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DUALITY THEORY OF REGULARIZED

RESOLVENT OPERATOR FAMILY∗
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Abstract Let k ∈ C(R+), A be a closed linear densely defined operator in
the Banach space X and {R(t)}t≥0 be an exponentially bounded k-regularized
resolvent operator families generated by A. In this paper, we mainly study
pseudo k-resolvent and duality theory of k-regularized resolvent operator fam-
ilies. The conditions that pseudo k-resolvent become k-resolvent of the closed
linear densely defined operator A are given. The some relations between the
duality of the regularized resolvent operator families and the generator A are
gotten. In addition, the corresponding results of duality of k-regularized re-
solvent operator families in Favard space are educed.
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1. Introduction

The notion of the regularized resolvent operator family was recently introduced by
Lizama [4] and it is a nature extension of resolvent operator family [3, 10]. For
example, the notions of C0-semigroup, integrated semigroup, strongly continuous
cosine operator function, integrated cosine function, integrated resolvent family
and convolution semigroup and so on may be unified under the frame of regularized
resolvent operator family. Thus it is a very significative thing that some problems
of the regularized resolvent operator family are studied. The main purpose of this
paper is to study duality problem of k-regularized resolvent operator families. We
must first study the pseudo k-resolvent for the sake of this goal. The conditions
that pseudo k-resolvent become k-resolvent of the closed linear densely defined
operator A are given. The some relations between the duality of the regularized
resolvent operator families and the generator A are gotten. The results that we
obtain generalize and include the correspondingly case of the pseudo-resolvent and
the duality problem of the C0-semigroup and other operator families(see [1, 2, 8, 9]).
In addition, the Favard class and its norm of the operator family are introduced.
The correlating problems between the Favard class of the operator family and the
duality of the generator A are studied. Recently, Lizana and Humberto [7] have
construct a duality theory for k-regularized resolvents and ex-tending some of the
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known theorems for dual semigroups. But our results in this paper are different
with Lizana and Humberto in [7].

Let C denote the complex plane. Let X be a complex Banach space with norm
‖ · ‖ and B(X) be the set of all bounded linear operators from X to itself. We
will use that X∗ denotes the dual space of the X and write that < x∗, x >= x∗(x)
denotes the value of x∗ ∈ X∗ at x ∈ X . If A is a closed linear densely defined
operator in X , we will write D(A) for its domain, R(A) for its range and N (A) for
its zero space, ρ(A) for its resolvent set and A∗ for the adjoint operator of A.

Let R
+ = [0,∞). Consider the linear Volterra equation

u(t) = f(t) +

∫ t

0

a(t − s)Au(s)ds, (1.1)

where a ∈ L1
loc(R

+) is scalar kernel 6= 0, f ∈ C(J, X) and J = [0, T ] (T > 0).

Definition 1.1 Let A be closed and densely defined operator on X and k ∈ C(R+)
be a scalar kernel. A family {R(t)}t≥0 is called a k-regularized resolvent family if
the following conditions are satisfied.

(a) R(t) is strongly continuous on R+ and R(0) = k(0)I;
(b) R(t)x ∈ D(A) and AR(t)x = R(t)Ax for all x ∈ D(A) and t ≥ 0;
(c) the k-regularized resolvent equation holds

R(t)x = k(t)x +

∫ t

0

a(t − s)AR(s)xds, ∀x ∈ D(A), t ≥ 0.

In addition, if there exists constants M ≥ 1, ω ∈ R, such that ‖R(t)‖ ≤ Meωt (t ≥
0), then {R(t)}t≥0 is called an exponentially bounded regularized resolvent family.
If k(t) ≡ 1, then {R(t)}t≥0 is called a resolvent family (see [3, 10]).

If a ∈ L1
loc(R

+) and there exists constant ω > 0 such that
∫ ∞

0
e−ωs|a(s)|ds < ∞,

then the Laplace transform â(λ) exists for all Reλ > 0. Throughout this paper, we
suppose that the Laplace transform of a(t), k(t) and R(t) exists for all Reλ > 0. â(λ)

and k̂(λ) and R̂(λ) denote the Laplace transform of a(t), k(t) and R(t), respectively.
We will have the following assumption for a ∈ L1

loc(R
+) and k ∈ C(R+).

(H) There exists that ǫa,k > 0 and ta,k > 0 such that for all 0 < t < ta,k,

|

∫ t

0

a(t − s)k(s)ds| ≥ ǫa,k

∫ t

0

|a(t − s)k(s)|ds.

and 1
|k(t)|

∫ t

0
|a(s)|ds → 0 (t → 0+).

Lemma 1.2 ([6]) A generates an exponentially bounded k-regularized resolvent
family {R(t)}t≥0, and

lim
t→0+

inf
‖R(t)‖

|k(t)|
< ∞.

If the assumption (H) holds, then

(a) For x ∈ X, limt→0+ [(k ∗ a)(t)]−1
∫ t

0 a(t − s)R(s)xds = x,

(b) For all x ∈ D(A), Ax = limt→0+
R(t)x−k(t)x

(k∗a)(t) , where

D(A) = {x ∈ X : lim
t→0+

R(t)x − k(t)x

(k ∗ a)(t)
exists}.
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Lemma 1.3 Let A be closed and densely defined operator in the Banach space
X. If the resolvent set ρ(A) of A contains R+

ω = {λ ∈ R, λ > ω}, and there exists
the constant M > 0 such that for λ ∈ R+

ω ,

‖(I − â(λ)A)−1‖ ≤ M(λ − ω)−1, (1.2)

then we have

lim
λ→∞

(I − â(λ)A)−1x = x. (1.3)

Proof. For all x ∈ D(A) and λ > ω, we have that

‖(I − â(λ)A)−1x − x‖ = ‖â(λ)A(I − â(λ)A)−1x‖
= ‖â(λ)(I − â(λ)A)−1Ax‖ ≤ M(λ − ω)−1‖Ax‖ → 0 (λ → ∞).

By (1.2), there exists the constant M ′, ω̃ > ω such that

‖(I − â(λ)A)−1‖ ≤ M ′,

for λ ∈ [ω̃, +∞). This show that (I − â(λ)A)−1 is the uniform bounded on λ ≥ ω̃.
Thus, by D(A) = X , (1.3) holds for all x ∈ X .

The following generation theorem of the k-regularized resolvent families will play
an important role in the latter proofs (see [4]).

Lemma 1.4 Let A be closed and densely defined operator in the Banach space X.
Then A generates an exponentially bounded k-regularized resolvent family {R(t)}t≥0

if and only if

(a) â(λ) 6= 0 and 1/â(λ) ∈ ρ(A), ∀λ > ω;

(b) H(λ, A) = k̂(λ)(I − â(λ)A)−1 calls the k-resolvent of A and it satisfies the
estimates

‖H(n)(λ, A)‖ ≤
Mn!

(λ − ω)n+1
∀λ > ω, n ∈ N

The following Lemma may be found in [9].

Lemma 1.5 If S is a bounded operator on X, then S∗ is a bounded operator on X∗

and ‖S‖ = ‖S∗‖.

Lemma 1.6 Let A be closed and densely defined operator on X. If 1/â(λ) ∈ ρ(A),
then 1/â(λ) ∈ ρ(A∗) and H(λ, A∗) = H(λ, A)∗.

Proof. By the definition of the adjoint, we have

(I − â(λ)A)∗ = I∗ − â(λ)A∗,

where I∗ is an unit operator in X∗. Because H(λ, A) is a bounded operator,
H(λ, A)∗ also is a bounded operator in X∗ by Lemma 1.5. In the following, we will
prove that H(λ, A∗) exists and is equal to H(λ, A)∗. We first prove that I∗− â(λ)A∗

is one-to-one. In fact, if (I∗ − â(λ)A∗)x∗ = 0 for some x∗ 6= 0, then

< (I∗ − â(λ)A∗)x∗, x >=< (I − â(λ)A)x, x∗ >= 0, x ∈ D(A).
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Because 1/â(λ) ∈ ρ(A),R(I− â(λ)A) = X , x∗ = 0 and (I∗− â(λ)A∗) are one-to-one.
For x ∈ X, x∗ ∈ D(A∗), we have

< x∗, x > = < x∗, k̂(λ)−1(I − â(λ)A)H(λ, A)x >

= < k̂(λ)−1(I∗ − â(λ)A∗)x∗, H(λ, A)x >

Thus,
H(λ, A)∗k̂(λ)−1(I∗ − â(λ)A∗)x∗ = x∗, ∀x∗ ∈ D(A∗). (1.4)

On the other hand, if x∗ ∈ X∗ and x ∈ D(A), then

< x∗, x > = < x∗, k̂(λ)−1(I − â(λ)A)H(λ, A)x >

= < k̂(λ)−1(I∗ − â(λ)A∗)x∗, H(λ, A)x > .

This implies that

k̂(λ)−1(I∗ − â(λ)A∗)H(λ, A)∗x∗ = x∗, ∀x∗ ∈ X∗. (1.5)

By (1.4) and (1.5), we obtain that 1/â(λ) ∈ ρ(A∗) and H(λ, A∗) = H(λ, A)∗.
In the following, we give out an exponential representation formula of the k-

regularized resolvent families {R(t)}t≥0(see [5]).

Lemma 1.7 Let A generate an exponentially bounded k-regularized resolvent family
{R(t)}t≥0. Then for x ∈ X, uniformly for t in bounded intervals of R+ we have

R(t)x = lim
n→∞

J(
n

t
, A) = lim

n→∞

n∑

k=0

∑ (
n
k

)
k!m!(−1)n+m

n!i!j! · · ·h!
(ẏ(

n

t
)/1!)i(ÿ(

n

t
)/2!)j · · ·

(y(l)(
n

t
)/l!)hy−m−1(

n

t
)x(n−k)(

n

t
)(

n

t
)n+1(I − â(

n

t
)A)−m−1x, (1.6)

where x(λ) = k̂(λ)
â(λ) , y(λ) = 1

â(λ) ,i + 2j + · · · + lh = k ; i + j + · · · + h = m.

2. Pseudo-k-resolvent

Definition 2.1 Let ∆ be a subset of the complex plane C, a ∈ L1
loc(R

+) and

k ∈ C(R+). If the bounded linear operator families L(λ) = k̂(λ)J(λ) (λ ∈ ∆) on X
and J(λ) satisfies

â(λ)J(λ) − â(µ)J(µ) = (â(λ) − â(µ))J(λ)J(µ), (2.1)

then L(λ) is called a pseudo k-resolvent on ∆.
The main aim in this section is to determine conditions under which there exists

a densely defined closed linear operator A such that L(λ) is the k-resolvent family
of A.

Lemma 2.2. Let ∆ be a subset of the complex plane C. If L(λ) is a pseudo k-
resolvent on ∆, then L(λ)L(µ) = L(µ)L(λ). The null space N (L(λ)) and the range
R(L(λ)) are independent of λ ∈ ∆, and N (L(λ)) is a closed subspace of X.

Proof. It is evident from (2.1) that L(λ) and L(µ) commute for λ, µ ∈ ∆ and

â(λ)J(λ) = J(µ)[â(µ) + (â(λ) − â(µ))J(λ)].
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Hence R(J(µ)) ⊂ R(J(λ)) and R(J(µ)) = R(J(λ)). Similarly, we may prove that
N (J(µ)) = N (J(λ)). By Definition 2.1, our claims hold. The closedness of N (L(λ))
is evident.

Theorem 2.3. Let ∆ be a subset of the complex plane C. If L(λ) is a pseudo k-
resolvent on ∆ and limλ→∞ J(λ)x = x for any x ∈ X, then L(λ) is the k-resolvent
of a unique densely defined closed linear operator A if and only if N (L(λ)) = {0}
and R(L(λ)) is dense in X.

Proof. We first prove the necessity. If L(λ) is a k-resolvent of the closed densely
defined linear operator A, then x = limn→∞ yn for any x ∈ X , where yn = J(n)x ∈
R(L(n)). Let L(λ)x = 0 for λ ∈ ∆. Then x = limλ→∞ J(λ)x = 0 for any x ∈ X .
This means that R(L(λ)) is dense in X and N (L(λ)) = {0}.

Now we assume that N (L(λ)) = {0} and R(L(λ)) is dense in X . From N (L(λ))
= {0} we see that L(λ) is one-to-one. Let λ0 ∈ ∆ and set

A = â(λ0)
−1(I − J(λ0)

−1).

Then A is linear, closed and D(A) = R(L(λ0)) is dense in X . Further, we have

(I − â(λ0)A)J(λ0) = J(λ0)(I − â(λ0)A) = I.

Thus L(λ0) = k̂(λ0)(I − â(λ0)A)−1. If λ ∈ ∆, then

â(λ0)(I − â(λ)A)â(λ)J(λ)
= [(â(λ0) − â(λ) + â(λ)(I − â(λ0)A)]J(λ0)[â(λ0) − (â(λ0) − â(λ))J(λ)]
= â(λ0)â(λ) + (â(λ0) − â(λ))[â(λ0)J(λ0) − â(λ)J(λ)

−(â(λ0) − â(λ))J(λ0)J(λ)]
= â(λ0)â(λ).

â(λ0)
−1â(λ)−1 is multiplied in above two side and we obtain that (I−â(λ)A)L(λ) =

k̂(λ). Similarly, we may prove that L(λ)(I − â(λ)A) = k̂(λ). Thus we have that

L(λ) = k̂(λ)(I − â(λ)A)−1 for every λ ∈ ∆. In particular, A is independent of λ0

and is uniquely by L(λ).
In the following, we give out two useful sufficient conditions for a pseudo k-

resolvent to be a k-resolvent.

Theorem 2.4. Let ∆ be an unbounded subset of the complex plane C and let
L(λ) be pseudo k-resolvent on ∆. If R(L(λ)) is dense in X and there is a sequence
λn ∈ ∆ such that |λn| → ∞ and

‖J(λn)‖ ≤ M (2.2)

for some constant M , then L(λ) is the k-resolvent of a unique densely defined closed
linear operator A.

Proof. From (2.2) it follows that ‖J(λn)‖ → 0 as n → ∞. Let µ ∈ ∆. From (2.1)
we have that

‖â(λ0)(J(λn) − I)J(µ)‖ → 0 as n → ∞.

Therefore if x is in the range of L(µ),then we obtain that

J(λn)x → x as n → ∞. (2.3)
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Since R(L(λn)) is dense in X and J(λn) are uniformly bounded, we see that (2.3)
holds for every x ∈ X . If x ∈ N (L(λ)), then J(λn)x = 0 and from (2.3) we deduce
that x = 0. Thus N (L(λ)) = {0} and L(λ) is the k-resolvent of a densely defined
closed operator A by Theorem 2.3.

Corollary 2.5. Let ∆ be an unbounded subset of the complex plane C and let
L(λ) be pseudo k-resolvent on ∆. If there is a sequence λn ∈ ∆ such that |λn| → ∞
as n → ∞ and

lim
n→∞

J(λn)x = x ∀x ∈ X, (2.4)

then L(λ) is the k-resolvent of a unique densely defined closed operator A.

Proof. From the uniform boundedness theorem and (2.4) it follows that (2.2)
holds. From Lemma 2.2 we know that R(L(λ)) is independent of λ ∈ ∆ and from
(2.4) we deduce that R(L(λ)) is dense in X . Thus, the conditions of Theorem 2.4
hold and L(λ) is the k-resolvent of an operator A.

Remark: In above theorem 2.3 and 2.4, if we take that k(t) ≡ 1 and a(t) ≡ 1, then
we obtain taht the corresponding results on the C0−semigroup (see [9]).

3. The adjoint of the k-regularized resolvent fami-

lies

Let {R(t)}t≥0 be a k-regularized resolvent family on a Banach space X . Its adjoint
{R∗(t)}t≥0 is the k-regularized resolvent family on the dual space X∗ which is
obtained from {R(t)}t≥0 by taking pointwise in t the adjoint operators R∗(t) ≡
(R(t))∗. It is easy to see that {R∗(t)}t≥0 is also a k-regularized resolvent family. In
general, if {R(t)}t≥0 be a k-regularized resolvent family, then

| < x, R∗(t)x∗ − k(t)x∗ > | = | < (R(t)x − k(t)x, x∗ > | ≤ ‖x∗‖‖R(t)x − k(t)x‖

shows that R∗(t) is weak∗-continuous but it needn’t be strongly continuous. It
is well-known that if A is closed and densely defined, then A∗ is a weak∗-densely
defined, weak∗-closed operator (see[7]). But we have the following results.

Proposition 3.1 If A generate an exponentially bounded k-regularized resolvent
family {R(t)}t≥0 on X and {R∗(t)}t≥0 be its dual operator on x∗, then {R∗(t), t ≥
0} is the strongly continuous on D(A∗) and R∗(0) = k(0)I∗.

Proof. Let x∗ ∈ D(A∗). Then by Definition 1.1(c) we have

| < x, R∗(t)x∗ − k(t)x∗ > | = | < (a ∗ R)(t)x, A∗x∗ > |.

Because a(t) and R(t) are the exponentially bounded and strongly continuous,
{R∗(t), t ≥ 0} is the strongly continuous on D(A∗) and R∗(0)x∗ = k(0)I∗.

Proposition 3.2 Let A generate a k-regularized resolvent family {R(t)}t≥0 on X
and {R∗(t)}t≥0 be its dual operator on X∗. Then the following results hold.

(a) R∗(t)x∗ ∈ D(A∗) and A∗R∗(t)x∗ = R∗(t)A∗x∗, ∀x∗ ∈ D(A∗), t ≥ 0;

(b) For all t > 0 and x∗ ∈ X∗, ω∗ −
∫ t

0
a(t − s)R∗(s)x∗ds ∈ D(A∗) and

A∗(ω∗ −

∫ t

0

a(t − s)R∗(s)x∗ds) = R∗(t)x∗ − k(t)x∗. (3.1)
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In addition, if x∗ ∈ D(A∗), then

A∗(ω∗ −

∫ t

0

a(t − s)R∗(s)x∗ds) = ω∗ −

∫ t

0

a(t − s)R∗(s)A∗x∗ds. (3.2)

Proof.(a) If ∀x∗ ∈ D(A∗), x ∈ D(A) and t ≥ 0, then by Definition 1.1(b) we obtain

< R∗(t)x∗, Ax > = < x∗, R(t)Ax >=< x∗, AR(t)x >

= < A∗x∗, R(t)x >=< R∗(t)A∗x∗, x > .

Hence R∗(t)x∗ ∈ D(A∗) and A∗R∗(t)x∗ = R∗(t)A∗x∗.
(b) ∀x ∈ D(A), by Definition 1.1(c) we have

< ω∗ −

∫ t

0

a(t − s)R∗(s)x∗ds, Ax > =

∫ t

0

< a(t − s)R∗(s)x∗, Ax > ds

=

∫ t

0

< x∗, a(t − s)R(s)Ax > ds

= < x∗,

∫ t

0

a(t − s)R(s)Axds >

= < x∗, A

∫ t

0

a(t − s)R(s)xds >

= < x∗, R(t)x − k(t)x >

= < R∗(t)x∗ − k(t)x∗, x > .

This means that ω∗ −
∫ t

0
a(t − s)R∗(s)x∗ds ∈ D(A∗) and (3.1) holds. Similarly, we

may prove that (3.2) holds.
It is simple to see that R∗(t) leaves D(A∗) invariant from Proposition 3.2(a).
Let U∗(t) be an exponentially bounded ω∗ − k-regularized resolvent family on

X∗. The ω∗−generator of U∗(t) is the linear operator B on X∗ defined by




D(B) = {x∗ ∈ X∗, ω∗ − lim

t→0

U∗(t)x∗−k(t)x∗

(k∗a)(t) exist},

Bx∗ = ω∗ − lim
t→0

U∗(t)x∗−k(t)x∗

(k∗a)(t) , ∀x∗ ∈ D(B).

Theorem 3.2 Let {R(t), t ≥ 0} be an exponentially bounded k-regularized resolvent
family on X with the generator A and {R∗(t), t ≥ 0} be ω∗−k-regularized resolvent
family on x∗. If the assumption condition (H) holds, then A∗ is the ω∗−generator
of R∗(t).

Proof. Let B be the ω∗−generator of R∗(t) and for the fixed x∗ ∈ D(A∗) and any
x ∈ X . From Proposition 3.1 and Lemma 1.2 we have

lim
t→0

1

(k ∗ a)(t)
< R∗(t)x∗ − k(t)x∗, x >

= lim
t↓0

1

(k ∗ a)(t)
< A∗(ω∗ −

∫ t

0

a(t − s)R∗(s)x∗ds), x >

= lim
t↓0

1

(k ∗ a)(t)
< A∗x∗,

∫ t

0

a(t − s)R(s)xds >

=< A∗x∗, x > .
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Hence ω∗ − lim
t↓0

1
(k∗a)(t) (R

∗(t)x∗ − k(t)x∗) exists and equals A∗x∗. This shows that

x∗ ∈ D(B) and Bx∗ = A∗x∗, and therefore A∗ ⊂ B. To prove the converse
inclusion, for the fixed x∗ ∈ D(B) and any x ∈ D(A),

< Bx∗, x >= lim
t→0

1

(k ∗ a)(t)
< R∗(t)x∗ − k(t)x∗, x >=< x∗, Ax > .

This shows that x∗ ∈ D(A∗) and A∗x∗ = Bx∗, and therefore B ⊂ A∗. Thus
B = A∗.

We will write that

X⊙ = {x∗ ∈ X∗, lim
t→0

||R∗(t)x∗ − k(t)x∗|| = 0}.

It follows trivially from this definition that X⊙ is R∗(t)-invariant, which by above
definition means that R∗(t)X⊙ ⊂ X⊙ holds for all t ≥ 0. Also, X⊙ is a closed
subspace of X∗.

Theorem 3.3 Let {R(t), t ≥ 0} be an exponentially bounded k-regularized resolvent
family on X with the generator A and {R∗(t), t ≥ 0} be its adjoint operator family.
If the assumption condition (H) holds, then X⊙ = D(A∗).

Proof. Let x∗ ∈ D(A∗). Then for any x ∈ X we have from (3.2)

< R∗(t)x∗ − k(t)x∗, x > =
〈
A∗(ω∗ −

∫ t

0

a(t − s)R∗(s)x∗ds), x
〉

=

∫ t

0

< a(t − s)R∗(s)A∗x∗, x > ds.

Hence

‖R∗(t)x∗ − k(t)x∗‖ = sup{| < R∗(t)x∗ − k(t)x∗, x > |; x ∈ X, ||x|| ≤ 1}

= sup{|

∫ t

0

< a(t − s)R∗(s)A∗x∗, x > ds|; x ∈ X, ||x|| ≤ 1}

≤ t( sup
0≤s≤t

||a(t − s)R(s)||)||A∗x∗|| → 0 (t → 0)

which shows that D(A∗) ⊂ X⊙. Since X⊙ is the closed subset of X∗, D(A∗) ⊂ X⊙.
For the converse inclusion, let x⊙ ∈ X⊙. Then for the sufficiently small ε > 0

and t ∈ (0, 1) we have ||R
∗(t)

k(t) x⊙ − x⊙|| < ε. Thus for any x ∈ X we have

〈 1

(k ∗ a)(t)

∫ t

0

a(t − s)R∗(s)x⊙ds − x⊙, x
〉

=
1

(k ∗ a)(t)

∫ t

0

a(t − s)k(s)
〈R∗(s)

k(s)
x⊙ − x⊙, x

〉
ds.

Hence by the assumption condition (H) we obtain

||
1

(k ∗ a)(t)

∫ t

0

a(t − s)R∗(s)x⊙ds − x⊙|| ≤
ε

|(k ∗ a)(t)|

∫ t

0

|a(t − s)k(s)|ds <
ε

εa,k

.

Thus by Proposition 3.1 we have show that x⊙ ∈ D(A∗).
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Let A⊙ = A∗|X⊙ denotes the part of A∗ in X⊙ and D(A⊙) = {x∗ ∈ D(A∗),
A∗x∗ ∈ X⊙}. We will write that R⊙(t) = R∗(t)|X⊙

Theorem 3.4 Let {R(t), t ≥ 0} be an exponentially bounded k-regularized resolvent
family on X with the generator A, {R∗(t)}t≥0 be its adjoint operator on X∗ and
A∗ is the adjoint of A. If the assumption condition (H) holds and ρ(A) 6= Φ, then
{R⊙(t), t ≥ 0} is a k-regularized resolvent family on X⊙, and A⊙ is its generator.

Proof. By the known condition and Lemma 1.4, there are constants ω and µ such
that for all λ > ω, 1

â(λ) ∈ ρ(A) and

||H(n)(λ, A)|| ≤ Mn!(λ − ω)−(n+1), n = 0, 1, 2, · · · (3.3)

Also, from Lemma 1.5 and Lemma 1.6 and (3.3) it follows that if λ > ω, 1
â(λ) ∈ ρ(A∗)

and

||H(n)(λ, A∗)|| ≤ Mn!(λ − ω)−(n+1), n = 0, 1, 2, · · · (3.4)

Let H(λ, A⊙) is the part of H(λ, A∗) in X⊙. Thus from (3.4) we have

||H(n)(λ, A⊙)|| ≤ Mn!(λ − ω)−(n+1), n = 0, 1, 2, · · · (3.5)

where H(λ, A⊙) = k̂(λ)(I − â(λ)A⊙)−1. Also,a direct computation show that for
λ, µ > ω

â(λ)k̂(λ)−1H(λ, A⊙) − â(µ)k̂(µ)−1H(µ, A⊙)

= [â(λ) − â(µ)]k̂(λ)−1k̂(µ)−1H(λ, A⊙)H(µ, A⊙)
(3.6)

It follows that from Lemma 1.3

lim
λ→∞

k̂(λ)−1H(λ, A⊙)x∗ = x∗, ∀x∗ ∈ X⊙. (3.7)

From (3.6), (3.7) and Corollary 2.5 we see that H(λ, A⊙) is a k−resolvent of the
closed densely defined operator A⊙ in X⊙. From (3.5) and Lemma 1.4 it follows
that A⊙ is the generator of a k-regularized resolvent family {R⊙(t), t ≥ 0} in X⊙.
For x ∈ X and x∗ ∈ X⊙ we have

< x∗, (I − â(
n

t
)A)−m−1x >=< (I − â(

n

t
)A⊙)−m−1x∗, x >, (3.8)

Let n → ∞ in (3.8) and by Lemma 1.7 we obtain

< x∗, R(t)x >=< R⊙(t)x∗, x > .

Thus for x∗ ∈ X⊙, R∗(t)x∗ = R⊙(t)x∗ and R⊙(t) = R∗(t)|X⊙ .
In the following, we will prove that A⊙ = A∗|X⊙ . Let x⊙ ∈ D(A⊙). Then we

have

lim
t→0

1

(k ∗ a)(t)
(R∗(t)x⊙ − k(t)x⊙) = lim

t→0

1

(k ∗ a)(t)
(R⊙(t)x⊙ − k(t)x⊙) = A⊙x⊙,

where the limit is the strongly sense. Hence these limits exist also in the weak∗-
sense. By Theorem 3.2, we see that x⊙ ∈ D(A∗) and A∗x⊙ = A⊙x⊙ ∈ X⊙. Thus
A⊙ ⊂ A∗|X⊙ .
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To prove the converse inclusion, let x∗ ∈ D(A∗|X⊙). Then we have x∗ ∈ D(A∗)
and A∗x∗ ∈ X⊙. But this implies that

1

(k ∗ a)(t)
(R⊙(t)x∗ − k(t)x∗) =

1

(k ∗ a)(t)
(R⊙(t)x∗ − k(t)x∗)

=
1

(k ∗ a)(t)
A∗(ω∗ −

∫ t

0

a(t − s)R∗(s)x∗ds)

=
1

(k ∗ a)(t)
(ω∗ −

∫ t

0

a(t − s)R∗(s)A∗x∗ds)

=
1

(k ∗ a)(t)

∫ t

0

a(t − s)R∗(s)A∗x∗ds.

Since A∗x∗ ∈ X⊙, letting t → 0 in the above integrand of the last integral, we
obtain from Theorem 3.3,

lim
t→0

(k ∗ a)−1(t)(R⊙(t)x∗ − k(t)x∗) = A∗x∗.

This show that x∗ ∈ D(A⊙) and A⊙x∗ = A∗x∗. Thus A∗|X⊙ ⊂ A⊙.
By Lemma 1.5, if X is reflexive, then A∗ is a closed densely defined operator in

X∗. Thus we have the following corollary.

Corollary 3.5. Let X is a reflexive Banach space and Let {R(t), t ≥ 0} be an
exponentially bounded k-regularized resolvent family on X with the generator A.
Then {R∗(t)}t≥0 is an exponentially bounded k-regularized resolvent family on X∗

whose the generator is A∗ the adjoint of A, where {R∗(t)}t≥0 is the adjoint operator
family of {R(t)}t≥0.

From Corollary 3.5 we know that if X is a reflexive, then X⊙ = X∗, A⊙ = A∗

and R⊙(t) = R∗(t).

Remark 1. If we take that k(t) ≡ 1 and a(t) ≡ 1 or a(t) ≡ t in Theorem 3.4, then
we may obtain the dual theorems of the C0-semigroup (see [9])and the strongly
continuous cosine function. If k(t) ≡ 1 or tn/n!, then we may obtain the dual
theorems of the resolvent operator family or n-times integral resolvent family (see
[8]).

4. The Favard class of R(t) and R
∗(t)

Definition 4.1. Let {R(t), t ≥ 0} be an exponentially bounded k-regularized
resolvent family on X and {R∗(t), t ≥ 0} be its adjoint operator family X∗. Their
Favard class are defined by

Fav(R) = {x ∈ X ; lim supt→0[(k ∗ a)(t)]−1‖R(t)x − k(t)x‖ < ∞}

and

Fav(R∗) = {x∗ ∈ X∗; lim supt→0[(k ∗ a)(t)]−1‖R∗(t)∗x∗ − k(t)x∗‖ < ∞}.

If we introduce the norm on Fav(R)

‖x‖Fav(R) = ‖x‖ + limt→0[(k ∗ a)(t)]−1‖R(t)x − k(t)x‖, ∀x ∈ Fav(R).
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then [Fav(R)] = (Fav(R), ‖ · ‖Fav(R)) become a Banach space. Similarly, we may
define the space [Fav(R∗)].

Starting from the k-regularized resolvent family R⊙(t), the duality construction
can be repeated. We define R⊙∗(t) to be the adjoint of R⊙(t) and write X⊙⊙ for
(X⊙)⊙. X is isometrically isomorphic to a subspace (X⊙)⊙. We identify it with
X . If this subspace is all of (X⊙)⊙, we call X ⊙-reflexive.

Theorem 4.2. If the assumption condition H holds, then we have the following
assertions.

(a) Fav(R) = {x ∈ X ; ∃ M ′ > 0 and xn ∈ D(A), s.t. ‖Axn‖ ≤ M ′ and xn →
x}.

(b)Fav(R⊙∗) = D(A∗). In particular, if X is reflexive, then Fav(R) = D(A).
(c)Fav(R) = D(A⊙∗) ∩ X. In particular, if X is ⊙-reflexive, then Fav(R) =

D(A⊙∗).

Proof. (a) If x ∈ Fav(R), then by Lemma 1.2, the assumption condition H and
Definition 4.1 we have xn ∈ D(A) and

xn =
1

(k ∗ a)( 1
n
)

∫ 1
n

0

a(
1

n
− s)R(

1

n
)xds → x (n → +∞).

Hence

‖Axn‖ = ‖A
1

(k ∗ a)( 1
n
)

∫ 1
n

0

a(
1

n
− s)R(

1

n
)xds‖

= ‖
1

(k ∗ a)( 1
n
)
[R(

1

n
)x − k(

1

n
)x]‖

= ‖
1

(k ∗ a)( 1
n
)
O(

1

n
)‖

≤
1

ǫa,k

∫ t

0 |a(t − s)k(s)|ds
O(

1

n
) = M ′.

Conversely, if xn ∈ D(A) and xn → x, ‖Axn‖ ≤ M ′, then for t → 0

‖R(t)x − k(t)x‖ = lim
n→∞

‖R(t)xn − k(t)xn‖

= ‖

∫ t

0

a(t − s)AR(s)xnds‖

≤ M ′

∫ t

0

M2e2ωsds

= O(t).

(b) If x∗ ∈ D(A∗) and x ∈ X , then we have

|〈x, R(t)∗ − k(t)x∗〉| = |〈(a ∗ R)(t)x, A∗x∗〉|

≤ M |

∫ t

0

a(t − s)eωtds|‖x‖‖A∗x∗‖.

Therefore ‖R(t)∗x∗ − k(t)x∗‖ = O(t) as t → 0, i.e. x∗ ∈ Fav(R∗).

Conversely, if x∗ ∈ Fav(R∗), then from Lemma 1.2 we have 1
(k∗a)(t)

∫ t

0 a(t −

s)R(t)xds → x for t → 0+. Hence we obtain that |〈Ax, x∗〉| ≤ M‖x‖ for x ∈ D(A).
Therefore x∗ ∈ D(A∗). If X is reflexive, then we have that A∗∗ = A and R∗∗(t) =
R(t) and hence Fav(R) = D(A).



290 J. Zhang and Y. Li

(c) If x ∈ D(A⊙∗) ∩ X , then if for any y ∈ D(A∗) we have

|〈x, R(t)∗y − k(t)y〉| = |〈x, R(t)⊙∗y − k(t)y〉|

= ‖A⊙∗x‖

∫ t

0

|a(t − s)|‖R(s)‖‖y‖ds.

Hence

‖R(t)x − k(t)x‖ ≤ Mx|

∫ t

0

a(t − s)ds|,

i.e. x ∈ Fav(R).
Conversely, if x ∈ Fav(R), then from Lemma 1.2 we have

|〈x, A⊙y∗〉| ≤ ‖y∗‖ sup
0<t<1

{(k ∗ a)(t)}−1‖R(t)x − k(t)x‖

for any y∗ ∈ D(A⊙). Thus |〈x, A⊙y∗〉| ≤ Mx‖y∗‖, i.e. x ∈ D(A⊙∗). If X is reflexive,
then we see from (b) that Fav(R(t)) = D(A⊙∗).

Remark 2. If we take that k(t) ≡ 1 and a(t) ≡ 1 or a(t) ≡ t in Theorem 4.2, then
we obtain the correlative result of the Favard class on C0-semigroup (see [1, 2])
and strongly continuous cosine function.
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