lemma 4.1 and computing, then we obtain
the first 42 period constants of system (3.4) as following:

Ti4 = 2721,
T21 = 2T10, (417)
T42 = 2a01bo1,

and others are zero.
FI‘OIIl T14 = T21 = T42 = O we get that ag = b21 = aip — b10 = ap1 — b01 = O

Theorem 4.5. Under condition (3.9), the origin of system (3.4) is a complex
isochronous center (correspondingly, infinity of system (4.1) is an isochronous cen-
ter) if and only if

a21 = ba1 = azp = bzp = ap3 = a12 = a0 = b1p = ap1 = bp1 =0 (4.18)
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Proof. We only need to prove the sufficiency. Under the condition of the theorem,
system (3.4) becomes

4
=z + 2bozw'?217 + Lagzw'®213

= _(w + %a03212w17 + %bogzlﬁwl?’). (419)

dz
oA
dT

Similar to the discussion of system (4.5), we can put that ags = bps = 1, then the
system turns into

dz 4,12 17 4 3,.16 13
qr TAT Wz A+ Wz 4.20
g_q; = —(w+ %zuw” + %2161013)' (4.20)
By transformation z = re?, w =re~, t = —i T, system (4.20) becomes:
dr 1 ,—4if (,8i0 29
& = e e —1)r
& _ F—i— c03(4(16‘)r28 ) (4.21)
at :
The first integral of system (4.21) is
4 56
- c, (4.22)

2 cos(40)r?8 + 1 -

and C is a constant.
By (4.22), the solution of system (4.21) satisfying initial condition r|p—o = h is

g 0S(40)h50 4 \/cos?(40)h112 + 2184 4 56
T = .

= 4.23
2h?8 41 (423)
Substituting (4.23) into (4.21) and we get
dt h?8 46

T cos(4) . (4.24)

do \/cos?(460)h56 + 2h28 + 1
27 h28 cos(40) _ 27 dt g _ 101
From |; \/Cos2(49)h56+2h28+1d9 = 0 we have that [;" %5dt = 27. Thus the origin
of system (4.19) is a complex isochronous center and infinity of system (4.1) is an
isochronous center accordingly. [l

Summing up the above discussion, we get the following main theorem in this
section.

Theorem 4.6. Infinity of system (1.4) is an isochronous center if and only if § = 0
and one of conditions (4.3), (4.12),(4.18) holds.
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