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Abstract In this paper, we introduce some new iterative methods to solve

linear systems Ax = b. We show that these methods, comparing to the classi-

cal Jacobi or Gauss-Seidel method, can be applied to more systems and have

faster convergence.
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1. Introduction

Let Rn be n-dimensional vector space with real vectors and Mn(R) be the linear
space of all real n × n matrices. Consider the following linear system

Ax = b, (1.1)

where A ∈ Mn(R) is invertible, and x, b ∈ Rn. Let A = M − E, where M is
invertible, be a splitting of A. Then the iterative method based on this splitting is
given by

x(k+1) = Tx(k) + M−1b, k = 0, 1, 2, · · · , (1.2)

where T = M−1E. It is well known that the iteration (1.2) converges to the
solution of (1.1) if and only if the spectral radius ρ(T ) of T satisfies ρ(T ) < 1 (see,
e.g. [8, 11]). One sufficient condition for ρ(T ) < 1 is ||T || < 1, where ||T || is a norm
of T. In general, a smaller norm will results in a smaller spectral radius. If we write
A = D−L−U , where D =diag(A), −L the strictly lower and −U the strictly upper
triangular matrices of A, respectively, then the classical Jacobi iterative method is
defined if M = D, and the Gauss-Seidel iterative method is defined if M = D − L.

Definition 1.1. Let A = (aij) ∈ Mn(R), then the matrix A is called diagonally
dominant if

n
∑

j=1,j 6=i

|aij | ≤ |aii|, i = 1, 2, · · · , n;
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strictly diagonally dominant if

n
∑

j=1,j 6=i

|aij | < |aii|, i = 1, 2, · · · , n;

and irreducibly diagonally dominant if A is irreducible and diagonally dominant
with strict inequality for at least one i.

The following result regarding Jacobi and Gauss-Seidel methods can be found
in [8, 11].

Theorem 1.1. If A is strictly diagonally dominant, or irreducibly diagonally dom-
inant, then both Jacobi and Gauss-Seidel methods converge regardless of the choice
of the initial guess x(0).

Research has been done extensively on Jacobi method to either expand the
systems that the Jacobi method can be applied or to improve the rate of conver-
gence. Gauss-Seidel method, Successive Over relaxation method, and many Jacobi
or Gauss-Seidel type preconditioned iterative methods have been proposed and stud-
ied, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and references therein. In this research,
we use a different approach than preconditioning to propose a new scheme that not
only extend the application but also improve the rate of convergence.

2. Preliminaries

To prove our main results, we need the following lemmas. Note that || · || represents
a vector norm in Rn and the induced matrix norm in Mn(R).

Lemma 2.1. Let x1, x2, · · · , xm ∈ Rn, b1, b2, · · · , bm ∈ R and bi > 0. If

||b1x1 + b2x2 + · · · + bmxm|| = (b1 + b2 + · · · + bm) max
1≤i≤n

||xi||, (2.1)

then x1 = x2 = · · · = xm. In particular, if x1, x2, · · · , xm ∈ C, the set of complex
numbers, and if

|b1x1 + b2x2 + · · · + bmxm| = (b1 + b2 + · · · + bm) max
1≤i≤n

|xi|,

then x1 = x2 = · · · = xm.

Proof. If (2.1) holds, then we have

||c1x1 + c2x2 + · · · + cmxm|| = max
1≤i≤n

||xi||,

where ci = bi/(b1 + b2 + · · · + bm) > 0 and
∑m

i=1 ci = 1. The lemma follows
immediately from the convex set theory.

Lemma 2.2. Let matrix B ∈ Mn(R) be in the form

B =















−b11 −b12 −b13 · · · −b1n

b21 0 b23 · · · b2n

b31 b32 0 · · · b3n

...
...

...
...

bn1 bn2 bn3 · · · 0
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where bij > 0,
∑n

j=1 b1j ≤ 1, and
∑n

j=1,j 6=i bij ≤ 1, i = 2, · · · , n. Then ρ(B) < 1.

Proof. Obviously ρ(B) ≤ ||B||∞ ≤ 1. If ρ(B) = 1, then B has an eigenvalue eiw

for some real number w. Let x = (x1, x2, · · · , xn)T be an eigenvector corresponding
to eiw. We will look at the following two different cases.

(a) x1 = x2 = · · · = xn. In this case, x̄ = (1, 1, · · · , 1)T is also an eigenvector,
thus from Bx̄ = eiwx̄, we have











−
∑n

j=1 b1j
∑n

j=1,j 6=2 b2j

...
∑n

j=1,j 6=n bnj











= eiw











1
1
...
1











,

which yields a contradiction.
(b) x1, x2, · · · , xn are not all equal. Assume |xm| = max1≤i≤n |xi|. If m = 1, the

first component of Bx = eiwx gives

|b11x1 + · · · + b1nxn| = |x1|. (2.2)

But
|b11x1 + · · · + b1nxn| ≤ (b11 + b12 + · · · + b1n)|x1| ≤ |x1|. (2.3)

It follows from (2.2) and (2.3) that

|b11x1 + · · · + b1nxn| = (b11 + b12 + · · · + b1n)|x1|

Lemma 2.1 implies x1 = x2 = · · · = xn, a contradiction. If m > 1, let |xk| =
maxi6=m,1≤i≤n |xi|. Obviously, |xk| ≤ |xm|. From the mth component of the equation
Bx = eiwx, we get

|bm1x1 + · · · + bm m−1xm−1 + bm m+1xm+1 + · · · + bmnxn| = |xm| ≥ |xk|.

But

|bm1x1+· · ·+bm m−1xm−1+bm m+1xm+1+· · ·+bmnxn| ≤





n
∑

j=1,j 6=m

bmj



 |xk| ≤ |xk|.

Therefore, |xk| = |xm| and

|bm1x1 + · · · + bm m−1xm−1 + bm m+1xm+1 + · · · + bmnxn| =





n
∑

j=1,j 6=m

bmj



 |xk|.

Lemma 2.1 means x1 = · · · = xm−1 = xm+1 = · · · = xn. Now (2.2) becomes
∣

∣

∣

∣

∣

∣

b1mxm +





n
∑

j=1,j 6=m

b1j



 xk

∣

∣

∣

∣

∣

∣

= |x1| = |xk| = |xm|.

But
∣

∣

∣

∣

∣

∣

b1mxm +





n
∑

j=1,j 6=m

b1j



 xk

∣

∣

∣

∣

∣

∣

≤





n
∑

j=1

b1j



 |xm| ≤ |xm|,
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therefore, we have
∣

∣

∣

∣

∣

∣

b1mxm +





n
∑

j=1,j 6=m

b1j



 xk

∣

∣

∣

∣

∣

∣

=





n
∑

j=1

b1j



 |xm|.

Again Lemma 2.1 means xk = xm, i.e. x1 = x2 = · · · = xn, a contradiction. That
completes the proof of the Lemma.

3. New Iterative Methods

To solve system (1.1), we propose a new iterative method. First, we split the matrix
A in the following way.

A = D̄ − Ē,

where

D̄ =





















a11

a22

. . .

ak1 ak2 · · · akk · · · akn

. . .

ann





















,

where 1 ≤ k ≤ n, all other entries are zero, and Ē = −(A − D̄). Then the iterative
method is given by

(I) x(k+1) = T̄ x(k) + D̄−1b, k = 0, 1, 2, · · · , (3.1)

where T̄ = D̄−1Ē. The following theorem shows that in terms of the infinity norm,
the norm of the iterative matrix of method (I) is less than or equal to the norm of
the iterative matrix of the Jacobi method.

Theorem 3.1. Assume that A = (aij)n×n,
∑n

j=1,j 6=i |aij | ≤ |aii|, |aii| > 0, i =

1, 2, · · · , n, n ≥ 2. Let T = D−1E and T̄ = D̄−1Ē be the iteration matrices for the
Jacobi method and the iterative method (I). Then ||T̄ ||∞ ≤ ||T ||∞.

Proof. Without loss of generality, we assume k = 1. Set

D =

[

a11 0
0 D1

]

, E = −(A − D) = −

[

0 α
β E1

]

and

D̄ =

[

a11 α
0 D1

]

, Ē = −(A − D̄) = −

[

0 0
β E1

]

.

Then calculation shows

D−1 =

[

a−1
11 0
0 D−1

1

]

, T = D−1E = −

[

0 a−1
11 α

D−1
1 β D−1

1 E1

]

and

D̄−1 =

[

a−1
11 −a−1

11 αD−1
1

0 D−1
1

]

, T̄ = D̄−1Ē = −

[

−a−1
11 αD−1

1 β −a−1
11 αD−1

1 E1

D−1
1 β D−1

1 E1

]

.
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Let T be partitioned into row vectors, i.e.

T = −
[

β1 β2 · · · βn

]T
.

It then follows that

T̄ = −

[

−a−1
11 α

[

β2 β3 · · · βn

]T

[

β2 β3 · · · βn

]T

]

.

Since

∣

∣

∣

∣

∣

∣−a−1
11 α

[

β2 β3 · · · βn

]T
∣

∣

∣

∣

∣

∣

1
=

∣

∣

∣

∣

∣

∣

∣

∣

a12

a11
β2 +

a13

a11
β3 + · · · +

a1n

a11
βn

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
|a12| + |a13| + · · · + |a1n|

|a11|
max

2≤i≤n
||βi||1 ≤ max

2≤i≤n
||βi||1.

Therefore,

||T̄ ||∞ = max
2≤i≤n

||βi||1 ≤ max
1≤i≤n

||βi||1 = ||T ||∞,

completing the proof.

Theorem 3.2. Let A = (aij)n×n, aij > 0,
∑

j=1,j 6=i aij ≤ aii, n ≥ 3. Then the

iteration matrix T̄ of the method (I) satisfies ρ(T̄ ) < 1, i.e. the iterative method (I)
converges.

Proof. Without loss of generality, we assume k = 1. Then as showed in Theorem
3.1, we have

T̄ = −

[

−a−1
11 αT D−1

1 β −a−1
11 αT D−1

1 E1

D−1
1 β D−1

1 E1

]

def
= −















−b11 −b12 −b13 · · · −b1n

b21 0 b23 · · · b2n

b31 b32 0 · · · b3n

...
...

...
. . .

...
bn1 bn2 bn3 · · · 0















where bij =
aij

aii
, i = 2, 3, · · · , n, j 6= i, j = 1, 2, · · · , n, and

n
∑

j=1,j 6=i

bij =

n
∑

j=1,j 6=i

aij

aii

≤ 1, i = 2, 3, · · · , n.

Now
[

b11 b12 · · · b1n

]

= a−1
11 αD−1

1 [β E1]

=
[

a12

a11

a13

a11

· · · a1n

a11

]











b21 0 b23 · · · b2n

b31 b32 0 · · · b3n

...
...

...
. . .

...
bn1 bn2 bn3 · · · 0











.
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Obviously, b1j > 0, j = 1, 2, · · · , n and

n
∑

j=1

b1j =
[

a12

a11

a13

a11

· · · a1n

a11

]











b21 0 b23 · · · b2n

b31 b32 0 · · · b3n

...
...

...
. . .

...
bn1 bn2 bn3 · · · 0





















1
1
...
1











=
[

a12

a11

a13

a11

· · · a1n

a11

]













∑n

j=1,j 6=2 b2j

∑n

j=1,j 6=3 b3j

...
∑n

j=1,j 6=n bnj













≤
[

a12

a11

a13

a11

· · · a1n

a11

]













1

1
...
1













=

n
∑

j=2

a1j

a11
≤ 1.

By Lemma 2.2, the theorem is proved.

Remark 3.1. 1. The size n of the matrix A has to satisfy n ≥ 3. For instance,
let

A =

[

1 1
1 1

]

Then

T̄ = D̄−1Ē =

[

1 0
−1 0

]

,

and ρ(T̄ ) = 1.

2. The condition aij > 0 in the theorem is necessary. For instance, let

A =









1 1 0 0

0 1 0 0
0 0 1 1
0 0 1 1









.

Then

D̄ =









1 1 0 0

0 1 0 0
0 0 1 0
0 0 0 1









, and Ē = −









0 0 0 0

0 0 0 0
0 0 0 1
0 0 1 0









and

T̄ = D̄−1Ē = −









0 0 0 0

0 0 0 0
0 0 0 1
0 0 1 0









whose eigenvalues are 0, 0, 1, and −1. So ρ(T̄ ) = 1.

3. Notice that the iterative method (I) converges even if the matrix A is just
diagonally dominant.
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Corollary 3.1. Let A = (aij)n×n, aij > 0,
∑

j=1,j 6=i aij ≤ aii, n ≥ 3. Then A is
invertible.

Proof. Suppose that A is not invertible, then there exists a vector x̄ 6= 0 ∈ Rn

such that Ax̄ = (D̄ − Ē)x̄ = 0. Thus, D̄−1Ēx̄ = x̄. This implies that 1 is an
eigenvalue of T̄ , and ρ(T̄ ) ≥ 1, a contradiction.

The following is a simplified version of the method (I) which we will call it
method (II). To show that the method converges, we use a result about an a-
transformation, ϕa, on vector space Mn(R), introduced by Zheng and Wang [14].
In this method, we split A = D̄1 − Ē1 as

D̄1 =







































a11

. . .

aii aij

. . .

ajj

. . .

ann







































where 1 ≤ i, j ≤ n and all other entries are zero, and Ē1 = −(A − D̄1). Then the
iterative scheme is given by

(II) x(k+1) = T̄1x
(k) + D̄−1

1 b, k = 0, 1, 2, · · · , (3.2)

where T̄1 = D̄−1
1 Ē1. We have the following result.

Theorem 3.3. Let A = (aij)n×n, aij > 0,
∑

j=1,j 6=i aij ≤ aii, n ≥ 3. Then the

iteration matrix T̄1 of the method (II) satisfies ρ(T̄1) < 1, i.e. the iterative method
(II) converges.

Proof. Without loss of generality, we assume i = 1, j = 2. Then we have

T̄1 =





























−
a12a21

a11a22
0

a13

a11
−

a12a23

a11a22
· · ·

a1n

a11
−

a12a2n

a11a22

a21

a22
0

a23

a22
· · ·

a2n

a22
...

...
. . .

...

...
...

. . .
...

an1

ann

an2

ann

an3

ann

· · · 0





























.

Obviously, the sum of the absolute values of the entries of the ith row, i = 2, 3, · · · , n,
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is less than or equal to 1. The entries of the first row satisfy
∣

∣

∣

∣

−
a12a21

a11a22

∣

∣

∣

∣

+

∣

∣

∣

∣

a13

a11
−

a12a23

a11a22

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

a13

a11
−

a12a2n

a11a22

∣

∣

∣

∣

<
a12

a11a22
(a21 + a23 + · · · + a2n) +

a13

a11
+

a14

a11
+ · · · +

a1n

a11

≤
a12

a11
+

a13

a11
+ · · · +

a1n

a11
≤ 1.

(3.3)

Since ai1

aii
> 0, i = 2, 3, · · · , n, it follows that the 1-transformation ϕ1 satisfies

ϕn
1 (T̄1) = 0. Therefore, ρ(T̄1) < 1 by Theorem 3, [14].

The following theorem shows that the requirement of aij > 0 in Theorem 3.4 is
not necessary.

Theorem 3.4. Let A = (aij)n×n, n ≥ 3, satisfy

(a)
∑

j=1,j 6=i |aij | ≤ |aii|, aii 6= 0, i = 1, 2, · · · , n.

(b) There exist three different indexes p, q, r such that aip 6= 0, i = 1, 2, · · · , n,
and apqapraqqaqr > 0.

If D̄1 and Ē1 are chosen such that

D̄1 =



























a11

. . .

app apq

. . .

aqq

. . .

ann



























and the other entries are zero, and Ē1 = A − D̄1. Then ρ(D̄−1
1 Ē1) < 1.

Proof. The proof of the theorem follows immediately by noticing that the strict
inequality (3.3) holds if condition (b) holds.

Remark 3.2. The following matrix A shows that what condition (b) means.

A =









































a11 a1p

. . .
...

app apq apr

. . .
... aqq aqr

. . .
... arr

. . .

anp ann









































,

where the entries shown are nonzero entries.
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Example: Let A be the following matrix.

A =











1 1 0 0

0 2 1 −1

0 −1 2 −1

0 1 0 1











.

Then A is not strictly diagonally dominant, nor is irreducibly diagonally dominant.
Jacobi or Gauss-Seidel method may not converge. But A satisfies all conditions in
Theorem 3.5. If the split given in Theorem 3.5 is performed, it gives ρ(T̄1) = 1/2,
the method is convergent.

4. Conclusions

In this paper, we propose some new methods for solving linear systems based on
the classical Jacobi method. Comparing to Gauss-Seidel method, SOR method and
other preconditioning methods, these methods are easy to construct and the condi-
tions for convergence are easy to check. The proposed new methods are convergent
as long as the coefficient matrix is diagonally dominant, while the classical meth-
ods require that the matrix be either strictly diagonally dominant or irreducibly
diagonally dominant. While the norm of the iterative matrix can be used to give a
sufficient condition for convergence, we show that the infinity norm of the iterative
matrix of the new methods are less than or equal to that of the iterative matrix of
the Jacobi method.
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