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1. Introduction

The KdV equation is a model that governs the one-dimensional propagation of
small-amplitude, weakly dispersive waves [5, 6]. The nonlinear term uux in the
KdV equation

ut + auux + uxxx = 0, (1.1)

causes the steepening of wave form, whereas the dispersion effect term uxxx in
the same equation makes the wave form spread. The balance between this weak
nonlinear steepening and dispersion gives rise to solitons. The KdV equation is
therefore incapable of shock waves [11]. The KdV equation plays an important
role in the development of the soliton theory, where nonlinearity and dispersion
dominate, while dissipation effects are small enough to be neglected in the lowest
order approximation [1, 2].

The KdV equation is considered a spatially one-dimensional model. An extensive
research work has been done in developing higher dimensional models, particularly
those in the (2+1), two spatial and one time, dimensions [4]. The best known two-
dimensional generalizations of the KdV equations are the Kadomtsov-Petviashivilli
(KP) equation, and the Zakharov-Kuznetsov (ZK) equation. The ZK equation given
by

ut + auux + b(uxx + uyy)x = 0, (1.2)

is investigated in [5, 6, 10, 11, 13, 14, 22] by many distinct approaches.
The ZK equation governs the behavior of weakly nonlinear ion-acoustic waves

in a plasma comprising cold ions and hot isothermal electrons in the presence of
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a uniform magnetic field [5, 6]. The ZK equation, which is a more isotropic two-
dimensional, was first derived for describing weakly nonlinear ion-acoustic waves in
a strongly magnetized lossless plasma in two-dimensions [22]. It was found that the
solitary-wave solutions of the ZK equation are inelastic.

Recently, a new hierarchy of nonlinear evolution equations was derived by Qin
[9] by using a finite-dimensional integrable system. An interesting equation in this
hierarchy is a new coupled KdV equation















ut = βuxxx + α(uv)x + γ(vw)x,

vt = βvxxx + λ(wu)x,

wt = βwxxx + λ(uv)x,

(1.3)

where α, β, γ, λ are arbitrary constants. Later, this new coupled equation was
investigated by Wu [21], by using matrix transformation and Lax pair. Most re-
cently, in the sense of the KP equation, Wazwaz [15] has extend the new coupled
KdV equation to the new coupled KP equation and studied the new coupled KdV
equation and the new coupled KP equation, by using the Hirota’s bilinear method.
The physical phenomena for this system was investigated thoroughly in [9, 15, 21].

Following the sense of the ZK Eq. (1.2) we can extend the coupled KdV system
(1.3) to the new coupled ZK system in the form















ut − α(uv)x − γ(vw)x − β(uxx + uyy)x = 0,

vt − λ(wu)x − β(vxx + vyy)x = 0,

wt − λ(uv)x − β(wxx + wyy)x = 0.

(1.4)

The derivation of this system is simply made by following the sense of the ZK
equation.

Many reliable direct methods are presented to deal with equations arising from
physical problems, such as the further improved F-expansion method [18], the multi-
auxiliary equations expansion method [19], the Riemann-Hilbert method [20], the
extended tanh-function method [3], and so on.

In this work, we aim to study the new coupled ZK system. The extended tanh-
coth method and the sech method will be mainly used to back up our analysis. The
extended tanh-coth method and the sech method are direct and effective algebraic
method for handling many nonlinear equations, where solitary wave solutions and
triangular periodic solutions are generated.

2. The methods

In what follows, the methods will be reviewed briefly. Full details can be found in
[16, 17, 12, 7, 8] and the references therein.

For both methods, we first use the wave variable ξ = x + y − ct to carry a PDE
in three independent variables

P (u, ut, ux, uy, uxx, uxy, uyy, uxxx, ...) = 0, (2.1)

into an ODE
Q(u, u′, u′′, u′′′, ...) = 0. (2.2)

Eq. (2.2) is then integrated as long as all terms contain derivatives where integration
constants are considered zeros.
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2.1. The extended tanh-coth method

The standard tanh-coth method is developed by Malfliet where the tanh is used
as a new variable, since all derivatives of a tanh are represented by a tanh itself.
Introducing a new independent variable

Y = tanh(µξ), (2.3)

that leads to the change of derivatives:

d

dξ
= µ(1 − Y 2)

d

dY
,

d2

dξ2
= µ2(1 − Y 2)

(

−2Y
d

dY
+ (1 − Y 2)

d2

dY 2

)

. (2.4)

The extended tanh method admits the use of the finite expansion

u(µξ) = S(Y ) =
M
∑

k=0

AkY k +
M
∑

k=1

Ak+MY −k,

v(µξ) = P (Y ) =

M1
∑

k=0

BkY k +

M1
∑

k=1

Bk+M1
Y −k,

w(µξ) = Q(Y ) =

M2
∑

k=0

CkY k +

M2
∑

k=1

Ck+M2
Y −k,

(2.5)

where M, M1, M2 are positive integer that will be determined to derive a closed
form analytic solution. Substituting (2.5) into the simplified ODE (2.2) results in
an algebraic equation in powers of Y . To determine the parameter M, M1, M2,
we usually balance the linear terms of highest order in the resulting equation with
the highest order nonlinear terms. With M, M1, M2 determined, we collect all
coefficients of powers of Y in the resulting equation where these coefficients have
to vanish. This will give a system of algebraic equations involving the parameters
Ak, Bk, Ck, µ and c. Having determined these parameters, knowing that M is
a positive integer in most cases, and using (2.5) we obtain an analytic solution
u(x, y, t), v(x, y, t), w(x, y, t) in a closed form.

2.2. The sech method

In a manner parallel to the discussion presented above, we use

u(µξ) = S(Z) =
M
∑

k=0

AkZk, (2.6)

where Z = sechµ(x − ct). The algorithms described above certainly works well
for a large class of nonlinear equations. The main advantage of the methods is
that it is capable of greatly reducing the size of computational work compared
to existing techniques such as the pseudo spectral method, the inverse scattering
method, Hirota’s bilinear method, and the truncated Painlevé expansion.

3. Using the tanh-coth method

In this section we employ the extended tanh-coth method to the Eq. (1.4).
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Let u(x, y, t) = u(ξ), v(x, y, t) = v(ξ), w(x, y, t) = w(ξ), ξ = x + y − ct. Then
(1.4) becomes to















cu′ + α(uv)′ + γ(vw)′ + 2βu′′′ = 0,

cv′ + λ(wu)′ + 2βv′′′ = 0,

cw′ + λ(uv)′ + 2βw′′′ = 0.

(3.1)

Integrating it with ξ and neglecting constants of integration we find















cu + αuv + γvw + 2βu′′ = 0,

cv + λwu + 2βv′′ = 0,

cw + λuv + 2βw′′ = 0.

(3.2)

Balancing u′′ with uv in the first equation, v′′ with wu in the second equation, and
w′′ with uv in the third equation gives

M + 2 = M2 + M1, M1 + 2 = M + M2, M2 + 2 = M + M1, (3.3)

so that

M = M1 = M2 = 2. (3.4)

The extended tanh-coth method admits the use of the substitution

u(µξ) = S(Y ) =

2
∑

k=0

AkY k +

2
∑

k=1

Ak+2Y
−k,

v(µξ) = P (Y ) =

2
∑

k=0

BkY k +

2
∑

k=1

Bk+2Y
−k,

w(µξ) = Q(Y ) =

2
∑

k=0

CkY k +

2
∑

k=1

Ck+2Y
−k.

(3.5)

Substituting (3.5) into (3.2), collecting the coefficients of each power of Y , and solve
the resulting system of algebraic equations with the help of Maple to find the sets
of solutions:

Case (1): A0 = − 3c
2λ

= −A2, B0 = C0 = −B2 = −C2 =
3c(α±

√
α2+4λγ)

4λγ
,

A1 = A3 = A4 = C1 = C3 = C4 = B1 = B3 = B4 = 0, c2 = c2, µ2 = −
c

8β
.

Case (2): A0 = 3c
2λ

= −A2, B0 = −C0 = C2 = −B2 =
3c(α±

√
α2+4λγ)

4λγ
,

A1 = A3 = A4 = C1 = C3 = C4 = B1 = B3 = B4 = 0, c2 = c2, µ2 = −
c

8β
.

Case (3): A0 = − c
2λ

= − 1
3A2, B0 = −C0 = − 1

3B2 = 1
3C2 =

c(−α±

√
α2+4λγ)

4λγ
,

A1 = A3 = A4 = C1 = C3 = C4 = B1 = B3 = B4 = 0, c2 = c2, µ2 =
c

8β
.
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Case (4): A0 = c
2λ

= − 1
3A2, B0 = C0 = − 1

3C2 = − 1
3B2 =

c(−α±

√
α2+4λγ)

4λγ
,

A1 = A3 = A4 = C1 = C3 = C4 = B1 = B3 = B4 = 0, c2 = c2, µ2 =
c

8β
.

Case (5): A0 = − 3c
2λ

= −A4, B0 = C0 = −C4 = −B4 =
3c(α±

√
α2+4λγ)

4λγ
,

A1 = A2 = A3 = C1 = C2 = C3 = B1 = B2 = B3 = 0, c2 = c2, µ2 = −
c

8β
.

Case (6): A0 = c
2λ

= − 1
3A4, B0 = C0 = − 1

3C4 = − 1
3B4 =

c(−α±

√
α2+4λγ)

4λγ
,

A1 = A2 = A3 = C1 = C2 = C3 = B1 = B2 = B3 = 0, c2 = c2, µ2 =
c

8β
.

Case (7): A0 = 3c
4λ

= −2A2 = −2A4, B0 = −2C4 = −2B4 =
3c(α±

√
α2+4λγ)

8λγ
,

−2C0 = C2 = B2 =
− 3c

8

[

α(α ±
√

α2 + 4λγ) + α3

2λγ
(α ±

√

α2 + 4λγ) − λγ − α2
]

λγ
2 (α ±

√

α2 + 4λγ) + α2

2 (α ±
√

α2 + 4λγ) − αλγ
,

A1 = A3 = C1 = C3 = B1 = B3 = 0, c2 = c2, µ2 = −
c

32β
.

Case (8): A0 = − c
4λ

= 2
3A2 = 2

3A4, B4 = C4 = 3
2B0 = 3c

8λγ
(α±

√

α2 + 4λγ),

C0 =
2

3
C2 =

2

3
B2 =

− c
4

[

α(α ±
√

α2 + 4λγ) + α3

2λγ
(α ±

√

α2 + 4λγ) + λγ + α2
]

λγ
2 (α ±

√

α2 + 4λγ) + α2

2 (α ±
√

α2 + 4λγ) + αλγ
,

A1 = A3 = C1 = C3 = B1 = B3 = 0, c2 = c2, µ2 =
c

32β
.

Case (9): A0 = 3c
2λ

= −A4, B0 = −C0 = C4 = −B4 = 3c
4λγ

(α±
√

α2 + 4λγ),

A1 = A2 = A3 = C1 = C2 = C3 = B1 = B2 = B3 = 0, c2 = c2, µ2 = −
c

8β
.

Case (10): A4 = 3c
2λ

= −3A0, C0 = −B0 = − 1
3C4 = 1

3B4 = c
4λγ

(−α ±
√

α2 + 4λγ),

A1 = A2 = A3 = C1 = C2 = C3 = B1 = B2 = B3 = 0, c2 = c2, µ2 =
c

8β
.

Case (11): A4 = − 3c
8λ

= − 1
2A0 = A2, C4 = 1

2B0 = −B4 = 3c
16λγ

(α ±
√

α2 + 4λγ),

C0 = −2C2 = −2B2 =
− 3c

4

[

α(α ±
√

α2 + 4λγ) + α3

2λγ
(α ±

√

α2 + 4λγ) + λγ + α2
]

λγ
2 (α ±

√

α2 + 4λγ) + α2

2 (α ±
√

α2 + 4λγ) + αλγ
,

A1 = A3 = C1 = C3 = B1 = B3 = 0, c2 = c2, µ2 = −
c

32β
.
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Case (12): A2 = 3c
8λ

= 3
2A0 = A4, C4 = − 3

2B0 = −B4 = 3c
16λγ

(−α ±
√

α2 + 4λγ),

B2 = −C2 = − 3
2C0

=
3c
8

h

α(−α±

√
α2+4λγ)+ α3

2λγ
(−α±

√
α2+4λγ)−λγ−α2

i

λγ
2

(−α±

√
α2+4λγ)+ α2

2
(−α±

√
α2+4λγ)−αλγ

,

A1 = A3 = C1 = C3 = B1 = B3 = 0, c2 = c2, µ2 =
c

32β
.

Based on these results, we obtain the following solitary solutions for (1.4):



























u1 = − 3c
2λ

(1 − tanh2
√

− c
8β

(x + y − ct)),

v1 = 3c
4λγ

(α ±
√

α2 + 4λγ)(1 − tanh2
√

− c
8β

(x + y − ct)),

w1 = 3c
4λγ

(α ±
√

α2 + 4λγ)(1 − tanh2
√

− c
8β

(x + y − ct)),
c
8β

< 0, α2 + 4λγ ≥ 0,

(3.6)



























u2 = 3c
2λ

(1 − tanh2
√

− c
8β

(x + y − ct)),

v2 = 3c
4λγ

(α ±
√

α2 + 4λγ)(1 − tanh2
√

− c
8β

(x + y − ct)),

w2 = − 3c
4λγ

(α ±
√

α2 + 4λγ)(1 − tanh2
√

− c
8β

(x + y − ct)),
c
8β

< 0, α2 + 4λγ ≥ 0,

(3.7)



























u3 = − c
2λ

(1 − 3 tanh2
√

c
8β

(x + y − ct)),

v3 = c
4λγ

(α ±
√

α2 + 4λγ)(1 − 3 tanh2
√

c
8β

(x + y − ct)),

w3 = − c
4λγ

(α ±
√

α2 + 4λγ)(1 − 3 tanh2
√

c
8β

(x + y − ct)),
c
8β

> 0, α2 + 4λγ ≥ 0,

(3.8)



























u4 = c
2λ

(1 − 3 tanh2
√

c
8β

(x + y − ct)),

v4 = c
4λγ

(−α ±
√

α2 + 4λγ)(1 − 3 tanh2
√

c
8β

(x + y − ct)),

w4 = c
4λγ

(−α ±
√

α2 + 4λγ)(1 − 3 tanh2
√

c
8β

(x + y − ct)),
c
8β

> 0, α2 + 4λγ ≥ 0,

(3.9)

and


























u5 = − 3c
2λ

(1 − coth2
√

− c
8β

(x + y − ct)),

v5 = 3c
4λγ

(α ±
√

α2 + 4λγ)(1 − coth2
√

− c
8β

(x + y − ct)),

w5 = 3c
4λγ

(α ±
√

α2 + 4λγ)(1 − coth2
√

− c
8β

(x + y − ct)),
c
8β

< 0, α2 + 4λγ ≥ 0,

(3.10)



























u6 = 3c
2λ

(1 − coth2
√

− c
8β

(x + y − ct)),

v6 = 3c
4λγ

(α ±
√

α2 + 4λγ)(1 − coth2
√

− c
8β

(x + y − ct)),

w6 = − 3c
4λγ

(α ±
√

α2 + 4λγ)(1 − coth2
√

− c
8β

(x + y − ct)),
c
8β

< 0, α2 + 4λγ ≥ 0,

(3.11)
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u7 = − c
2λ

(1 − 3 coth2
√

c
8β

(x + y − ct)),

v7 = c
4λγ

(α ±
√

α2 + 4λγ)(1 − 3 coth2
√

c
8β

(x + y − ct)),

w7 = − c
4λγ

(α ±
√

α2 + 4λγ)(1 − 3 coth2
√

c
8β

(x + y − ct)),
c
8β

> 0, α2 + 4λγ ≥ 0,

(3.12)



























u8 = c
2λ

(1 − 3 coth2
√

c
8β

(x + y − ct)),

v8 = c
4λγ

(−α ±
√

α2 + 4λγ)(1 − 3 coth2
√

c
8β

(x + y − ct)),

w8 = c
4λγ

(−α ±
√

α2 + 4λγ)(1 − 3 coth2
√

c
8β

(x + y − ct)),
c
8β

> 0, α2 + 4λγ ≥ 0,

(3.13)











































u9 = 3c
4λ

(

1 − 1
2 tanh2

√

−c
32β

(x + y − ct) − 1
2 coth2

√

−c
32β

(x + y − ct)
)

,

v9 = B0 + B2 tanh2
√

−c
32β

(x + y − ct) − 1
2B0 coth2

√

−c
32β

(x + y − ct),

w9 = −2B2(1 − 2 tanh2
√

−c
32β

(x + y − ct)) + 1
2B0 coth2

√

−c
32β

(x + y − ct),

B0 =
3c(α±

√
α2+4λγ)

8λγ
, B2 =

3c
8

h

α(α±

√
α2+4λγ)+ α3

2λγ
(α±

√
α2+4λγ)+λγ+α2

i

λγ
2

(α±

√
α2+4λγ)+ α2

2
(α±

√
α2+4λγ)+αλγ

,

c
32β

< 0, α2 + 4λγ ≥ 0.

(3.14)










































u10 = c
4λ

(

1 + 3
2 tanh2

√

c
32β

(x + y − ct) + 3
2 coth2

√

c
32β

(x + y − ct)
)

,

v10 = B0 + B2 tanh2
√

c
32β

(x + y − ct) + 3
2B0 coth2

√

c
32β

(x + y − ct),

w10 = −B2(
2
3 + tanh2

√

c
32β

(x + y − ct)) − 3
2B0 coth2

√

c
32β

(x + y − ct),

B0 =
c(α±

√
α2+4λγ)

8λγ
, B2 =

3c
8

h

α(−α±

√
α2+4λγ)+ α3

2λγ
(−α±

√
α2+4λγ)−λγ−α2

i

λγ
2

(−α±

√
α2+4λγ)+ α2

2
(−α±

√
α2+4λγ)−αλγ

,

c
32β

> 0, α2 + 4λγ ≥ 0.

(3.15)
We can obtain the following triangular periodic solutions for (1.4):



























u11 = − 3c
2λ

sec2
√

c
8β

(x + y − ct),

v11 = 3c
4λγ

(α ±
√

α2 + 4λγ) sec2
√

c
8β

(x + y − ct),

w11 = 3c
4λγ

(α ±
√

α2 + 4λγ) sec2
√

c
8β

(x + y − ct),
c
8β

> 0, α2 + 4λγ ≥ 0,

(3.16)



























u12 = 3c
2λ

sec2
√

c
8β

(x + y − ct),

v12 = 3c
4λγ

(α ±
√

α2 + 4λγ) sec2
√

c
8β

(x + y − ct),

w12 = − 3c
4λγ

(α ±
√

α2 + 4λγ) sec2
√

c
8β

(x + y − ct),
c
8β

> 0, α2 + 4λγ ≥ 0,

(3.17)



























u13 = − c
2λ

(1 + 3 tan2
√

−c
8β

(x + y − ct)),

v13 = c
4λγ

(α ±
√

α2 + 4λγ)(1 + 3 tan2
√

−c
8β

(x + y − ct)),

w13 = − c
4λγ

(α ±
√

α2 + 4λγ)(1 + 3 tan2
√

−c
8β

(x + y − ct)),
c
8β

< 0, α2 + 4λγ ≥ 0,

(3.18)
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u14 = c
2λ

(1 + 3 tan2
√

−c
8β

(x + y − ct)),

v14 = c
4λγ

(−α ±
√

α2 + 4λγ)(1 + 3 tan2
√

−c
8β

(x + y − ct)),

w14 = c
4λγ

(−α ±
√

α2 + 4λγ)(1 + 3 tan2
√

−c
8β

(x + y − ct)),
c
8β

< 0, α2 + 4λγ ≥ 0

(3.19)

and


























u15 = − 3c
2λ

csc2
√

c
8β

(x + y − ct),

v15 = 3c
4λγ

(α ±
√

α2 + 4λγ) csc2
√

c
8β

(x + y − ct),

w15 = 3c
4λγ

(α ±
√

α2 + 4λγ) csc2
√

c
8β

(x + y − ct),
c
8β

> 0, α2 + 4λγ ≥ 0,

(3.20)



























u16 = 3c
2λ

csc2
√

c
8β

(x + y − ct),

v16 = 3c
4λγ

(α ±
√

α2 + 4λγ) csc2
√

c
8β

(x + y − ct),

w16 = − 3c
4λγ

(α ±
√

α2 + 4λγ) csc2
√

c
8β

(x + y − ct),
c
8β

> 0, α2 + 4λγ ≥ 0,

(3.21)



























u17 = − c
2λ

(1 + 3 cot2
√

−c
8β

(x + y − ct)),

v17 = c
4λγ

(α ±
√

α2 + 4λγ)(1 + 3 cot2
√

−c
8β

(x + y − ct)),

w17 = − c
4λγ

(α ±
√

α2 + 4λγ)(1 + 3 cot2
√

−c
8β

(x + y − ct)),
c
8β

< 0, α2 + 4λγ ≥ 0,

(3.22)



























u18 = c
2λ

(1 + 3 cot2
√

−c
8β

(x + y − ct)),

v18 = c
4λγ

(−α ±
√

α2 + 4λγ)(1 + 3 cot2
√

−c
8β

(x + y − ct)),

w18 = c
4λγ

(−α ±
√

α2 + 4λγ)(1 + 3 coth2
√

−c
8β

(x + y − ct)),
c
8β

< 0, α2 + 4λγ ≥ 0,

(3.23)











































u19 = 3c
4λ

(

1 + 1
2 tan2

√

c
32β

(x + y − ct) + 1
2 cot2

√

c
32β

(x + y − ct)
)

,

v19 = B0 − B2 tan2
√

c
32β

(x + y − ct) + 1
2B0 cot2

√

c
32β

(x + y − ct),

w19 = −2B2(1 + 2 tan2
√

c
32β

(x + y − ct)) − 1
2B0 cot2

√

c
32β

(x + y − ct),

B0 =
3c(α±

√
α2+4λγ)

8λγ
, B2 =

3c
8

h

α(α±

√
α2+4λγ)+ α3

2λγ
(α±

√
α2+4λγ)+λγ+α2

i

λγ
2

(α±

√
α2+4λγ)+ α2

2
(α±

√
α2+4λγ)+αλγ

,

c
32β

> 0, α2 + 4λγ ≥ 0,

(3.24)










































u20 = c
4λ

(

1 − 3
2 tan2

√

−c
32β

(x + y − ct) − 3
2 cot2

√

−c
32β

(x + y − ct)
)

,

v20 = B0 − B2 tan2
√

−c
32β

(x + y − ct) − 3
2B0 cot2

√

−c
32β

(x + y − ct),

w20 = −B2(
2
3 − tan2

√

−c
32β

(x + y − ct)) + 3
2B0 cot2

√

−c
32β

(x + y − ct),

B0 =
c(α±

√
α2+4λγ)

8λγ
, B2 =

3c
8

h

α(−α±

√
α2+4λγ)+ α3

2λγ
(−α±

√
α2+4λγ)−λγ−α2

i

λγ
2

(−α±

√
α2+4λγ)+ α2

2
(−α±

√
α2+4λγ)−αλγ

,

c
32β

< 0, α2 + 4λγ ≥ 0.

(3.25)
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4. Using the sech method

The sech method (2.6) admits the use of the finite expansion

u(µξ) = S(Z) =

2
∑

k=0

AkZk +

2
∑

k=1

Ak+2Z
−k,

v(µξ) = P (Z) =
2

∑

k=0

BkZk +
2

∑

k=1

Bk+2Z
−k,

w(µξ) = Q(Z) =
2

∑

k=0

CkZk +
2

∑

k=1

Ck+2Z
−k.

(4.1)

Substituting (4.1) into (3.2), collecting the coefficients of each power of Z, and solve
the resulting system of algebraic equations with the help of Maple to find the sets
of solutions:

Case (1): A0 = B0 = C0 = A1 = B1 = C1 = A3 = B3 = C3 = A4 = B4 = C4 =
0,

c2 = c2, µ2 =
c

16β
, A2 =

3c

4λ
, B2 = −C2 =

3c

8λγ
(α ±

√

α2 + 4λγ).

Case (2): A0 = B0 = C0 = A1 = B1 = C1 = A3 = B3 = C3 = A4 = B4 = C4 =
0,

c2 = c2, µ2 =
c

16β
, A2 = −

3c

4λ
, B2 = C2 =

3c

8λγ
(α ±

√

α2 + 4λγ).

Based on these results, we obtain the following solitary wave solutions for (1.4):



























u21 = 3c
4λ

sech2
√

c
16β

(x + y − ct),

v21 = 3c
8λγ

(α ±
√

α2 + 4λγ)sech2
√

c
16β

(x + y − ct),

w21 = − 3c
8λγ

(α ±
√

α2 + 4λγ)sech2
√

c
16β

(x + y − ct),
c

16β
> 0, α2 + 4λγ ≥ 0,

(4.2)



























u22 = − 3c
4λ

sech2
√

c
16β

(x + y − ct),

v22 = 3c
8λγ

(α ±
√

α2 + 4λγ)sech2
√

c
16β

(x + y − ct),

w22 = 3c
8λγ

(α ±
√

α2 + 4λγ)sech2
√

c
16β

(x + y − ct),
c

16β
> 0, α2 + 4λγ ≥ 0.

(4.3)

However, for c
16β

< 0, we obtain the following periodic wave solutions for (1.4):



























u23 = − 3c
4λ

tan2
√

−c
16β

(x + y − ct),

v23 = − 3c
8λγ

(α ±
√

α2 + 4λγ) tan2
√

−c
16β

(x + y − ct),

w23 = 3c
8λγ

(α ±
√

α2 + 4λγ) tan2
√

−c
16β

(x + y − ct),
c

16β
< 0, α2 + 4λγ ≥ 0,

(4.4)
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u24 = 3c
4λ

tan2
√

−c
16β

(x + y − ct),

v24 = − 3c
8λγ

(α ±
√

α2 + 4λγ) tan2
√

−c
16β

(x + y − ct),

w24 = − 3c
8λγ

(α ±
√

α2 + 4λγ) tan2
√

−c
16β

(x + y − ct),
c

16β
< 0, α2 + 4λγ ≥ 0.

(4.5)

5. Discussion

In this paper, we used the extended tanh-coth method and the sech method to
study a new coupled ZK equation. As a result, we obtained twenty and four kinds
of exact solutions including solitary wave solutions and periodic wave solutions.
The methods provided solitary wave solutions and triangular periodic solutions.
Moreover, the obtained results in this work clearly demonstrate the reliability of
the methods that were used.
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