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ON UNIQUENESS AND ANALYTICITY

IN THERMOVISCOELASTIC SOLIDS

WITH VOIDS∗

Paulo Xavier Pamplonaa, Jaime E. Muñoz Riverab

and Ramón Quintanillac

Abstract In this paper we consider the most general system proposed to

describe the thermoviscoelasticity with voids. We study two qualitative prop-

erties of the solutions of this theory. First, we obtain a uniqueness result when

we do not assume any sign to the internal energy. Second we extend some

previous results and prove the analyticity of the solutions. The impossibility

of localization in time of the solutions is a consequence. Last result we present

corresponds to the analyticity of solutions in case that the dissipation is not

very strong, but with suitable coupling terms.
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1. Introduction

Elastic solids with voids is one of the simple extensions of the theory of the classical
elasticity. It allows the treatment of porous solids in which the matrix material
is elastic and the interstices are void of material. In this paper, we deal with the
theory established by Cowin and Nunziato [3, 4, 14]. Besides the usual elastic effects,
these materials have a microstructure with an important property: the mass in each
point can be obtained as the product of the mass density of the material matrix
by the volume fraction. That is materials where the skeletal or matrix material
is elastic and the interstices are void of material. These kind of materials have
been widely discussed in the book by Ieşan [7]. The significance of elastic materials
with microstructure has been demonstrated amply by the huge quantity of articles
published in the last four decades covering applications to different fields of physics
and engineering (such as petroleum industry, material science, biology, etc) and the
theory of elasticity with voids applies to solids characterized by small distributed
pores, such as rocks, soils, wood, ceramics, pressed powders or biological materials
such as bones.
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Elasticity problems have attracted the attention of researchers from different
fields interested in the temporal decay behavior of the solutions. As the elastic
materials with voids have macroscopic and microscopic structures, it is relevant to
clarify the interactions between both structures. One would like to know if the cou-
pling is strong or weak. One aspect to clarify of the coupling could be to consider
dissipation mechanisms at macroscopic (and/or microscopic) level and to study the
kind of longtime behavior of solutions. Many papers has been published where the
authors try to clarify the rate of decay of solutions in elasticity with voids. The
first contribution in this line was proposed by Quintanilla [17]. There, the author
showed that this coupling is generically weak in the sense that the dissipation at the
level of the microstructure is not able to bring all of the system to an exponential
decay. That is the decay of the solutions can be very slow. Since this contribution
many people have tried to see how the different mechanisms we consider bring all
of the system to a exponential decay or a slow decay. Some different dissipation
mechanisms as rate type viscoelasticity, rate type porous viscosity, thermal effects,
microthermal effects, boundary effects etc. have been considered. It is not very
difficult to see that every one of these mechanisms is able to bring the macroscopic
(or the microscopic) components if we only consider them separately. However we
generically need at least two dissipation mechanisms to obtain exponential decay of
solutions. To be precise Casas and Quintanilla [1, 2] proved the exponential decay if
we combine porous dissipation (or microtemperatures) with temperatures, Glowin-
ski and Lada [5], Lazzari and Nibbi [9] did a similar thing when they propose several
dissipation mechanisms on the boundary, Magaña and Quintanilla [12] developed a
very systematic study in case that we consider rate type viscoelasticity, rate type
porous viscosity, thermal effects and microthermal effects as well as hyperbolic heat
conduction. The main conclusions can be recalled with the help of a scheme:

Thermal effect

Viscoelastic effect
−→

Elasticity
l

Porosity
←−

Microthermal effect

Viscoporous effect

If we take simultaneously one effect from the right square and another one from
the left square, then we get exponential stability. However, if we consider two
simultaneous effects from one square only, then we get slow decay.

We also mention the general study developed at [16] when the dissipation mech-
anisms are of memory type.

Pamplona et al. [15] also proved that for isotropic bodies the solutions are an-
alytic if the dissipation mechanisms are of rate type [8]. All these contributions
apply to centrosymmetric and isotropic one dimensional materials. Here, we want
to consider the most general system of equations proposed to describe thermoelastic
solids with voids. The system of equations proposed by Ieşan [6] is an extension
from two (al least) view points. On one side we assume that the material is not
centrosymmetric neither isotropic and on the other side the dissipation mechanisms
is the most general has been considered until this moment (see the recent contribu-
tion of Ieşan [6]). Apart to include a rate effect on the volumetric response (as in
[3, 4]), we assume that the time derivative of the strain tensor and the time deriva-
tive of the gradient of the volumetric fraction field are also included in the set of
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constitutive variables. It is worth noting that all the studies concerning time decay
previously mentioned in poro-elasticity is concerning isotropic materials. However,
in the last time a big interest has been developed to understand the chiral materials.
Our contribution can be considered in this line. It is motivated by the desire to
know what kind of behavior we can expect for these materials.

Our intention is to show how the dissipation mechanisms implies several quali-
tative properties of the solutions. In the first part of the paper we give a new result
of uniqueness of solutions for the problem which is different from the one proposed
by Ieşan [6]. In fact we do not make any assumption on the sign of the internal
energy, but we assume the positivity of the dissipation. The other main aim of
this paper is to extend the arguments proposed by Pamplona et al. [15] to obtain
the analyticity of solutions to the general system for thermoviscoelastic materials
with voids. We also prove the analyticity of the solutions a case where the coupling
mechanisms play a fundamental role and the dissipation mechanisms are weaker.

This paper is structured as follows. In section 2 we state the general system
of equations for the thermoviscoelastic solids with voids. A uniqueness result is
proved in section 3. This uniqueness result uses in a strong way the positivity of
the dissipation mechanism, but we do not impose any assumption on the internal
energy. In section 4 we show the well-posedness of the problem in case we also
assume that the internal energy and the dissipation are positive. However, to do
that we restrict our attention to the one-dimensional case. In section 5 we show
that the semigroup is analytic, which in particular implies the exponential decay.
In the last section we show how the coupling mechanisms can be used to obtain the
analyticity of solution in case that the dissipation is less strong that in the general
case.

2. Basic Equations

We will denote by Ω a bounded domain smooth enough to guarantee the use of the
divergence theorem.

The evolution equations for the theory of elastic solids with voids are

ρüi = tji,j , ρκϕ̈ = Hj,j + g, ρT0Ξ̇ = Qj,j. (2.1)

Here, tji is the stress, Hi is the equilibrated stress, g is the equilibrated body force,
Qi is the heat flux and T0 is the absolute temperature in the reference configuration
which is assumed positive. The variables ui, ϕ and Ξ are the displacement, the
volume fraction and the entropy respectively. We assume that ρ and κ are positive
constants whose physical meaning is well known. In general, we can consider several
dissipation mechanisms in this theory. We here, restrict our attention to the case
that the viscoelasticity is present and the viscosity at the microstructure is also
present apart the temperature effect. That is in our case, we assume the following
constitutive equations (see [6])

tij = Cijrsers + Bijϕ + Dijkϕ,k − βijθ + S∗
ij ,

Hi = Aijϕ,j + Drsiers + diϕ− aiθ + H∗
i ,

g = −Bijeij − ξϕ− diϕ,i + mθ + g∗,

ρΞ = βijeij + aθ + mϕ + aiϕ,i,

Qi = kijθ,j + firsėrs + biϕ̇ + aij ϕ̇,j .
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where

S∗
ij = C∗

ijrsėrs + B∗
ijϕ̇ + D∗

ijkϕ̇,k + Mijkθ,k,

H∗
i = A∗

ij ϕ̇,j + G∗
rsiėrs + d∗i ϕ̇ + Pijθ,j ,

g∗ = −F ∗
ij ėij − ξ∗ϕ̇− γ∗

i ϕ̇,i −Rjθ,j .

Here

eij =
1

2
(ui,j + uj,i).

The constitutive tensors satisfy the symmetries

Cijrs = Crsij = Cjirs, βij = βji, Dijk = Djik, Aij = Aji, Bij = Bji,

and

C∗
ijrs = C∗

rsij = C∗
jirs, B∗

ij = B∗
ji, D∗

ijk = D∗
jik, Mij = Mjik, A∗

ij = A∗
ji,

G∗
ijk = G∗

jik , Pij = Pji, F ∗
ij = F ∗

ji, kij = kji, firs = fisr.

If we substitute the constitutive equations into the evolution equations we obtain
the system of field equations

ρüi = (Cijrsers + Bijϕ + Dijkϕ,k − βijθ),j

+
(
C∗

ijrsėrs + B∗
ij ϕ̇ + D∗

ijkϕ̇,k + Mijkθ,k

)

,j

(2.2)

ρκϕ̈ = (Aijϕ,j + Drsiers + diϕ− aiθ),i

+
(
A∗

ij ϕ̇,j + G∗
rsiėrs + d∗i ϕ̇ + Pijθ,j

)
,i

−Bijeij − ξϕ− diϕ,i + mθ − F ∗
ij ėij − ξ∗ϕ̇− γ∗

i ϕ̇,i −Rjθ,j,

(2.3)

T0(βij ėij + aθ̇ + mϕ̇ + aiϕ̇,i) = (kijθ,j + firsėrs + biϕ̇ + aij ϕ̇,j),i . (2.4)

In order to determine a problem we need to impose the boundary conditions and
initial conditions. From now on, we assume

ui(x, t) = ϕ(x, t) = θ(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (2.5)

and the initial conditions

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), ϕ(x, 0) = ϕ0(x),

ϕ̇(x, 0) = ϕ1(x), θ(x, 0) = θ0(x),x ∈ Ω.
(2.6)

The internal energy of the system is given by

2U = Cijrseijers + Aijϕ,iϕ,j + ξϕ2 + 2Bijϕeij + 2Dijkeijϕ,k + 2diϕϕ,i.

The dissipation of the system is defined by the function

Π = C∗
ijrsėij ėrs + A∗

ij ϕ̇,iϕ̇,j + ξ∗|ϕ̇|2 + 1

T0

kijθ,iθ,j + (B∗
ij + F ∗

ij)ėijϕ̇

+(D∗
ijk + G∗

ijk)ėijϕ̇,k + (Mijk +
fkij

T0

)ėijθ,k + (d∗i + γ∗
i )ϕ̇ϕ̇,i

+(Rj +
bj

T0

)ϕ̇θ,j + (Pij +
aji

T0

)ϕ̇,iθ,j.
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When the internal energy is assumed positive we have that the inequality

U ≥ C1

(
eijeij + ϕ,iϕ,i + ϕ2

)
,

is satisfied for a positive constant C1, meanwhile when the dissipation is assumed
to be positive we have that the inequality

Π ≥ C2

(
ėij ėij + ϕ̇,jϕ̇,j + |ϕ̇|2 + θ,iθ,i

)

is satisfied for a positive constant C2.
In the second part of this paper we will prove the analyticity of the solutions

for the problem determined by our system in case that the internal energy and
the dissipation are strictly positive. To make easier the read we will restrict this
study to the one-dimensional and homogeneous case. The general study would
need of very cumbersome expressions, but from the mathematical point of view the
analysis would agree. Thus, we believe that it is much better to do that to simplify
expressions. The only point to pay attention is that for the three-dimensional case
we would need to use of the Korn inequality which is not needed for dimension one.
If we denote J = ρκ and consider Ω = (0, π), our system reduces to

ρü = µuxx + bϕx + Dϕxx − βθx + γu̇xx + b∗ϕ̇x + D∗ϕ̇xx + Mθxx (2.7)

Jϕ̈ = Aϕxx + Duxx − (a + R)θx − bux − ξϕ + mθ + A∗ϕ̇xx

+ G∗u̇xx + d∗ϕ̇x + Pθxx − F ∗u̇x − ξ∗ϕ̇ (2.8)

cθ̇ = kθxx + fu̇xx + (b∗∗ − a)ϕ̇x − βu̇x −mϕ̇ + a∗ϕ̇xx (2.9)

the boundary conditions will be

u(0, t) = u(π, t) = ϕ(0, t) = ϕ(π, t) = θ(0, t) = θ(π, t) = 0, (2.10)

and the initial conditions

u(x, 0) = u0(x), u̇(x, 0) = u1(x), ϕ(x, 0) = ϕ0(x), ϕ̇(x, 0) = ϕ1(x), θ(x, 0) = θ0(x).
(2.11)

The internal energy and the dissipation of the system will have the form∗

2U = µu2
x + Aϕ2

x + ξϕ2 + 2bϕux + 2Duxϕx,

and

Π = γ|u̇x|
2 + A∗|ϕ̇x|

2 + ξ∗|ϕ̇|2 + kθ2
x + (b∗ + F ∗)u̇xϕ̇ + (D∗ + G∗)u̇xϕ̇x

+(M + f)u̇xθx + d∗ϕ̇ϕ̇x + (R + b∗∗)ϕ̇θx + (P + a∗)ϕ̇xθx.

3. Uniqueness

The aim of this section is to obtain a uniqueness result for the solutions of the prob-
lem determined by the thermoviscoelastity with voids. We recall that a uniqueness

∗Note that for homogeneous materials (diϕ),i − diϕ,i = 0 and for this reason we do not
consider the counterpart of the constitutive tensor di in the system (2.8)-(2.10) neither in the
internal energy.
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result was obtained by Ieşan [6], but under the assumption that the internal energy
and the dissipation are always greater or equal than zero. We here do not impose
such restrictive assumptions. We do not assume any sign for the internal energy,
but we need to assume the strictly positivity of the dissipation function Π.

As we want to prove the uniqueness of solutions, it is enough to see that the
only solution for the problem determined by the null initial conditions

ui(x, 0) = 0, u̇i(x, 0) = 0, ϕ(x, 0) = 0, ϕ̇(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω, (3.1)

is the null solution.
For the initial conditions the conservation of the energy reads

1

2

∫

Ω

(
ρu̇iu̇i + ρκ|ϕ̇|2 + aθ2 + 2U

)
dv +

∫ t

0

∫

Ω

Πdvds = 0. (3.2)

The function

F (t) =
1

2

∫

Ω

(
ρu̇iu̇i + ρκ|ϕ̇|2 + aθ2

)
dv +

∫ t

0

∫

Ω

Πdvds,

satisfies

F (t) = −
1

2

∫

Ω

2Udv.

In view of the null initial conditions, we have

F (t) = −

∫ t

0

∫

Ω

Υdvds,

where
Υ = Cijrseij ėrs + Aijϕ̇,iϕ,j + ξϕϕ̇ + Bij(ϕėij + ϕ̇eij)

+Dijk(ėijϕ,k + eijϕ̇,k) + di(ϕ̇ϕ,i + ϕϕ̇,i).

In view of the Holder inequality and the positivity of the dissipation, we see the
existence of a positive constant C4 such that

F (t) ≤ C4

(∫ t

0

∫

Ω

(eijeij + ϕ,iϕ,i + |ϕ|2)dvds

)1/2 (∫ t

0

∫

Ω

Πdvds

)1/2

, (3.3)

In view of the initial conditions and the Poincaré inequality we know that

∫ t

0

∫

Ω

(eijeij + ϕ,iϕ,i + |ϕ|2)dvds ≤
4t2

π2

∫ t

0

∫

Ω

(ėij ėij + ϕ̇,iϕ̇,i + |ϕ̇|2)dvds. (3.4)

Using again the positivity of the dissipation, we see the existence of a positive
constant C5 such that

F (t) ≤ C5t

∫ t

0

∫

Ω

Πdvds ≤ C5tF (t), (3.5)

where the last inequality follows from the definition of F (t).
It then follows that

(1− C5t)F (t) ≤ 0. (3.6)
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If we take t0 = C−1
5 , we obtain that F (t) vanishes in the interval (0, t0). If we take

into account the definition of F (t), it follows that θ ≡ 0 , ϕ̇ ≡ 0 and u̇i ≡ 0 for
every t ≤ t0. Thus, we have proved that the problem determined by our system with
the homogeneous boundary conditions and the null initial condition has only the
null solution in the interval [0, t0]. If we apply the same argument to the problem
determined by our system, the same boundary conditions and initial conditions

ui(x, t0) = u̇i(x, t0) = ϕ(x, t0) = ϕ̇(x, t0) = θ(x, t0) = 0, x ∈ B (3.7)

we can conclude θ ≡ 0 , φ ≡ 0 and ui ≡ 0 for every t ≤ 2t0.
After a recurrent argument we obtain the following result.

Theorem 3.1. Let us assume that the mass density and the specific heat are strictly

positive and that the dissipation function is strictly positive. Then the boundary-

initial-value problem has at most one solution.

4. Well posed problem

In this section we prove the well-posedness of the problem determined by (2.8)-
(2.12) when the internal energy and the dissipation are strictly positive. To write
the proof in the less cumbersome case we assume that the material is homogeneous
and one dimensional.

We consider the Hilbert space

H = H1
0 (0, π)× L2(0, π)×H1

0 (0, π)× L2(0, π)× L2(0, π)

where Hi
0, H

i and L2 are the well known Hilbert spaces. If U = (u, v, ϕ, φ, θ) and
U∗ = (u∗, v∗, ϕ∗, φ∗, θ∗) we define the inner product

〈U, U∗〉H =

∫ π

0

[
ρvv̄∗ + µuxū∗

x + Jφφ̄∗ + Aϕxϕ̄∗
x + ξϕϕ̄∗ + cθθ̄∗

+b(uxϕ̄∗ + ū∗
xϕ) + D(uxϕ̄∗

x + ū∗
xϕx)

]
dx,

where the bar denotes the conjugate complex number, and the corresponding norm

‖U‖H =

∫ π

0

[
ρ|v|2+µ|ux|

2+J |φ|2+A|ϕx|
2+ξ|ϕ|2+c|θ|2+2bRe uxϕ+2DRe uxϕx

]
dx.

Let us introduce the operator

A =




0 I 0 0 0
A21 A22 A23 A24 A25

0 0 0 I 0
A41 A42 A43 A44 A45

0 A52 0 A54 A55




(4.1)

where I is the identity operator A21 = ρ−1µ∂2, A22 = ρ−1γ∂2, A23 = ρ−1(b∂ +
D∂2), A24 = ρ−1(b∗∂ + D∗∂2), A25 = −ρ−1(β∂ −M∂2), A41 = −J−1(b∂ −D∂2),
A42 = −J−1(F ∗∂ −G∗∂2), A43 = J−1(A∂2 − ξI), A44 = J−1(A∗∂2 + d∗∂ − ξ∗I),
A45 = J−1(mI +P∂2− (a+R)∂), A52 = −c−1(β∂−f∂2), A54 = c−1(a∗∂2 +(b∗∗−

a)∂ −mI), A55 = c−1k∂2 and ∂i =
di

dxi
.
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Our initial-boundary value problem is equivalent to the problem

Ut = AU, U(0) = U0 ∈ D(A), (4.2)

where U0 = (u0, u1, ϕ0, ϕ1, θ0) and A : D(A) ⊂ H → H. The domain of A can be
easily calculated, but we note that it contains (H2 ∩ H1

0 )5 which is dense in our
Hilbert space. We note that for every U ∈ D(A)

Re
〈
AU, U

〉

H
= −

1

2

∫ π

0

Re Γdx

where

Γ = γ|vx|
2 + ξ∗|φ|2 + k|θx|

2 + A∗φ2
x + (b∗φv̄x + F ∗vxφ̄)

+(Pθxφ̄x + a∗θ̄xφx) + (G∗vxφ̄x + D∗v̄xφx) + (Mv̄xθx + fvxθ̄x) + (Rθxφ̄ + b∗∗φθ̄x).

In view of the positivity of the dissipation we see the existence of a positive constant
such that

Re
〈
AU, U

〉

H
≤ −

1

2
M1

∫ π

0

(γ|vx|
2 + ξ|φ|2 + k|θx|

2 + A|φx|
2)dx ≤ 0,

where M1 is a positive calculable constant. Then A is dissipative.

Lemma 4.1. Under the above notations we have that 0 ∈ ̺(A), where ̺(A) is a

set resolvent of A.

Proof. For any F = (f1, f2, f3, f4, f5) ∈ H, we want to find U = (u, v, ϕ, φ, θ) ∈
D(A) such that

AU = F. (4.3)

In terms of the components we get

v = f1 (4.4)

µuxx + bϕx + γvxx − βθx + b∗φx + Dϕxx + D∗φxx + Mθxx = ρf2

φ = f3 (4.5)

Aϕxx − bux − ξϕ + mθ + A∗φxx + Pθxx − F ∗vx − ξ∗φ + d∗φx

+Duxx + G∗vxx − (a + R)θx = Jf4 (4.6)

kθxx − βvx + fvxx −mφ + a∗φxx + (b∗∗ − a)φx = cf5. (4.7)

We have

v, φ ∈ H1
0 (0, π). (4.8)

We can write

kθxx = β(f1)x−f(f1)xx +mf3−a∗(f3)xx− (b∗∗−a)(f3)x +cf5 ∈ H−1(0, π). (4.9)

We conclude that there exists a unique function θ ∈ H1(0, π) satisfying (4.9).
Then, the remanning point is to prove that there exist u and ϕ satisfying

µuxx + bϕx + Dϕxx = F1 (4.10)

Aϕxx − bux − ξϕ + Duxx = G1 (4.11)
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where

F1 := −γ(f1)xx + βθx + ρf2 − b∗(f3)x −D∗(f3)xx −Mθxx ∈ H−1(0, π),

and

G1 := −mθ + Jf4 + F ∗(f1)x + ξ∗f3 −A∗(f3)xx − Pθxx

−d∗(f3)x −G∗(f1)xx + (a + R)θx ∈ H−1(0, π).

Introducing the space W = H1
0 (0, π)×H1

0 (0, π), and denoting the bilinear form

a(V, Ṽ ) = µ

∫ π

0

uxũx dx + b

∫ π

0

(ϕũx + uxϕ̃) dx + D

∫ π

0

(ϕxũx + uxϕ̃x) dx

+A

∫ π

0

ϕxϕ̃x dx + ξ

∫ π

0

ϕϕ̃ dx

we conclude that a(·, ·) is a coercive, continuous bilinear operator over the Hilbert
space W . Therefore there exists a solution to the variational equation

a(U, V ) = 〈(F1, G1), V 〉

that is equivalent to system (4.10)–(4.11).

Thus, we have proved

Theorem 4.1. Under the above conditions we have that the operator A is the

infinitesimal generator of a C0- semigroup T (t) of contractions over the Hilbert

space H.

5. Analyticity

To prove the main aim of this section we will use a result which can be found in
the book by Liu and Zheng [11].

Theorem 5.1. Let us consider S(t) = eAt a C0-semigroup of contractions gener-

ated for operator A in Hilbert space H. If iIR ⊆ ̺(A), then S(t) is analytic if and

only if

lim|β|→∞||β(iβI −A)−1|| <∞, β ∈ IR.

To apply this theorem to our situation we need to consider the resolvent equation
which is given by

λU −AU = F (5.1)

where

U =




u

v

ϕ

φ

θ




, F =




f1

f2

f3

f4

f5




and λ ∈ C.
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To show the analyticity we shall take λ = iα, α ∈ IR. Written the equation (5.1)
with λ = iα, α ∈ IR we have

iαu− v = f1 (5.2)

iαρv − (µuxx + bϕx + γvxx − βθx + b∗φx

+Dϕxx + D∗φxx + Mθxx) = ρf2 (5.3)

iαϕ− φ = f3 (5.4)

iαJφ− (Aϕxx − bux − ξϕ + mθ + A∗φxx + Pθxx − F ∗vx

−ξ∗φ + d∗φx + Duxx + G∗vxx − (a + R)θx) = Jf4 (5.5)

iαcθ − (kθxx − βvx + fvxx −mφ + a∗φxx + (b∗∗ − a)φx) = cf5. (5.6)

We need of the following lemmas.

Lemma 5.1. For any F ∈ H, there exists a positive constant c1 such that

∫ π

0

(γ|vx|
2 + ξ∗|φ|2 + k|θx|

2 + A∗|φx|
2)dx ≤ c1||F ||H||U ||H. (5.7)

Proof. Multiplying the equations (5.2)-(5.6), respectively, for −µūxx, v̄, −Aϕ̄xx

and ξϕ̄, φ̄, θ̄, integration from 0 to π and summing the equations, we find that

iα

∫ π

0

[
ρ|v|2 + µ|ux|

2 + A|ϕx|
2 + J |φ|2 + ξ|ϕ|2 + c|θ|2

]
dx

+µ

∫ π

0

(uxv̄x − ūxvx)dx + b

∫ π

0

(ϕv̄x + uxφ̄)dx + m

∫ π

0

(φθ̄ − θφ̄)dx

+A

∫ π

0

(ϕxφ̄x − ϕ̄xφx)dx + β

∫ π

0

(θxv̄ − θ̄xv)dx + ξ

∫ π

0

(ϕφ̄ − ϕ̄φ)dx

+D

∫ π

0

(ϕxv̄x + uxφ̄x)dx +

∫ π

0

(D∗φxv̄x + G∗vxφ̄x)dx

+

∫ π

0

(Mθxv̄x + fvxθ̄x)dx + d∗
∫ π

0

φφ̄xdx +

∫ π

0

(Rθxφ̄ + b∗∗φθ̄x)dx

+a

∫ π

0

(θxφ̄− φθ̄x)dx +

∫ π

0

(Pθxφ̄x + a∗φxθ̄x)dx +

∫ π

0

(b∗φv̄x + F ∗vxφ̄)dx

+

∫ π

0

(γ|vx|
2 + A∗|φx|

2 + ξ∗|φ|2 + k|θx|
2)dx = R1

(5.8)
where |R1| ≤ C||F ||H||U ||H for a positive constant C. We note that

ϕv̄x + uxφ̄ = ϕ(iαux − (f1)x) + ux(iαϕ− f3) = −iα(ϕūx + uxϕ̄)− ϕ(f̄1)x − uxf̄3,

and

ϕxv̄x + uxφ̄x = ϕ(iαux − (f1)x) + ux(iαϕx − (f3)x)

= −iα(ϕxūx + uxϕ̄x)− ϕx(f̄1)x − ux(f̄3)x.

Taking real part in the equation (5.8), using the positivity conditions for the
dissipation and the definition of norm in H we obtain the estimate.
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Lemma 5.2. For any F ∈ H, there exists C > 0 such that

|α|||U ||H ≤ C|||F ||H, ∀α ∈ IR,

where U is the solution for (5.1) with λ = iα.

Proof. Multiplying the equations (5.2)-(5.6), respectively, for iµūxx, −iv̄, iAϕ̄xx

and −iξϕ̄, −iφ̄, −iθ̄, integration from 0 to π and summing the equations, we find
that

α

∫ π

0

[
ρ|v|2 + µ|ux|

2 + A|ϕx|
2 + J |φ|2 + ξ|ϕ|2 + c|θ|2

]
dx

−ib

∫ π

0

(ϕv̄x + uxφ̄)dx + iµ

∫ π

0

(vxūx − v̄xux)dx

+iξ

∫ π

0

(φϕ̄− ϕφ̄)dx + im

∫ π

0

(θφ̄− φθ̄)dx + iβ

∫ π

0

(vθ̄x − v̄θx)dx

+iA

∫ π

0

(φxϕ̄x − ϕxφ̄x)dx − iD

∫ π

0

(ϕxv̄x + uxφ̄x)dx

−i

∫ π

0

(D∗φxv̄x + G∗vxφ̄x)dx − i

∫ π

0

(Mθxv̄x + fvxθ̄x)dx

−id∗
∫ π

0

φφ̄xdx− i

∫ π

0

(Rθxφ̄ + b∗∗φθ̄x)dx− ia

∫ π

0

(θxφ̄− φθ̄x)dx

−i

∫ π

0

(
Pθxφ̄x + a∗φxθ̄x

)
dx− i

∫ π

0

(b∗φv̄x + F ∗vxφ̄)dx

−i

∫ π

0

(γ|vx|
2 + A∗|φx|

2 + ξ∗|φ|2 + k|θx|
2)dx = R̃

(5.9)

where |R̃| ≤ C||F ||H||U ||H for a calculable positive constant C.
Taking the real part in the former equality we have

α

∫ π

0

[
ρ|v|2 + µ|ux|

2 + A|ϕx|
2 + J |φ|2 + ξ|ϕ|2 + c|θ|2

]
dx

≤ Re
{
ib

∫ π

0

(ϕv̄x + uxφ̄)dx + iD

∫ π

0

(ϕxv̄x + uxφ̄x)dx

+i

∫ π

0

(D∗φxv̄x + G∗vxφ̄x)dx + i

∫ π

0

(Mθxv̄x + fvxθ̄x)dx

+id∗
∫ π

0

φφ̄xdx + i

∫ π

0

(Rθxφ̄ + b∗∗φθ̄x)dx− iξ

∫ π

0

(φϕ̄− ϕφ̄)dx

−im

∫ π

0

(θφ̄ − φθ̄)dx − iβ

∫ π

0

(vθ̄x − v̄θx)dx

−iA

∫ π

0

(φxϕ̄x − ϕxφ̄x)dx + ia

∫ π

0

(θxφ̄− φθ̄x)dx

−iµ

∫ π

0

(vxūx − v̄xux)dx + i

∫ π

0

(
Pθxφ̄x + a∗φxθ̄x

)
dx

+i

∫ π

0

(b∗φv̄x + F ∗vxφ̄)dx
}

+ C||F ||H||U ||H.

(5.10)
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Using (5.7) we have that

Re
{
ib

∫ π

0

ϕv̄xdx
}
≤ K1||F ||

1/2

H ||U ||
3/2

H (5.11)

and

Re
{
iD∗

∫ π

0

φxv̄xdx
}
≤ K2||F ||H||U ||H, (5.12)

where K1, K2 are calculable constants. In a similar way we can estimates the other
terms of the RHS of (5.10)

Therefore, we have that

α||U ||2H ≤ C∗||F ||1/2

H ||U ||
3/2

H + C∗∗||F ||H||U ||H,

for calculable positive constants C, C∗ which are independent of α. Then

|α|||U ||H ≤ C||F ||H, (5.13)

where C > 0 and when α > 0 is sufficiently greater. From where our conclusion
follows.

Now, we are in condition to show the main result of this section

Theorem 5.2. The semigroup generated by operator A given at (4.1) is analytic.

Proof. Since A is the infinitesimal generator of a strongly continuous semigroup,
IR+ ∈ ̺(A) and as 0 ∈ ̺(A) we have iIR ⊂ ̺(A). From Lemma 5.2 we have

||α(iαI −A)−1F ||H = |α|||U ||H ≤ C||F ||H.

Then
lim|α|→∞||α(iαI −A)−1|| <∞.

Then conclusion following from 5.1.
Remark: As consequence of the analyticity, the system (2.7)-(2.9) is exponentially
stable. Moreover, the system have a regularity effect in the sense that the solution
U = (u, ut, ϕ, ϕt, θ) satisfy

U ∈ C∞(0, T ;D(A∞)).

However, D(A) is not necessary a space regular, which in particular implies that
the solution U is not in C∞(]0, T [×]0, L[) when the initial data is not regular.

A consequence of the analyticity of solutions is the following result:

Corollary 5.1. Let (u, ϕ, θ) be a solution of the problem determined by the system
(2.7)-(2.9), the initial conditions (2.11) and the boundary conditions (2.10) such that
u = ϕ = θ ≡ 0 after a finite time t0 > 0. Then u = ϕ = θ ≡ 0 for every t ≥ 0.

6. Case A
∗ = 0

When the parameters A∗ vanishes the dissipation is not so strong. In order to
guarantee the sign of the dissipation we also need to impose D∗ + G∗ = 0, d∗ = 0
and P + a∗ = 0. The system of equations becomes
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ρü = µuxx + bϕx + Dϕxx − βθx + γu̇xx + b∗ϕ̇x + D∗ϕ̇xx + Mθxx (6.1)

Jϕ̈ = Aϕxx + Duxx − (a + R)θx − bux − ξϕ + mθ

− D∗u̇xx − a∗θxx − F ∗u̇x − ξ∗ϕ̇ (6.2)

cθ̇ = kθxx + fu̇xx + (b∗∗ − a)ϕ̇x − βu̇x −mϕ̇ + a∗ϕ̇xx (6.3)

and the dissipation is

Π∗ = γ|u̇x|
2 + ξ∗|ϕ̇|2 + kθ2

x + (b∗ + F ∗)u̇xϕ̇ + (M + f)u̇xθx + (R + b∗∗)ϕ̇θx.

In case that we assume that there exists a positive constant C such that the in-
equality

Π∗ ≥ C(|u̇x|
2 + |ϕ̇|2 + θ2

x),

holds we can obtain the exponential stability of the solutions for the problem deter-
mined by the system (6.1)-(6.3) and the boundary and initial conditions proposed
previously. This is natural, because we also have sufficient dissipation mechanisms.
Even more the aim of this section is to prove that in case that we have a strong
coupling mechanism a∗ 6= 0, then we also can guarantee the analyticity of solutions.
We point out that our approach is inspired in the arguments used in the case of
plates [10].

We can consider the same Hilbert space and with the same inner product con-
sidered in the general case. We note that the semigroup of solutions is generated
by the operator

A1 =




0 I 0 0 0
A21 A22 A23 A24 A25

0 0 0 I 0
A41 A∗

42 A43 A∗
44 A∗

45

0 A52 0 A54 A55




(6.4)

where A∗
42 = −J−1(F ∗∂ + D∗∂2), A∗

44 = −J−1ξ∗I), A∗
45 = J−1(mI − a∗∂2 − (a +

R)∂), and the other operators were defined in the fourth section.
We can give an easy proof of the exponential stability by means of the energy

arguments. If we consider the function

E(t) =
1

2

∫ π

0

(ρ|u̇|2 + J |ϕ̇|2 + c|θ|2 + 2U)dx, (6.5)

we obtain

Ė(t) = −

∫ π

0

Π∗dx ≤ −C

∫ π

0

(|u̇x|
2 + |ϕ̇|2 + θ2

x)dx. (6.6)

The functions

R(t) =

∫ π

0

ρu̇udx +
1

2

∫ π

0

|ux|
2dx, J(t) =

∫ π

0

Jϕ̇ϕdx, (6.7)

satisfy

Ṙ(t) =

∫ π

0

ρ|u̇|2dx− µ

∫ π

0

|ux|
2dx− b

∫ π

0

uxϕdx

−D

∫ π

0

uxϕxdx − β

∫ π

0

θxudx− b∗
∫ π

0

ϕ̇uxdx

−D∗

∫ π

0

uxϕ̇xdx−M

∫ π

0

uxθxdx,

(6.8)
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J̇(t) =

∫ π

0

J |ϕ̇|2dx−A

∫ π

0

|ϕx|
2dx−D

∫ π

0

uxϕxdx− (a + R)

∫ π

0

θxϕdx

−ξ

∫ π

0

|ϕ|2dx− b

∫ π

0

uxϕdx + m

∫ π

0

ϕθdx + D∗

∫ π

0

u̇xϕxdx

+a∗

∫ π

0

θxϕxdx− F ∗

∫ π

0

u̇xϕdx− ξ∗
∫ π

0

ϕ̇ϕdx.

(6.9)
Thus, the time derivative of the function S(t) = R(t) + J(t) + D∗

∫ π

0
uxϕxdx is

Ṡ(t) =

∫ π

0

ρ|u̇|2dx +

∫ π

0

J |ϕ̇|2dx−

∫ π

0

2Udx− β

∫ π

0

θxudx

−b∗
∫ π

0

ϕ̇uxdx−M

∫ π

0

uxθxdx− (a + R)

∫ π

0

θxϕdx

+m

∫ π

0

ϕθdx + 2D∗

∫ π

0

u̇xϕxdx + a∗

∫ π

0

θxϕxdx

−F ∗

∫ π

0

u̇xϕdx− ξ∗
∫ π

0

ϕ̇ϕdx.

(6.10)

We can see that the following estimate

Ṡ(t) ≤

∫ π

0

ρ|u̇|2dx +

∫ π

0

J |ϕ̇|2dx−

∫ π

0

2Udx + C∗

∫ π

0

(|θx|
2 + |ϕ̇|2 + |u̇x|

2)dx

+ǫ

∫ π

0

(|ϕx|
2 + |ϕ|2 + |ux|

2)dx.

(6.11)
holds, where ǫ can be selected positive, but such small as we want and C∗ also
depends on ǫ. But taking ǫ small enough and recalling the positivity of the internal
energy we see that

Ṡ(t) ≤

∫ π

0

ρ|u̇|2dx +

∫ π

0

J |ϕ̇|2dx + C∗

∫ π

0

(|θx|
2 + |ϕ̇|2 + |u̇x|

2)dx

−K

∫ π

0

(|ϕx|
2 + |ϕ|2 + |ux|

2)dx.

(6.12)

Here K is a strictly positive constant.
We can always find a positive constant ǫ1 such that for every 0 < ǫ ≤ ǫ1 the

function E(t) + ǫS(t) is equivalent to E(t) and a positive constant ǫ2 such that for
0 < ǫ ≤ ǫ2

Ė(t) + ǫṠ(t) ≤ −K∗(ǫ)

∫ π

0

(|u̇|2 + |ϕ̇|2 + |ϕx|
2 + |ϕ|2 + |ux|

2)dx. (6.13)

By taking ǫ ≤ min(ǫ1, ǫ2) we obtain that the function Σ(t) = E(t) + ǫS(t) satisfies

Σ̇(t) + κΣ(t) ≤ 0, (6.14)

for a positive κ. Thus the exponential decay of Σ(t) follows, and then the exponen-
tial decay of the energy function E(t). That is, there exist two positive constants
M∗, c∗ such that

E(t) ≤M∗E(0) exp(−c∗t),
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for every solution and where M∗ and c∗ are uniform for every solution.
Our intention on the remain of this section is to prove that in case that a∗ is

different from zero the solutions are generated by an analytic semigroup. We note
that the fact that the complex axis is contained in the resolvent of the operator is
clear. Thus to prove our aim it is sufficient to prove the second condition of the
Theorem 5.1.

Let us to assume that this condition does not hold. Then, there exists a sequence
αn of positive numbers such that αn →∞; and a sequence (un, vn, ϕn, φn, θn) with

||un,x||
2 + ||vn||

2 + ||ϕn,x||
2 + ||φn||

2 + ||θn||
2 = 1, (6.15)

such that

α−1
n (iαnun − vn) → 0 in H1 (6.16)

α−1
n (iαnρvn − (µun,xx + bϕn,x + γvn,xx − βθn,x

+b∗φn,x + Dϕn,xx + D∗φn,xx + Mθn,xx)) → 0 in L2 (6.17)

α−1
n (iαnϕn − φn) → 0 in H1 (6.18)

α−1
n (iαnJφn − (Aϕn,xx − bun,x − ξϕn + mθn − a∗θn,xx

−F ∗vn,x − ξ∗φn + Dun,xx −D∗vn,xx − (a + R)θn,x)) → 0 in L2 (6.19)

α−1
n (iαncθn − (kθn,xx − βvn,x + fvn,xx −mφn

+a∗φn,xx + (b∗∗ − a)φn,x)) → 0 in L2. (6.20)

From the dissipation properties of the operator we have that

α−1/2
n (||vn,x||+ ||φn||+ ||θn,x||)→ 0. (6.21)

From (6.16) it follows that
||un,x|| → 0.

In view of (6.18), we see that α−1
n φn is bounded in H1. From ( 6.20), we note

that α−1
n ||kθn + fvn + a∗φn||H2 is uniformly bounded and ||kθn + fvn + a∗φn||L2 is

also bounded. Then, by Gagliardo-Nirenberg interpolation inequality α
−1/2
n ||kθn +

fvn + a∗φn||H1 is also bounded. In view of (6.21) α
−1/2
n ||φn||H1 must be bounded.

We now we multiply (6.20) by θn. In view of (6.21) we also obtain

||θn||
2 → 0.

If we multiply (6.20) by ϕn, we obtain

α−1
n (k < θn,x, ϕn,x > +f < vn,x, ϕn,x >

+(a− b∗∗) < φn, ϕn,x > +m < φn, ϕn > +a∗ < φn,x, ϕn,x >) → 0.

We see that the first fourth terms tend to zero and in view of (6.18), we may
substitute α−1

n φn,x by ϕn,x. Thus we see

a∗ < ϕn,x, ϕn,x >→ 0.

From (6.17) and ( 6.19), we obtain that vn and φn also tends to zero in the L2.
This contradicts (6.15). Thus, we have proved

Theorem 6.1. The semigroup generated by operator A1 given in (6.4) is analytic.

Corollary 6.1. Let (u, ϕ, θ) be a solution of the problem determined by the system
(6.1)-(6.3), the initial conditions (2.11) and the boundary conditions (2.10) such that
u = ϕ = θ ≡ 0 after a finite time t0 > 0. Then u = ϕ = θ ≡ 0 for every t ≥ 0.
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