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NUMERICAL SOLUTION OF FUZZY

CAMASSA-HOLM EQUATION BY USING

HOMOTOPY ANALYSIS METHODS

Sh. Sadigh Behzadi†

Abstract In this paper, a fuzzy Camassa-Holm equation is solved by using
the homotopy analysis method (HAM). The approximation solution of this
equation is calculated in the form of series which its components are computed
by applying a recursive relation. The existence and uniqueness of the solution
and the convergence of the proposed method are proved.
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1. Introduction

The Camassa-Holm equations are well suited to modeling the statistical of turbulent
fluid flows [4]-[6]. Camassa and Holm derived a completely integrable wave equation
(CH)

ut + 2ux − uxxt + uux = 2uxuxx + uuxxx. (1)

The exact solution is u(x, t) = ex+t, with the initial conditions:

u(x, 0) = uxx(x, 0) = ex.

Eq.(1) can be derived as an asymptotic model for long gravity waves at the
surface of shallow water [3]. The CH equation, being a model equation for water
waves, has its integrable bi-Hamiltonian structure [10]. In recent years, some works
have been done in order to find the numerical solution of this equation, for example
[7, 9, 11, 12, 15, 16, 17, 19, 25, 26, 27, 28, 29, 30, 31, 32].

In this work, we develop the HAM to solve the Camassa-Holm equation with
the fuzzy initial conditions as follows:

ũt ⊕ 2⊙ ũx ⊕ (−1)⊙ ũxxt ⊕ ũ⊙ ũx = 2⊙ ũx ⊙ ũxx ⊕ ũ⊙ ũxxx. (2)

The exact fuzzy solution is u(x, t, γ) = (u(x, t, γ), u(x, t, γ) = (ex+t(−γ2 + γ +
1), ex+t(γ2 − 3γ + 3)), with the initial conditions:

u(x, 0, γ) = (ex(−γ2 + γ + 1), ex(γ2 − 3γ + 3)), 0 ≤ γ ≤ 1,

uxx(x, 0, γ) = (ex(−γ2 + γ + 1), ex(γ2 − 3γ + 3)).
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To obtain the approximate solution of Eq.(2), by integrating one time Eq.(2)
with respect to t and using the fuzzy initial conditions we obtain,

ũ(x, t)F̃ (x, t)⊕ (−2)⊙

∫ t

0

D(ũ(x, t)) dt

⊕(−1)⊙

∫ t

0

F1(ũ(x, t)) dt⊕ 2⊙

∫ t

0

F2(ũ(x, t)) dt⊕

∫ t

0

F3(ũ(x, t)) dt,

(3)

where,

Di(ũ(x, t)) =
∂iũ(x, t)

∂xi
, i = 1, 2, 3,

F̃ (x, t) = ũ(x, 0)⊕ (−1)⊙ ũxx(x, 0)⊕D2(ũ(x, 0)),

F1(u(x, t)) = ũ(x, t) ⊙D(ũ(x, t)),

F2(u(x, t)) = D(ũ(x, t))⊙D2(ũ(x, t)), v

F3(u(x, t)) = ũ(x, t) ⊙D3(ũ(x, t))

D(ũ(x, t)) = D2(ũ(x, t)) = D3(ũ(x, t)) = (ux(x, t, γ), ux(x, t, γ)

= (ex+t(−γ2 + γ + 1), ex+t(γ2 − 3γ + 3))

By interval arithmetic we can write the Camassa-Holm equation (2) in the fol-
lowing term:

[ut, ut] + 2[ux, ux]− [uxxt, uxxt] + [u, u][ux, ux]

= 2[ux, ux][uxx, uxx] + [u, u][uxxx, uxxx],
(4)

by above hypothesis we can write two systems and by assuming that u ,ut ux,uxx,
uxxt and uxxx are positive functions, we have two following crisp systems:

u(x, t, γ) = F (x, t, γ)− 2

∫ t

0

D(u(x, t, γ)) dt−

∫ t

0

F1(u(x, t, γ)) dt+

2

∫ t

0

F2(u(x, t, γ)) dt +

∫ t

0

F3(u(x, t, γ)) dt,

(5)

u(x, t, γ) = F (x, t, γ)− 2

∫ t

0

D(u(x, t, γ)) dt−

∫ t

0

F1(u(x, t, γ)) dt+

2

∫ t

0

F2(u(x, t, γ)) dt +

∫ t

0

F3(u(x, t, γ)) dt,

(6)

In Eq.(3), we assume F̃ (x, t) is bounded for all x, t in J = [0, T ](T ∈ R).

The terms D(ũ(x, t)), F1(ũ(x, t)), F2(ũ(x, t)), F3(ũ(x, t)) are Lipschitz continu-
ous with

D̂(Fi(ũ), Fi(ũ
∗)) ≤ Li D̂(ũ, ũ∗)(i = 1, 2, 3), D̂(D(ũ, ũ∗) ≤ LD̂(ũ, ũ∗) , where D̂

is the Hausdorff metric [18] and,

α := T (2L + L1 + 2L2 + L3).
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2. Preliminaries

The basic definition of a fuzzy number is given in [14, 18] as follows:

Definition 2.1. A fuzzy number is a fuzzy set like u : R→ [0, 1] which satisfies:

1. u is an upper semi-continuous function,

2. u(x) = 0 outside some interval [a,d],

3. There are real numbers b, c such as a ≤ b ≤ c ≤ d and

3.1 u(x) is a monotonic increasing function on [a, b],

3.2 u(x) is a monotonic decreasing function on [c, d],

3.3 u(x) = 1 for all x ∈ [b, c].

Definition 2.2. A fuzzy number u in parametric form is a pair (u, u) of functions
u(r), u(r), 0 ≤ r ≤ 1, which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and right
continuous at 0,

2. u(r) is a bounded non-increasing left continuous function in (0, 1], and right
continuous at 0,

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

Definition 2.3. For arbitrary ũ = (u(r), u(r)) and ṽ = (v(r), v(r)) and scalar k,
we define addition, subtraction and scalar multiplication by k are respectively as
following:

u + v(r) = u(r) + v(r), u + v(r) = u(r) + v(r)

u− v(r) = u(r) − v(r), u− v(r) = u(r) − v(r)

k̃u =

{
(ku(r), ku(r)), k ≥ 0
(ku(r), ku(r)), k < 0

u =

∞∑

i=0

ui,

u =

∞∑

i=0

ui.

Now we can solve this two crisp equations.

3. Description of the HAM

Consider
N [u] = 0,

where N is a nonlinear operator, u(x, t) is unknown function and x is an independent
variable. let u0(x, t) denote an initial guess of the exact solution u(x, t), h 6= 0 an
auxiliary parameter, H1(x, t) 6= 0 an auxiliary function, and L an auxiliary linear
operator with the property L[s(x, t)] = 0 when s(x, t) = 0. Then using q ∈ [0, 1] as
an embedding parameter, we construct a homotopy as follows:
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(1 − q)L[φ(x, t; q)− u0(x, t)] − qhH1(x, t)N [φ(x, t; q)]

= Ĥ [φ(x, t; q); u0(x, t), H1(x, t), h, q].
(7)

It should be emphasized that we have great freedom to choose the initial guess
u0(x, t), the auxiliary linear operator L, the non-zero auxiliary parameter h, and
the auxiliary function H1(x, t).

Enforcing the homotopy (7) to be zero, i.e.,

Ĥ1[φ(x, t; q); u0(x, t), H1(x, t), h, q] = 0, (8)

we have the so-called zero-order deformation equation

(1− q)L[φ(x, t; q) − u0(x, t)] = qhH1(x, t)N [φ(x, t; q)]. (9)

When q = 0, the zero-order deformation Eq.(9) becomes

φ(x; 0) = u0(x, t), (10)

and when q = 1, since h 6= 0 and H1(x, t) 6= 0, the zero-order deformation Eq.(9) is
equivalent to

φ(x, t; 1) = u(x, t). (11)

Thus, according to (10) and (11), as the embedding parameter q increases from
0 to 1, φ(x, t; q) varies continuously from the initial approximation u0(x, t) to the
exact solution u(x, t). Such a kind of continuous variation is called deformation in
homotopy [20, 21, 8, 22, 23, 24].

Due to Taylor’s theorem, φ(x, t; q) can be expanded in a power series of q as
follows

φ(x, t; q) = u0(x, t) +

∞∑

m=1

um(x, t)qm, (12)

where,

um(x, t) =
1

m!

∂mφ(x, t; q)

∂qm
|q=0 .

Let the initial guess u0(x, t), the auxiliary linear parameter L, the nonzero aux-
iliary parameter h and the auxiliary function H1(x, t) be properly chosen so that
the power series (12) of φ(x, t; q) converges at q = 1, then, we have under these
assumptions the solution series

u(x, t) = φ(x, t; 1) = u0(x, t) +

∞∑

m=1

um(x, t). (13)

From Eq.(12), we can write Eq.(9) as follows

(1− q)L[φ(x, t, q) − u0(x, t)]

= (1− q)L[
∑

∞

m=1 um(x, t) qm]

= q h H1(x, t)N [φ(x, t, q)]

⇒ L[
∑

∞

m=1 um(x, t) qm]− q L[
∑

∞

m=1 um(x, t)qm]

= q h H1(x, t)N [φ(x, t, q)]

(14)
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By differentiating (14) m times with respect to q, we obtain

{L[
∑

∞

m=1 um(x, t) qm]− q L[
∑

∞

m=1 um(x, t)qm]}(m)

= {q h H1(x, t)N [φ(x, t, q)]}(m)

= m! L[um(x, t) − um−1(x, t)]

= h H1(x, t) m
∂m−1N [φ(x,t;q)]

∂qm−1 |q=0 .

Therefore,

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)ℜm(um−1(x, t)), (15)

where,

ℜm(um−1(x, t)) =
1

(m− 1)!

∂m−1N [φ(x, t; q)]

∂qm−1
|q=0, (16)

and

χm =

{
0, m ≤ 1
1, m > 1

Note that the high-order deformation Eq.(15) is governing the linear operator
L, and the term ℜm(um−1(x, t)) can be expressed simply by (16) for any nonlinear
operator N .

To obtain the approximation solution of Eq.(5), according to HAM, let

N [u(x, t)] = u(x, t) − F (x, t) + 2
∫ t

0
D(u(x, t)) dt +

∫ t

0
F1(u(x, t)) dt

−2
∫ t

0 F2(u(x, t)) dt−
∫ t

0 F3(u(x, t)) dt,

so,

ℜm(um−1(x, t))

= um−1(x, t) − F (x, t) + 2
∫ t

0 D(um−1(x, t)) dt +
∫ t

0 F1(um−1(x, t)) dt

−2
∫ t

0
F2(um−1(x, t)) dt−

∫ t

0
F3(um−1(x, t)) dt,

(17)

Substituting (17) into (15)

L[um(x, t) − χmum−1(x, t)]

= hH1(x, t)[um−1(x, t) + 2
∫ t

0
D(um−1(x, t)) dt +

∫ t

0
F1(um−1(x, t)) dt

−2
∫ t

0 F2(um−1(x, t)) dt−
∫ t

0 F3(um−1(x, t)) dt + (1− χm)F (x, t)].

(18)

We take an initial guess u0(x, t) = F (x, t), an auxiliary linear operator Lu = u,
a nonzero auxiliary parameter h = −1, and auxiliary function H1(x, t) = 1. This is
substituted into (18) to give the recurrence relation

u0(x, t) = F (x, t),

un+1(x, t) = −2
∫ t

0 D(un(x, t)) dt−
∫ t

0 F1(un(x, t)) dt

+2
∫ t

0
F2(un(x, t)) dt +

∫ t

0
F3(un(x, t)) dt, n ≥ 1.

(19)
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Also, we can write

u0(x, t) = F (x, t),

un+1(x, t) = −2
∫ t

0 D(un(x, t)) dt−
∫ t

0 F1(un(x, t)) dt

+2
∫ t

0
F2(un(x, t)) dt +

∫ t

0
F3(un(x, t)) dt, n ≥ 1.

(20)

(x, t) Errors (D̂)
(γ = 0.3, n=4))

Errors (D̂)
(γ = 0.5,n=4)

(0.3, 0.15) 0.030281 0.032267
(0.35, 0.20) 0.034184 0.032267
(0.4, .25) 0.038754 0.036754
(0.45, 0.30) 0.032683 0.038867
(0.5, 0.37) 0.045375 0.043578
(0.55, 0.40) 0.047284 0.045638
(0.6, 0.45) 0.049881 0.047245
(0.65, 0.48) 0.052674 0.051257
(0.7, 0.50) 0.055843 0.053897
(0.75, 0.54) 0.057698 0.056245
(0.8, 0.62) 0.059675 0.057895

4. Existence and convergency of homotopy analysis

method

Theorem 4.1. Let 0 < α < 1, then equation (3), has a unique solution.

Proof. Let ũ and ũ∗ be two different solutions of (3) then

D(ũ, ũ∗)

= D(F̃ (x, t)⊕ (−2)⊙
∫ t

0
D(ũ(x, t)) dt

⊕(−1)⊙
∫ t

0 F1(ũ(x, t)) dt⊕ 2⊙
∫ t

0 F2(ũ(x, t)) dt⊕
∫ t

0 F3(ũ(x, t)) dt,

F̃ (x, t) ⊕ (−2)⊙
∫ t

0 D(ũ∗(x, t)) dt⊕ (−1)⊙
∫ t

0 F1(ũ
∗(x, t)) dt

⊕2⊙
∫ t

0
F2(ũ

∗(x, t)) dt⊕
∫ t

0
F3(ũ

∗(x, t)) dt)

≤ T (2L + L1 + 2L2 + L3) D(ũ, ũ∗) = α D(ũ, ũ∗).

From which we get (1 − α)D(ũ, ũ∗) ≤ 0. Since 0 < α < 1, then D(ũ, ũ∗) = 0.
Implies ũ = ũ∗ and completes the proof.

Theorem 4.2. If the series solutions (19) and (20) of problem (3) using HAM
convergent then it converges to the exact solution of the problem (3).

Proof. We assume:

φk+1(x, t) = F (x, t)⊕
∑k+1

i=1 [(−2)⊙
∫ t

0 D(ũ(x, t)) dt

⊕(−1)⊙
∫ t

0 F1(ũ(x, t)) dt⊕ 2⊙
∫ t

0 F2(ũ(x, t)) dt

⊕
∫ t

0
F3(ũ(x, t)) dt], k ≥ 0.
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D(φk+1(x, t), φk(x, t))

= D(F (x, t) ⊕
∑k+1

i=1 [(−2)⊙
∫ t

0 D(ũi(x, t)) dt

⊕(−1)⊙
∫ t

0 F1(ũi(x, t)) dt⊕ 2⊙
∫ t

0 F2(ũi(x, t)) dt⊕
∫ t

0 F3(ũi(x, t)) dt],

F (x, t)⊕
∑k+1

i=1 [(−2)⊙
∫ t

0
D(ũi−1(x, t)) dt⊕ (−1)⊙

∫ t

0
F1(ũi−1(x, t)) dt

⊕2⊙
∫ t

0
F2(ũi−1(x, t)) dt⊕

∫ t

0
F3(ũi−1(x, t)) dt])

= D(φk(x, t)⊕ (−2)⊙
∫ t

0

∫ x

a
(x− t) ⊙ F1(uk(x, t)) dt dx

⊕(−1)⊙
∫ t

0

∫ x

a
(x − t) ⊙ F2(uk(x, t)) dt dx, φk(x, t))

= D((−2)⊙
∫ t

0
D(ũ(x, t)) dt⊕ (−1)⊙

∫ t

0
F1(ũ(x, t)) dt

⊕2⊙
∫ t

0
F2(ũ(x, t)) dt⊕

∫ t

0
F3(ũ(x, t)) dt, 0̃)

≤ D(ũk(x, t), 0̃)

D(ũk(x, t), 0̃) ≤ αkD(F, 0̃)

=⇒ D(φk+1(x, t), φk(x, t)) ≤ αk+1D(F, 0̃)

=⇒
∑

∞

k=0 D(φk+1(x, t), φk(x, t)) ≤ αk+1D(F, 0̃)
∑

∞

k=0 αk.

Algorithm:

Step 1. Set n← 0.
Step 2. Calculate the recursive relations (19) and (20).

Step 3. If | un+1 − un |< ε then go to step 4,
else n← n + 1 and go to step 2.

Step 4. Print u(x, t) =
∑n

i=0 ui(x, t) as the approximate of the exact solution.

Lemma 4.1. The computational complexity of the HAM is O(n).

Proof. The number of computations including division, production, sum and sub-
traction.

u0, u0 : 6.

u1, u1 : 22.

.

.
un+1, un+1 : 22.

The total number of the computations is equal to∑n+1
i=0 ui(x, t) +

∑n+1
i=0 ui(x, t) = O(n).

5. Conclusion

The HAM has been shown to solve effectively, easily and accurately a large class
of nonlinear problems with the approximations which convergent are rapidly to the
exact solutions. In this work, the HAM has been successfully employed to obtain
the approximate analytical solution of the fuzzy Camassa-Holm equation.
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