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RANDOM ATTRACTOR OF NONLINEAR

STRAIN WAVES WITH WHITE NOISE

Xianyun Du

Abstract In this paper, we consider the long time behaviors of nonlinear

strain waves in elastic waveguides with white noise. We show that the initial

boundary value problem has a global solution and a compact global attractor.
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1. Introduction

In some problems of nonlinear wave propagation in waveguides, the interaction of
waveguides, the external medium and the possibility of energy exchange through
lateral surface of waveguide cannot be neglected. When the energy exchange be-
tween the rod and the medium is considered, there is a dissipation of deformation
wave in the viscous external medium. The general cubic double dispersion equation
(CDDE) can be derived from Hamilton principle:

wtt − wxx =
1

4
(cw3 + 6w2 + awtt − bwxx + dwt)xx, (1.1)

where a, b, c, d are some positive constants depending on Young modulus E0. The
equation (1.1) was studied in the literatures [5, 6, 12, 13, 14, 15]. In this paper, we
consider the following stochastic nonlinear wave equation perturbed by a random
forcing term

dut − (αdut + γdu)xx = (u − βuxx + f(u))xxdt + g(x)dt +

m
∑

j=1

hjdwj , (1.2)

where α, β, γ are positive constants, f is a sufficiently smooth real valued function
with f(0) = 0, g and hj (j ∈ {1, 2, · · ·, m}) are given functions defined on R and
{wj}

m
j=1 are independent two side real-valued Wiener processes on a probability

space which will be specified later.
Attractor is an important concept in the study of asymptotic behavior of deter-

ministic dynamical system. Crauel, Debussche and Flandoli [4] present a general
theroy to study the random attractor by defining an attracting set as a set that
attracts any orbit starting from −∞. The random attractors are compact invariant
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sets, which depend on chance and move with time. The authors applied the the-
ory to prove the existence of random attractors for the two-dimensional stochastic
Navier-Stokes equation. In this paper, we apply another method prove the exis-
tence of random attractors for nonlinear strain waves in elastic waveguides with
white noise. We establish the asymptotic compactness of solutions for system (1.2)
by applying the method of operator decomposition (see [11]), which is a crucial step
to get the global attractor.

This paper is arranged as follows. In section 2, some relevant concepts and
theories are given. In section 3, we introduce the Ornstein-Ohlenbeck process and
some properties and provide some basic settings about (1.2). In section 4, We prove
results on the existence of a unique random attractor of the random dynamical
system generated by (1.2).

Throughout this paper, we denote by || · || the norm of H = L2(0, l), with the
inner product (·, ·), || · ||p denotes the norm of Lp(0, l) for all 1 ≤ p ≤ ∞, and || · ||k,p

the norm of any Banach space W k,p(0, l).

2. Preliminaries

In this section, we recall some basic notions of the theory of random dynamical
system (RDS) (see [3, 4, 7, 16, 17]) and the Kuratowski measure of non-compactness
(see [8]), which is a useful tool to study the attractor (see [11], [18]).

Let (X, ||.||X) be a separable Banach space with Borel σ−algebra B(X) and
(Ω,F , P, (ϑt)t∈R) be the ergodic metric dynamical system.

Definition 2.1 A continuous random dynamical system over (Ω,F , P, (ϑt)t∈R) is
a (B(R+) ×F × B(X), B(X))-measurable mapping

S : R
+ × Ω × X → X (t, ω, x) → S(t, ω, x)

satisfying the following properties:
(1) S(0, ω, x) = x for ω ∈ Ω and x ∈ X ;
(2) S(t + τ, ω, ·) = S(t, ϑτω, ·) ◦ S(τ, ω, ·) for τ, t ≥ 0, and ω ∈ Ω;
(3) S is continuous with respect to x for t ≥ 0 and ω ∈ Ω.

A set-valued map B : Ω → 2X is called a random closed set if B(ω) is a nonempty
closed set and ω → d(x, B(ω)) is measurable for x ∈ X . A random set B(ω) is called
tempered if for P-a.s. ω ∈ Ω and all β > 0

lim
t→∞

e−βt sup{||b||X : b ∈ B(ϑ−tω)} = 0.

Let D be the collection of all tempered random subsets in X and {K(ω)}ω∈Ω ∈
D. Then {K(ω)}ω∈Ω is called a random absorbing set for S in D if for B(ω) ∈ D
and P -a.e. ω ∈ Ω, there exists tB(ω) > 0 such that

S(t, ϑ−tω, B(ϑ−tω)) ⊂ K(ω) for all t ≥ tB(ω).

Definition 2.2. A random set {A(ω)} ∈ D is random attractor (or pullback
attractor) for a RDS S if the following conditions are satisfied, for P -a.e. ω ∈ Ω,

(i) A(ω) is a random compact set. i.e. ω → d(x,A(ω)) is measurable for every
x ∈ X and A(ω) is compact;
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(ii) {A(ω)} is strictly invariant, i.e.

S(t, ω,A(ω)) = A(ϑtω) for all t ≥ 0;

(iii) {A(ω)} attracts every set in D, i.e., for all B = {B(ω)} ∈ D,

lim
t→∞

dH(ϕ(t, ϑ−tω, B(ϑ−tω)),A(ω)) = 0,

where dH is the Hausdorff semi-distance.

Let B be a bounded set in a Banach space X . The Kuratowski measure of
non-compactness α(B) of B is defined by

α(B) = inf{d > 0 : B admits a finite cover by sets of diameter ≤ d}.

We define α(B) = ∞, if B is unbounded, see [8].

Definition 2.3. [11] A random dynamical system S on a Polish space (X, d) is
almost surely D − α−contracting if

lim
t→∞

α(S(t, ϑ−tω, A(ϑ−tω))) = 0 for A ∈ D.

Lemma 2.4. For a random dynamical system S(t, ω) on a separabal Banach space
(X, ||.||X), if almost surely the following hold:

(1) S(t, ω) = S1(t, ω) + S2(t, ω);
(2) For any tempered random variable a ≥ 0, there exist r(a) (0 ≤ r < ∞),

a.s. such that for the closed ball Ba with radius a in X, S1(t, ϑ−tω, Ba(ϑ−tω)) is
precompact in X for all t > r(a).

(3) ||S2(t, ϑ−tω, u)||X ≤ K(t, ϑ−tω, a), t > 0, u ∈ Ba(ω) and K(t, ω, a) is a
measurable function with respect to (t, ω, x) which satisfies

lim
t→∞

K(t, ϑ−tω, a) = 0.

Then S(t, ω) is almost surely D − α−contracting (see [11]).

Lemma 2.5. Let S(t, ω) be a random dynamical system on a Polish space (X, ||.||X).
Assume that

(1) S(t, ω) has an absorbing set B(ω) ∈ D;
(2) S(t, ω) is almost surely D − α−contracting.
Then S(t, ω) possesses a global random attractor in X.

3. The basic setting and O-U processes

In this section, we present the existence of continuous random dynamical system
for the stochastic nonlinear strain wave equation in elastic waveguides:

dut − αd(∆ut) − γd(∆u) − ∆u + β2∆2u − ∆f(u) = g +

m
∑

j=1

hjdwj (3.1)

subject to the initial conditions

u(x, 0) = u0, ut(x, 0) = u1 for x ∈ (0, l) (3.2)
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and boundary condition
u(0, t) = u(l, t) = 0, (3.3)

where ∆ = ∂xx, α, β, γ are positive constants, g is a given function in L2(0.l), for
j ∈ {1, 2, · · ·, m}, hj ∈ H1

0 ∩W 2,q(0, l) for some q ≥ 2 and {wj}
m
j=1 are independent

two-sided real valued Wiener processes on a probability space, which will be specified
below and f is a nonlinear function satisfying the following conditions: for all s ∈ R

f(s)s ≥ c1F (s) ≥ c2|s|
2p+2 ≥ 0, (3.4)

|f(s)| ≤ c3(|s|
2p+1 + |s|), (3.5)

where F (s) =
∫ s

0 f(τ)dτ and ci(i = 1, 2, 3) are positive constants.
In the sequel, we consider the probability space (Ω,F , P ), where

Ω = {ω ∈ C(R, Rm) : ω(0) = 0},

the Borel σ−algebra F on Ω is generated by the compact open topology, and P is the
corresponding Wiener measure on F . Then we identify ω(t) with (w1, w2, · · ·, wm),
i.e.,

(w1, w2, · · ·, wm) = ω(t) for t ∈ R.

The time shift is defined by

ϑsω(t) = ω(t + s) − ω(s) for t, s ∈ R.

It is a family of ergodic terms formations. Now we consider the one-dimensional
Ornstein-Uhlenbeck equation

dzj + λzjdt = dwj(t). (3.6)

It is easy to check that for each j = 1, 2, · · ·, m

zj(t) = zj(ϑtωj) ≡ −λ

∫ 0

−∞

eλτ (ϑtωj)(τ)dτ, fort ∈ R.

is a solution of (3.6). Putting z(ϑtω) =
∑m

j=1(I − α∆)−1hjzj(ϑtωj), where ∆ is

the Laplacian with domain H1
0 ∩ H2(0, l), By (3.6) we find that

dz − αd(∆z) + α(z − α∆z)dt =
m

∑

j=1

hjdwj . (3.7)

Lemma 3.1. For ǫ > 0, there exists a tempered random variable ρ1 : Ω → R such
that

||z(ϑtω)||2p+2 ≤ eǫ|t|ρ1(ω) for t ∈ R and ω ∈ Ω, (3.8)

where p ≥ 0 and ρ1(ω), ω ∈ Ω satisfies

ρ1(ϑtω) ≤ eǫ|t|ρ1(ω) for t ∈ R. (3.9)

Proof. Let j = 1, 2, · · ·, m. Since |zj(ωj)| is a tempered random variable and the
mapping t → ln |zj(ϑtωj)| is P-a.s.continuous, it follows from Proposition 4.3.3 in
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[13] that for any ǫj > 0, there is a tempered random variable rj(ωj) > 0 such that
|zj(ωj)| ≤ rj(ωj) and

rj(ϑtωj) ≤ eǫj |t|rj(ωj), t ∈ R, for P-a.s. ω ∈ Ω. (3.10)

Since (I − α∆)z(ϑtω) =
∑m

j=1 hjzj(ϑtωj) we find

||z(ϑtω)||2p+2
2p+2 + α(2p + 1)

∫ l

0

z(ϑtω)2p|∇z(ϑtω)|2dx

≤

∫ l

0

z(ϑtω)2p+1(

m
∑

j=1

hjzj(ϑtωj))dx

≤
2p + 1

2p + 2
||z(ϑtω)||2p+2

2p+2 +
1

2p + 2

∫ l

0

(
m

∑

j=1

hjzj(ϑtωj))
2p+2dx.

Let ǫ > 0 and ǫ1 = ǫ2 = · · · = ǫm = ǫ, then we have

||z(ϑtω)||2p+2 ≤ ||
m

∑

j=1

hjzj(ϑtωj)||2p+2 ≤
m

∑

j=1

||hj ||2p+2|zj(ϑtωj)|

≤
m

∑

j=1

||hj ||2p+2rj(ϑtωj) ≤ eǫ|t|
m

∑

j=1

rj(ωj)||hj ||2p+2.

Let ρ1(ω) =
∑m

j=1 rj(ωj)||hj ||2p+2 then (3.8) holds and (3.9) follows from (3.10).

Corollary 3.2. For ǫ > 0, there exists a tempered random variable ρ2 : Ω → R

such that for σ = 0 or 1,

||A
σ
2 z(ϑtω)|| + α

√

λ1||A
1+σ
2 z(ϑtω)|| ≤ eǫ|t|ρ2(ω), (3.11)

for t ∈ R and ω ∈ Ω, where λ1 is the first eigenvalue of −∆.

Proof. Let ξ = ||A
σ
2 z(ϑtω)||2 + α||A

1+σ
2 z(ϑtω)||2, ρ2(ω) =

∑m

j=1 rj(ωj)||A
σ
2 hj ||.

Since (I − α∆)z(ϑtω) =
∑m

j=1 hjzj(ϑtωj), we get

ξ ≤||A
σ
2 z(ϑtω)||(

m
∑

j=1

||A
σ
2 hj || |zj(ϑtωj)|) ≤ ||A

σ
2 z(ϑtω)||(

m
∑

j=1

||A
σ
2 hj || rj(ϑtωj))

≤||A
σ
2 z(ϑtω)||eǫ|t|(

m
∑

j=1

rj(ωj)||A
σ
2 hj || ).

By the Poincare inequality

||A
1+σ

2 z(ϑtω)|| ≥
√

λ1||A
σ
2 z(ϑtω)||.

Hence, we have

ξ ≤eǫ|t|(

m
∑

j=1

rj(ωj)||A
σ
2 hj || ) ≤ eǫ|t|ρ2(ω),
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the corollary holds.
Now transform the problem (3.1)-(3.3) to a deterministic system with a random

parameter and show that it generates a random dynamical system.
Let v(t, ω) = ut(t, ω) + εu(t, ω) − z(ϑtω). Then (3.1)-(3.3) is equivalent to the

following random partial differential system

ut = v − εu + z(ϑtω), (3.12)

vt − α∆vt − εv − (γ − αε)∆v + ε2u − (1 + αε2 − γε)∆u

+β∆2u − ∆f(u) = g + (α + ε)z(ϑtω) + (γ − α2 − αε)∆z(ϑtω),
(3.13)

(u, v)|t=0 = (u0, v0), (3.14)

u(0, t) = u(l, t) = v(0, t) = v(l, t) = 0, (3.15)

where v0 = u1+εu0−z(ω), ε is a positive constant. We set E0 = H1
0×L2(0, l), E1 =

H2 ∩ H1
0 × H1

0 ∩ L2(0, l). Then E1 →֒ E0 with compact imbedding.
By a Galerkin method as in [6], it can be proved that under assumptions (3.4)

and (3.5), for P-a.e.ω ∈ Ω and for every (u0, v0) ∈ E0, problem (3.12)-(3.15) have
a unique solution (u, v) ∈ C(R+, E0) and the solution (u, v) is continuous with
respect to x in E0 for all t ≥ 0. Hence, the solution mapping generates a RDS.
It is called stochastic flow associated with the nonlinear strain wave equation with
additive noise.

4. Uniform time a priori estimates and random at-

tractors

In this section, we derive uniform estimates on the solutions of (3.12)-(3.15) when
t → ∞ and prove the existence of a bounded random absorbing set and the asymp-
totic compactness of the random dynamical system associated with the equation.
From now on, we always assume that D is the collection of all tempered subsets of
E0 with respect to (Ω,F , P, (ϑt)t∈R). Let E0 = H1

0×L2(0, l) endowed with the inner
product and norm (Y1, Y2)E0

= (u1, u2)H1
0

+ (v1, v2)L2 , ||Y ||E0
= ||u||H1

0
+ ||v||L2 ,

Yj = (uj , vj), Y0 = (u0, v0). We first derive the following uniform estimates in E0.

Lemma 4.1. Suppose that f satisfies (3.4) and (3.5), and g ∈ H−1(0.l). Then
for B = {B(ω)}ω∈Ω ∈ D, Y0 = (u0, v0) ∈ B(ω) and for P-a.e.ω ∈ Ω, there exists
T = T (B, ω) > 0, such that

||Y (t, ϑ−tω, Y0(ϑ−tω))||E0
≤ R(ω) for t ≥ T,

where R(ω) = c(1 + ρ2p+2
1 (ω) + ρ2

2(ω)) is a positive random function.

Proof. Taking the inner product of (3.14) with (−∆)−1v and using v = ut + εu−
z(ϑtω), we have

d

dt
φ0(t, ω) + H0(t, ω) = 0, (4.1)

where

φ0(t, ω) =
1

2
(||v||2−1,2 + α||v||2 + ε2||u||2−1,2 + (1 + αε2 − γε)||u||2

+ β||∇u||2 + 2

∫ l

0

F (u)dx),

(4.2)
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H0(t, ω) = − ε||v||2−1,2 + (γ − αε)||v||2 + ε3||u||2−1,2 + (1 + αε2 − γε)ε||u||2

+ βε||∇u||2 + ε

∫ l

0

f(u)udx − ε2(u, (−∆)−1z(ϑtω))

+ (1 + αε2 − γε)(u,−z(ϑtω)) − β(∇u,∇z(ϑtω)) − (f(u), z(ϑtω))

+ (−g − (α + ε)z(ϑtω) + (γ − α2 − αε)z(ϑtω), (−∆)−1v).

(4.3)

Choose δ and ε such that

0 < δ ≤ min{
c1

2
, 1}, 0 < ε ≤ min{

1

2γ
,

γλ1

(1 + δ)(1 + αλ1)
}, (4.4)

where c1 is defined in (3.4) and λ1 is the first eigenvalue of −∆. It follows from
(3.4) and (3.5) that

ε

∫ l

0

f(u)udx − δε

∫ l

0

F (u)dx ≥ ε(c1 − δ)c2||u||
2p+2
2p+2

and

| −

∫ l

0

f(u)z(ϑtω)dx| ≤
1

2
εc2δ||u||

2p+2
2p+2 +

1

2
δε(1 + αε2 − γε)||u||2

+ c(||z(ϑtω)||2p+2
2p+2 + ||z(ϑtω)||2).

Using (4.4)and computing, we get

H0(t, ω) − δεφ0(t, ω)

≥(γλ1 − ε(1 + δ)(1 + αλ1))||v||
2
−1,2 + ε2(1 − δ)||u||2−1,2

+ ε(1 + αε2 − γε)(1 − δ)||u||2 + βε(1 − δ)||∇u||2

+ εc2(c1 − 2δ)||u||2p+2
2p+2 − c||g||2−1,2

− c(||z(ϑtω)||2 + ||∇z(ϑtω)||2 + ||z(ϑtω)||2p+2
2p+2)

≥− c(||z(ϑtω)||2 + ||∇z(ϑtω)||2 + ||z(ϑtω)||2p+2
2p+2 + ||g||2−1,2)

(4.5)

and

a(||Y (t, ω)||2E0
+ ||u(t, ω)||2p+2

2p+2) ≤ φ0(t, ω) ≤ b(||Y (t, ω)||2E0
+ ||u(t, ω)||2p+2

2p+2), (4.6)

where

a =
1

2
min{α, (1 + αε2 − γε), β, 2c2/c1}

and

b =
1

2
max{α + 1/λ1, ε

2/λ1 + 1 + αε2 − γε + 2c3/c1, β}.

By (4.1) and (4.5), we have

d

dt
φ0(t, ω) + λφ0(t, ω) ≤ c4p0(ϑtω) + c5, (4.7)

where λ = δε > 0 and p0(ϑtω) = ||z(ϑtω)||2 + ||∇z(ϑtω)||2 + ||z(ϑtω)||2p+2
2p+2. By

Lemma 3.1 with ǫ = λ
2(2p+2) and Corollary 3.2 with ǫ = λ

4 , for P-a.c. ω ∈ Ω and

t ∈ R we obtain
p0(ϑtω) ≤ e

1
2
λ|t|(ρ2p+2

1 (ω) + ρ2
2(ω)). (4.8)
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It follows from (4.7) that for all t ≥ 0,

φ0(t, ω) ≤ e−λtφ0(0, ω) + c4

∫ t

0

eλ(τ−t)p0(ϑτω)dτ +
c5

λ
. (4.9)

Replacing ω by ϑ−tω with t ≥ 0 in (4.9) and using (4.8), we obtain

φ0(t, ϑ−tω) ≤e−λtφ0(0, ϑ−tω) + c4

∫ t

0

eλ(τ−t)p0(ϑτ−tω)dτ +
c5

λ

≤e−λtφ0(0, ϑ−tω) + c4

∫ 0

−t

eλτp0(ϑτω)dτ +
c5

λ

≤e−λtφ0(0, ϑ−tω) + c4

∫ 0

−t

e
1
2
λτ (ρ2p+2

1 (ω) + ρ2
2(ω))dτ +

c5

λ

≤e−λtφ0(0, ϑ−tω) + c∗(1 + ρ2p+2
1 (ω) + ρ2

2(ω)),

(4.10)

where c∗ = 1
λ
(2c4+c5) is a deterministic positive constant. This together with (4.6)

shows that

a||Y (t, ϑ−tω, Y0(ϑ−tω))||2E0
≤be−λt(||Y0(ϑ−tω)||2E0

+ ||u0(ϑ−tω)||2p+2
2p+2)

+ c∗(1 + ρ2p+2
1 (ω) + ρ2

2(ω)).
(4.11)

Since B(ω)ω∈Ω ∈ D is tempered, it follows that if

Y0(ϑ−tω) = (u0(ϑ−tω), v0(ϑ−tω)) ∈ B(ϑ−tω),

then there is TB(ω) > 0 such that for all t ≥ TB(ω),

be−λt(||Y0(ϑ−tω)||2E0
+ ||u0(ϑ−tω)||2p+2

2p+2) ≤ c∗(1 + ρ2p+2
1 (ω) + ρ2

2(ω)). (4.12)

The result follows from (4.11) and (4.12).
Denote

K(ω) = {Y ∈ E0 : ||Y ||E0
≤ R(ω)}.

Then {K(ω)}ω∈Ω ∈ D is an absorbing set in E0.
In order to prove that RDS S(t, ω) is almost surely D−α−contracting on E0 by

Lemma 2.6, we decompose the solution Y = (u, v) of (3.12)-(3.15) with the initial
value Y0 = (u0, v0) into two parts. Define by Y a = (ua, va) = S1(t)(u0, v0) is the
solution of the equations

va = ua
t + εua, (4.13)

va
t − α∆va

t − εva − (γ − αε)∆va + ε2ua − (1 + αε2 − γε)∆ua + β∆2ua = 0

(4.14)

with the initial data (ua, va)|t=0 = (u0, v0) = (u0, u1+εu0−z(ω)) and homogeneous
boundary condition. Then

Y b = (ub, vb) = S2(t)(u0, v0) = S(t)(u0, v0) − S1(t)(u0, v0)

is the solution of the problems

vb = ub
t + εub − z(ϑtω), (4.15)
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vb
t − α∆vb

t − εvb − (γ − αε)∆vb + ε2ub − (1 + αε2 − γε)∆ub

+β∆2ub − ∆f(u) = g + (α + ε)z(ϑtω) + (γ − α2 − αε)∆z(ϑtω),
(4.16)

with the initial data (ub, vb)|t=0 = (0, 0) and homogeneous boundary conditions.

Lemma 4.2. Assume g ∈ H−1(0, l), Y0 = (u0, v0) ∈ B(ω) ∈ D and (3.4) and (3.5)
hold. Then

||Y a(t, ϑ−tω, Y0(ϑ−tω))||2E0
≤ C||Y0(ϑ−tω)||2E0

e−λt.

Proof. Taking the inner product of (4.18) with (−∆)−1va and using va = ua
t +εua,

we have
d

dt
φ1(t, ω) + H1(t, ω) = 0, (4.17)

where

φ1(t, ω) =
1

2
(||va||2−1,2 + α||va||2 + ε2||ua||2−1,2 + (1 + αε2 − γε)||ua||2 + β||∇ua||2)

and

H1(t, ω) = − ε||va||2−1,2 + (γ − αε)||va||2 + ε3||ua||2−1,2 + (1 + αε2 − γε)||ua||2

+ βε||∇ua||2.

By (4.4), we have

H1(t, ω) − δεφ1(t, ω)

= − ε(1 +
1

2
δ)||va||2−1,2 + (γ − αε −

1

2
δαε)||va||2

+ ε3(1 −
1

2
δ)||ua||2−1,2 + ε(1 + αε2 − γε)(1 −

1

2
δ)||ua||2

+ βε(1 −
1

2
δ)||∇ua||2 ≥ 0.

(4.18)

By (4.17) and (4.18), we have

d

dt
φ1(t, ω) + λφ1(t, ω) ≤ 0,

where λ = δε > 0. Applying Gronwall’s lemma, we obtain for all t ≥ 0

φ1(t, ω) ≤ φ1(0, ω)e−λt.

By arguments similar to (4.6), we can derive that

a||Y a(t, ω, Y0(ω))||2E0
≤ b||Y0(ω)||2E0

e−λt, (4.19)

where a, b are same as in Lemma 4.1. Replacing ω by ϑ−tω with t ≥ 0 in (4.19),
implies that the result holds.

Lemma 4.3. Assume g ∈ H−1(0, l), Y0 = (u0, v0) ∈ B(ω) ∈ D and (3.4) and (3.5)
hold. Then

a||Y b(t, ϑ−tω, Y0(ϑ−tω))||2E1
≤ 2R2

∗(ω),

where R2
∗(ω) = c∗∗(1+ρ2p+2

1 (ω)+ρ2
2(ω)) and c∗∗ is a deterministic positive constant.
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Proof. Taking the inner product of (4.16) with vb and using (4.15), we obtain

d

dt
φ2(t, ω) + H2(t, ω) = 0, (4.20)

where

φ2(t, ω) =
1

2
[||vb||2 + α||∇vb||2 + ε2||ub||2

+ (1 + αε2 − γε)||u||2 + β||∆ub||2]
(4.21)

and

H2(t, ω) = − ε||vb||2 + (γ − αε)||∇vb||2 + ε3||ub||2 + βε||∆ub||2

+ ε(1 + αε2 − γε)||ub||2 + (1 + αε2 − γε)(∆ub, z(ϑtω))

− β(∆ub, ∆z(ϑtω)) − ε2(ub, z(ϑtω)) − (∆f(u), vb)

− (g + (α + ε)z(ϑtω) + (γ − α2 − αε)∆z(ϑtω), vb).

(4.22)

Note that

| − (∆f(u), vb)| = |(f ′(u)∇u,∇vb)| ≤
αε

2
||∇vb||2 + c||∇u||2

and

| − ((α + ε)z(ϑtω) + (γ − α2 − αε)∆z(ϑtω), vb)|

≤ε||vb||2 + c(||z(ϑtω)||2 + ||∆z(ϑtω)||2).

Similar to the arguments used in lemma 4.1, we can get

H2(t, ω) − λφ2(t, ω) ≥ −c(||z(ϑtω)||2 + ||∆z(ϑtω)||2 + ||g||2−1,2 + ||∇u||2). (4.23)

It follows from (4.21) and (4.23) that

d

dt
φ2(t, ω) + λφ2(t, ω) ≤ c6p2(ϑtω) + c7(1 + ||∇u||2), (4.24)

where p2(ϑtω) = ||z(ϑtω)||2 + ||∆z(ϑtω)||2. By Gronwall inequality, we obtain

φ2(t, ω) ≤ c6

∫ t

0

eλ(s−t)p2(ϑsω)ds + c7

∫ t

0

eλ(s−t)||∇u(s)||2ds +
1

λ
c7. (4.25)

Noting φ2(t, ω) ≥ a||Y b(t, ω)||2E1
and replacing ω by ϑ−tω, we have

a||Y b(t, ϑ−tω)||2E1

≤c6

∫ t

0

eλ(s−t)p2(ϑs−tω)ds + c7

∫ t

0

eλ(s−t)||∇u(s, ϑ−tω)||2ds +
1

λ
c7

≤c6

∫ 0

−t

eλsp2(ϑsω)ds + c7

∫ t

0

eλ(s−t)||∇u(s, ϑ−tω)||2ds +
1

λ
c7.

(4.26)

By Corollary lemma 3.2, the first term on the right-hand side of (4.26) satisfies

c6

∫ 0

−t

eλsp2(ϑsω)ds ≤ c6

∫ 0

−t

e
1
2
λsρ2

2(ω)ds ≤
2

λ
c6ρ

2
2(ω) for t ≥ 0. (4.27)
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By (4.11), we have

||∇u(s, ϑ−tω)||2 ≤
b

a
e−λs[||Y0(ϑ−tω)||2E0

+ ||u0(ϑ−tω)||2p+2
2p+2]

+
1

a
c∗[1 + ρ2p+2

1 (ω) + ρ2
2(ω)].

(4.28)

Thus, the second term on the right-hand side of (4.26) satisfies for t ≥ 0

c7

∫ t

0

eλ(s−t)||∇u(s, ϑ−tω)||2ds ≤
b

a
c7te

−λt[||Y0(ϑ−tω)||2E0
+ ||u0(ϑ−tω)||2p+2

2p+2]

+
1

aλ
c7c∗[1 + ρ2p+2

1 (ω) + ρ2
2(ω)].

(4.29)

Let R2
∗(ω) = 1

λ
(2c6 +c7 + 1

a
c7c∗)(1+ρ2p+2

1 (ω)+ρ2
2(ω)). It follows from (4.26)-(4.29)

that

a||Y (t, ϑ−tω)||2E1
≤

b

a
c7te

−λt[||Y0(ϑ−tω)||2E0
+ ||u0(ϑ−tω)||2p+2

2p+2] + R2
∗(ω).

Since {B(ω)}ω∈Ω ∈ D is tempered and Y0(ϑ−tω) ∈ B(ϑ−tω), there exists T ∗
B(ω) > 0

such that for t ≥ T ∗
B(ω),

b

a
c7te

−λt(||Y0(ϑ−tω)||2E0
+ ||u0(ϑ−tω)||2p+2

2p+2) ≤ R2
∗(ω). (4.30)

Thus,
a||Y (t, ϑ−tω)||2E1

≤ 2R2
∗(ω) for t ≥ T ∗

B(ω)

and the result holds.
We are now in a position to present our main result:

Theorem 4.4. Assume that g ∈ H−1(0, l) and (3.4) and (3.5) hold. Then the
random dynamical system S(t, ω) has a unique random attractor in E0.

Proof. By Lemma 2.4, Lemma 4.2 and Lemma 4.3, the stochastic dynamical
system S(t, ω) of nonlinear strain waves is almost surely D − α−contracting. This
together with Lemma 2.5 implies that the existence of a unique D−random attractor
for S(t, ω).
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