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ON UNIQUENESS AND ANALYTICITY
IN THERMOVISCOELASTIC SOLIDS
WITH VOIDS*
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Abstract In this paper we consider the most general system proposed to
describe the thermoviscoelasticity with voids. We study two qualitative prop-
erties of the solutions of this theory. First, we obtain a uniqueness result when
we do not assume any sign to the internal energy. Second we extend some
previous results and prove the analyticity of the solutions. The impossibility
of localization in time of the solutions is a consequence. Last result we present
corresponds to the analyticity of solutions in case that the dissipation is not
very strong, but with suitable coupling terms.
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1. Introduction

Elastic solids with voids is one of the simple extensions of the theory of the classical
elasticity. It allows the treatment of porous solids in which the matrix material
is elastic and the interstices are void of material. In this paper, we deal with the
theory established by Cowin and Nunziato [3, 4, 14]. Besides the usual elastic effects,
these materials have a microstructure with an important property: the mass in each
point can be obtained as the product of the mass density of the material matrix
by the volume fraction. That is materials where the skeletal or matrix material
is elastic and the interstices are void of material. These kind of materials have
been widely discussed in the book by Iegan [7]. The significance of elastic materials
with microstructure has been demonstrated amply by the huge quantity of articles
published in the last four decades covering applications to different fields of physics
and engineering (such as petroleum industry, material science, biology, etc) and the
theory of elasticity with voids applies to solids characterized by small distributed
pores, such as rocks, soils, wood, ceramics, pressed powders or biological materials
such as bones.

Email addresses: pxpamplona@yahoo.com.br(P.Pamplona),
rivera@Ince.br(J.Rivera), ramonqgdl@gmail.com(R. Quintanilla)
®Universidade Federal de Campina Grande,CCTA, Cidade Universitéria,
58840-000, Pombal, PB-Brasil,
bNational Laboratory of Scientific Computations, LNCC/MCT, Rua Getilio
Vargas 333, Quitandinha, Petropolis, CEP 25651-070, RJ-Brasil,
“Matematica Aplicada 2, UPC, C. Colén 11, 08222 Terrassa, Barcelona, Spain.
*Supported by CNPq (Brazil) and by the project “Ecuaciones en Derivadas
Parciales en Termomecdnica. Teorfa y Aplicaciones ” (MTM2009-08150) of
the Spanish Ministry of Education.



252 P. Pamplona, J.Rivera and R. Quintanilla

Elasticity problems have attracted the attention of researchers from different
fields interested in the temporal decay behavior of the solutions. As the elastic
materials with voids have macroscopic and microscopic structures, it is relevant to
clarify the interactions between both structures. One would like to know if the cou-
pling is strong or weak. One aspect to clarify of the coupling could be to consider
dissipation mechanisms at macroscopic (and/or microscopic) level and to study the
kind of longtime behavior of solutions. Many papers has been published where the
authors try to clarify the rate of decay of solutions in elasticity with voids. The
first contribution in this line was proposed by Quintanilla [17]. There, the author
showed that this coupling is generically weak in the sense that the dissipation at the
level of the microstructure is not able to bring all of the system to an exponential
decay. That is the decay of the solutions can be very slow. Since this contribution
many people have tried to see how the different mechanisms we consider bring all
of the system to a exponential decay or a slow decay. Some different dissipation
mechanisms as rate type viscoelasticity, rate type porous viscosity, thermal effects,
microthermal effects, boundary effects etc. have been considered. It is not very
difficult to see that every one of these mechanisms is able to bring the macroscopic
(or the microscopic) components if we only consider them separately. However we
generically need at least two dissipation mechanisms to obtain exponential decay of
solutions. To be precise Casas and Quintanilla [1, 2] proved the exponential decay if
we combine porous dissipation (or microtemperatures) with temperatures, Glowin-
ski and Lada [5], Lazzari and Nibbi [9] did a similar thing when they propose several
dissipation mechanisms on the boundary, Magana and Quintanilla [12] developed a
very systematic study in case that we consider rate type viscoelasticity, rate type
porous viscosity, thermal effects and microthermal effects as well as hyperbolic heat
conduction. The main conclusions can be recalled with the help of a scheme:

Thermal effect Elasticity Microthermal effect
N 1 -
Viscoelastic effect Porosity Viscoporous effect

If we take simultaneously one effect from the right square and another one from
the left square, then we get exponential stability. However, if we consider two
simultaneous effects from one square only, then we get slow decay.

We also mention the general study developed at [16] when the dissipation mech-
anisms are of memory type.

Pamplona et al. [15] also proved that for isotropic bodies the solutions are an-
alytic if the dissipation mechanisms are of rate type [8]. All these contributions
apply to centrosymmetric and isotropic one dimensional materials. Here, we want
to consider the most general system of equations proposed to describe thermoelastic
solids with voids. The system of equations proposed by Iegan [6] is an extension
from two (al least) view points. On one side we assume that the material is not
centrosymmetric neither isotropic and on the other side the dissipation mechanisms
is the most general has been considered until this moment (see the recent contribu-
tion of Tegan [6]). Apart to include a rate effect on the volumetric response (as in
[3, 4]), we assume that the time derivative of the strain tensor and the time deriva-
tive of the gradient of the volumetric fraction field are also included in the set of
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constitutive variables. It is worth noting that all the studies concerning time decay
previously mentioned in poro-elasticity is concerning isotropic materials. However,
in the last time a big interest has been developed to understand the chiral materials.
Our contribution can be considered in this line. It is motivated by the desire to
know what kind of behavior we can expect for these materials.

Our intention is to show how the dissipation mechanisms implies several quali-
tative properties of the solutions. In the first part of the paper we give a new result
of uniqueness of solutions for the problem which is different from the one proposed
by Iesan [6]. In fact we do not make any assumption on the sign of the internal
energy, but we assume the positivity of the dissipation. The other main aim of
this paper is to extend the arguments proposed by Pamplona et al. [15] to obtain
the analyticity of solutions to the general system for thermoviscoelastic materials
with voids. We also prove the analyticity of the solutions a case where the coupling
mechanisms play a fundamental role and the dissipation mechanisms are weaker.

This paper is structured as follows. In section 2 we state the general system
of equations for the thermoviscoelastic solids with voids. A uniqueness result is
proved in section 3. This uniqueness result uses in a strong way the positivity of
the dissipation mechanism, but we do not impose any assumption on the internal
energy. In section 4 we show the well-posedness of the problem in case we also
assume that the internal energy and the dissipation are positive. However, to do
that we restrict our attention to the one-dimensional case. In section 5 we show
that the semigroup is analytic, which in particular implies the exponential decay.
In the last section we show how the coupling mechanisms can be used to obtain the
analyticity of solution in case that the dissipation is less strong that in the general
case.

2. Basic Equations

We will denote by €2 a bounded domain smooth enough to guarantee the use of the
divergence theorem.
The evolution equations for the theory of elastic solids with voids are

pii; = tjij, prp=Hj;+g, pTo== Q. (2.1)

Here, tj; is the stress, H; is the equilibrated stress, g is the equilibrated body force,
Q; is the heat flux and Ty is the absolute temperature in the reference configuration
which is assumed positive. The variables u;,» and Z are the displacement, the
volume fraction and the entropy respectively. We assume that p and x are positive
constants whose physical meaning is well known. In general, we can consider several
dissipation mechanisms in this theory. We here, restrict our attention to the case
that the viscoelasticity is present and the viscosity at the microstructure is also
present apart the temperature effect. That is in our case, we assume the following
constitutive equations (see [6])

tij = Cijrsers + Bijo + Dijrpr — Bij0 + S5,
H; = Aijjpj+ Drsiers +dip — a0 + Hf,
= —Bjjei; —&p—dip; +mb+g~,
Bijeij + ab +mp + a;p i,
Qi = kij0j+ firsérs +bip +aijp ;.

S
[1]
I
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where
S5 = Chysbrs + B¢+ Dijppr + M0 g,
H = Aj¢;+Gryérs +dio+ Pij0 5,
g = —Fjé; —§o—nipi— R0 ;.
Here
1

eij = 5 (uij + ).
The constitutive tensors satisfy the symmetries
Cijrs = Crsij = Cjirs, Bij = Bji, Dijk = Dy, Aij = Aji, Bij = By,
and

C; =0y = Ojﬁirsa B’L*j = B;

* —
ijrs rsij 7 Vi ijk —

* o . * *
jiks M;j = Mjig, Aij = Ajia

szk = G;ik’ Pl = Pﬁ’ ‘F;; = Fjiv kij = kjiu firs = fisr-
If we substitute the constitutive equations into the evolution equations we obtain

the system of field equations

pii; = (Cijrsers + Bijp + Dijrip — Bis0)
. o (2.2)
+ (Cmsers + B¢+ Dijpp o + Mijke,k) ;
prd = (Aijp;+ Drsiers + dip — aib) ;
+ (A5, + Glbrs +dip + Pigb ) | (2.3)
_Bijeij — ggﬁ — dzgﬁﬁz + m9 — F:]GU — g*gﬁ — ’Yz*wﬂ — Rjt?,j,
To(Bijéij + ab +mep + aipi) = (kij0j + firsers + bip + @ijP,5) ;- (2.4)

In order to determine a problem we need to impose the boundary conditions and
initial conditions. From now on, we assume

ui(x,t) = p(x,t) = 0(x,t) =0, x € 9N, t >0, (2.5)
and the initial conditions
ui(x,0) = ug (x), wi(x,0) = uj(x), ¢(x,0) = po(x),
$(x,0) = p1(x), 0(x,0) = O(x),x € Q. (26)
The internal energy of the system is given by
2U = Cyjrs€ijers + Aijp,ip,j + £0° + 2Bijpes; + 2Dijreijo ik + 2dipp ;.
The dissipation of the system is defined by the function
I = G ijérs + A5j0ip 5+ E 1017 + £ kig0i0 5 + (B, + Fj)éijé
H(Dfy, + Gl + (Mg + 250)é50 1 + (df +77) 9.
H(Rj + 2)905 + (P + H2) i .



On uniqueness and analyticity in thermoviscoelastic solids with voids 255

When the internal energy is assumed positive we have that the inequality
U > C1 (esjeij + i +9°)

is satisfied for a positive constant C7, meanwhile when the dissipation is assumed
to be positive we have that the inequality

1> Cy (éi5éi5+ 595 + 91> +0.40.:)

is satisfied for a positive constant Cs.

In the second part of this paper we will prove the analyticity of the solutions
for the problem determined by our system in case that the internal energy and
the dissipation are strictly positive. To make easier the read we will restrict this
study to the one-dimensional and homogeneous case. The general study would
need of very cumbersome expressions, but from the mathematical point of view the
analysis would agree. Thus, we believe that it is much better to do that to simplify
expressions. The only point to pay attention is that for the three-dimensional case
we would need to use of the Korn inequality which is not needed for dimension one.
If we denote J = pk and consider Q = (0, 7), our system reduces to

Pl = gy + bps + Dpry — B0z + Vs + 0" Pp + D Prg + MOy (2.7)
Jp = Apze + Dugy — (a+ R)0, —buy, — Eo+mb+ A Qpy

+  GYige + d* ¢ + Plyy — F i — 5@ (2.8)
ol = ko + fitee + (b — a)ps — Blie — M + 0" P (2.9)

the boundary conditions will be
w(0,8) = u(m, 1) = 9(0,1) = o(m,t) = 0(0,4) = O(m,8) =0, (2.10)
and the initial conditions

u(,0) = uo(z), i(x,0) = ui(x), ¢(x,0) = po(x), ¢(x,0) = ¢1(z), 0(x,0) = Oo(x).
The internal energy and the dissipation of the system will have the form*(zll)
2U = pu2 + A2 + £p° + 2bpu, + 2Dugpy,
and
= Afial* + A%|fal* + €70 + k0T + (" + F*)iap + (D + G )itapr

H(M + figly + d*ppe + (R+0"7)p0, + (P + a* )90,

3. Uniqueness

The aim of this section is to obtain a uniqueness result for the solutions of the prob-
lem determined by the thermoviscoelastity with voids. We recall that a uniqueness

*Note that for homogeneous materials (d;); — dip,; = 0 and for this reason we do not
consider the counterpart of the constitutive tensor d; in the system (2.8)-(2.10) neither in the
internal energy.
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result was obtained by Iegan [6], but under the assumption that the internal energy
and the dissipation are always greater or equal than zero. We here do not impose
such restrictive assumptions. We do not assume any sign for the internal energy,
but we need to assume the strictly positivity of the dissipation function II.

As we want to prove the uniqueness of solutions, it is enough to see that the
only solution for the problem determined by the null initial conditions

ui(x,0) =0, 4;(x,0) =0, ©(x,0) =0, $(x,0) =0, 6(x,0)=0, x€Q, (3.1)

is the null solution.
For the initial conditions the conservation of the energy reads

1 t
5 / (ptgiv; + pr| o> + ab® +2U) dv + / / Hdvds = 0. (3.2)
Q 0 JQ

The function
1 . AP t
F(t) == [ (piit; + pr|@|* + ab?) dv + Idvds,
2 Ja 0o Ja

satisfies 1
F(t)= ——/ 2U dv.
2 Ja

In view of the null initial conditions, we have

t
—/ /Tdvds,
o Ja

T = Cijrs€ijérs + Aij,i0,5 + §p¢ + Bij(péy; + peij)

where

+Dijk(€ij o,k + €5 k) + di(Pp,i + 9pi).
In view of the Holder inequality and the positivity of the dissipation, we see the
existence of a positive constant C such that

()<C’4(//Qe”e”+<pl<p + | dvds) </ /QHdvds) . (3.3)

In view of the initial conditions and the Poincaré inequality we know that

k a2t . .
/ /(eijeij + 0.0 + ol )dvds < —2/ /(eijeij + ¢+ |9 )dvds. (3.4)
0 JQ ™ Jo Ja

Using again the positivity of the dissipation, we see the existence of a positive
constant C5 such that

t
F(t) < Cst / / dvds < CstF (), (3.5)
0 Q

where the last inequality follows from the definition of F'(t).
It then follows that
(1— Cst)F(t) < 0. (3.6)
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If we take ty = C5 ', we obtain that F'(t) vanishes in the interval (0,%o). If we take
into account the definition of F'(t), it follows that # = 0, ¢ = 0 and @; = 0 for
every t < to. Thus, we have proved that the problem determined by our system with
the homogeneous boundary conditions and the null initial condition has only the
null solution in the interval [0, ¢p]. If we apply the same argument to the problem
determined by our system, the same boundary conditions and initial conditions

;i (x,t0) = Ui(x,t0) = (X, t0) = ¢(x,t0) = 0(x,t0) =0, x€ B (3.7

we can conclude § =0, ¢ =0 and u; = 0 for every t < 2tp.
After a recurrent argument we obtain the following result.

Theorem 3.1. Let us assume that the mass density and the specific heat are strictly
positive and that the dissipation function is strictly positive. Then the boundary-
initial-value problem has at most one solution.

4. Well posed problem

In this section we prove the well-posedness of the problem determined by (2.8)-
(2.12) when the internal energy and the dissipation are strictly positive. To write
the proof in the less cumbersome case we assume that the material is homogeneous
and one dimensional.

We consider the Hilbert space

H = Hy(0,7) x L*(0,7) x Hy(0,7) x L*(0,7) x L*(0,7)

where Hé, H' and L? are the well known Hilbert spaces. If U = (u,v, ¢, ¢,0) and
U* = (u*,v*, p*, ¢*, 0%) we define the inner product

U,U 9 = / [pv0" + pug iy + Jod™ + Aprpy + Ep@™ + 00
0
+b(uep™ + uyp) + D(uzpy + ﬂ;@z)} dr,

where the bar denotes the conjugate complex number, and the corresponding norm
Ul = / [plv*+plua|*+ 716" + Al gz |*+€ |l +¢l0]*+2bRe u,F+2DRe uap, ] dx.
0

Let us introduce the operator

0 I 0 0 0
A1 Az Azz Ay Ass
A= 0o o o I 0 (4.1)
Ay Ay Ags Ay Ags
0 Aso 0 Asy Ass

where I is the identity operator Az = p~1ud?, Az = p~1v0?%, A = p~1(b0 +
DO?), Aoy = p~1(b*0 + D*0?), Ass = —p~1(B0 — MD?), Ay = —J (b0 — DO?),
Ao = —Jﬁl(F*a — G*(?Q), Az = Jﬁl(Aa2 — 5[), Ay = Jﬁl(A*a2 +d*0 — 5*1),
Ay = J‘l(mI+P82 — (a—i—R)@), ./452‘2 —C_l(ﬁa— f62), Asy = C_l(a*a2+ (o™ —

a)d —ml), Ass = ¢ 1kd? and 9" = dd -
T
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Our initial-boundary value problem is equivalent to the problem
U, =AU, U(0)=Uye€ D(A), (4.2)

where Uy = (ug, u1, ¥0, ¢1,60) and A : D(A) C H — H. The domain of A can be
easily calculated, but we note that it contains (H2 N Hg)® which is dense in our
Hilbert space. We note that for every U € D(A)

1 s
Re<AU, U>H - —5/0 Re T'dz
where
T = ylvel* + £ + k[0 + A* ¢ + (b" 60 + F*v.0)

+(P6.wéz + a*ém(bw) + (G*’Um(l;z + D*'Dm(bw) + (M'Dwez + fvméw) + (Rew(l; + b**¢§w)

In view of the positivity of the dissipation we see the existence of a positive constant
such that

1 ™
Re<AU, U>H < —§M1/0 (Y|va|? + €[@|2 + k|02]2 + Albs|?)dz < 0,

where M is a positive calculable constant. Then A is dissipative.

Lemma 4.1. Under the above notations we have that 0 € o(A), where o(A) is a
set resolvent of A.

Proof. For any F = (f1, fo, f3, fa, f5) € H, we want to find U = (u,v,p, $,0) €
D(A) such that

AU = F. (4.3)

In terms of the components we get
v = fl (44)
o = f3 (4.5)

Aoz —buy —Eo+mb + A Gy + POry — F*vp — E¢ + d* ¢y
+Duyy + Gy — (a+ R)0, = Jfy (4.6)
kemw - ﬁvm + fvmm - m(b + a*¢mm + (b** - a)¢m = Cf5- (47)
We have

v, € H} (0, 7). (4.8)

We can write

kow = B(f1)a = f(F1)ax +mfs = 0" (f3)ea — (0" = a)(f3)a +cfs € H'(0,7). (4.9)

We conclude that there exists a unique function § € H'(0, ) satisfying (4.9).
Then, the remanning point is to prove that there exist u and ¢ satisfying

Aye — buy — Ep + Dugy G (4.11)
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where

Fl = _V(fl);uﬂ +661 +pf2 _b*(f?;)w - D*(f3)LIJLE _MHLE:E S H_l((),ﬂ'),

and
Gl = —m9+Jf4—|—F*(f1)x+§*f3—A*(fg)mc—Pozz

—d*(f3)e — G*(f1)zx + (a + R)8, € H=1(0, 7).

Introducing the space W = Hg (0, 7) x H}(0, ), and denoting the bilinear form
a(V,V) = ,u/ Uyl d + b/ (Qliy + up@) dx + D/ (Qpliy + s p,) dx
0 0 0
+A/ ¢2P, dz +§/ P dz
0 0

we conclude that a(-,-) is a coercive, continuous bilinear operator over the Hilbert
space W. Therefore there exists a solution to the variational equation

a(U, V) = {(F1,G1),V)

that is equivalent to system (4.10)—(4.11). O
Thus, we have proved

Theorem 4.1. Under the above conditions we have that the operator A is the
infinitesimal generator of a Co- semigroup T (t) of contractions over the Hilbert
space H.

5. Analyticity

To prove the main aim of this section we will use a result which can be found in
the book by Liu and Zheng [11].

Theorem 5.1. Let us consider S(t) = et a Cy-semigroup of contractions gener-
ated for operator A in Hilbert space H. If iR C o(A), then S(t) is analytic if and
only if

To apply this theorem to our situation we need to consider the resolvent equation
which is given by

AU — AU = F (5.1)

where

h
2
fs and X € C.
Ja
fs

S

I
e 6 <

B!

I
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To show the analyticity we shall take A = i, @ € IR. Written the equation (5.1)
with A = 1o, a € IR we have

o —v = fi (5.2)
iapv — (Py + by + YWiw — By + 0" Py
+D¢yy + D*Guw + Mbyz) = pfa  (5.3)
iap—¢ = [ (5.4)
i — (Apge — buy — Ep+mb + A% Gy + POyy — F* v,
&+ d* ¢y + Dugy + G0y — (a+ R)0,) = Jfy (5.5)
iach — (kOzy — By + fUre — MO+ " Gpy + (0™ —a)ds) = cfs.  (5.6)

We need of the following lemmas.

Lemma 5.1. For any F € 'H, there exists a positive constant c1 such that
/ (Vval® + €7 [0 + k0o ]* + A%|6s|*)dz < c1||F ||| |U]]5- (5.7)
0

Proof. Multiplying the equations (5.2)-(5.6), respectively, for —pti sz, U, —A@za
and €@, ¢, 0, integration from 0 to 7 and summing the equations, we find that

ia [ [lof? + ulusl? + Alsf? + 10 + €lof? + o] do
0

+u /F(umﬁm — Uy, )dx + b/
0 0
1A / (0ebe — Gute)da + B / (6,0 — B0)dx + € / (06 — pd)de

T

(675 + usd)da +m / " (66 — 03)dx
0

D / (Paie + taha ) + / (D 6 + G vay)d
0 0

b [ Q0.+ oo+ d [ obado+ | (ROG+ 108, )do
0 0 0

ta / (0,6 — 60,)da + /
0 0

+/ (Vw2 + A*|6a? + E°16[2 + k|6, [2)dz = Ry
0

s us

(PO, + a*¢y0,)dx + / (b*pv, + F*v,¢)dx
0

(5.8)
where |R1| < C||F||»||U||» for a positive constant C. We note that

YUz + umd_) = ga(iauz - (fl)z) + uz(io«p - fS) = _ia(<ﬂﬂm + uz‘%_’) - ‘P(fl)z - umea
and B
= _ia(@wﬂw + um@w) - Spw(fl)w - uw(fB);E

Taking real part in the equation (5.8), using the positivity conditions for the
dissipation and the definition of norm in H we obtain the estimate. |
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Lemma 5.2. For any F' € 'H, there exists C > 0 such that
[a|Ulln < CllIFl3,  Va e R,

where U is the solution for (5.1) with A\ = ic.

Proof. Multiplying the equations (5.2)-(5.6), respectively, for itiz,, —i0, iA@ys
and —ifp, —i¢, —if, integration from 0 to 7 and summing the equations, we find
that

@ [ oIl + ol + Ao+ 1687 + €lol? + coP)

—ib /0 ﬁ(m + uz)da + ip /0 ﬂ(vwaw — Dpug)da

tie /0 " (66 — od)dz + im /O " (06 — of)dz + 1B /0 " (08, — 90,)da
+iA /;(%% — Qutps)dz —iD /;(mm + Ug g )

—i /OW(D*@@ + G ey )dx — i /OW(MHITJI + fv.0,)dx

—id* /Oﬁ dpgdr — i /Oﬂ(Requ + b ¢0, )dr — ia /Oﬂ(ong — $0,)dx
—i /Oﬂ (POydy + a* ¢y )d — i/oﬂ(b*m)m + F*v,¢)dz

=i [ Glusl? + 2162 + €107 + KO o = R

where |R| < C||F||»||U||» for a calculable positive constant C.
Taking the real part in the former equality we have

aA[WM+m%P+m%P+AW+aﬂ%mwﬂm

IN

Re{ib Uy + Uz @)da +iD ’ oUa + Ug Py )d
e{z/o(g)v + ug@)dx + i /O(gav + Uy g )dx
—i—i/ (D*¢w5w+G*vméw)d:v+i/ (M,v, + fv,0,)dx
0 0
-l—id*/ qﬁémd:c—i-i/ (Rﬁmé—i—b*%ém)d:v—ig/ (pp — pd)dx
0 0 0
i i (5.10)
—i 0p — p0)dx — i 0, — 16,)d
zm/0(¢ @0)dx zﬁ/o(v 00,,)dx
_A z_z_ z_md ) Fem__ ézd
i [ (0o = pbi)datia [ (00— 00)do

i,u/ (Vg iy — Vg )dx + z/ (Pt?zq;z + a*gbméz)d:c
0

(=)

+¢/ (b* 60, + F*vad)de } + ClIFll U
0



262 P. Pamplona, J.Rivera and R. Quintanilla

Using (5.7) we have that

refiv [ pmadey < K IFI0? (5.11)
0
and .
Re{m*/ gbx@xd:z:} < Kol |F| || |U] 54, (5.12)
0

where K1, K5 are calculable constants. In a similar way we can estimates the other
terms of the RHS of (5.10)
Therefore, we have that

X 1/2 3/2 o
allUl; < CIEIG U1 + C*1F ] Ul
for calculable positive constants C, C* which are independent of . Then
al|[U]lx < ClIF 3, (5.13)

where C' > 0 and when a > 0 is sufficiently greater. From where our conclusion
follows. ([l
Now, we are in condition to show the main result of this section

Theorem 5.2. The semigroup generated by operator A given at (4.1) is analytic.

Proof. Since A is the infinitesimal generator of a strongly continuous semigroup,
R, € 9(A) and as 0 € o(A) we have iR C 9(A). From Lemma 5.2 we have

lla(ial — A~ Flly = |of[[Ullx < CI[F|ln.

Then _
T o o] — A) 7| < oo,

Then conclusion following from 5.1. O
Remark: As consequence of the analyticity, the system (2.7)-(2.9) is exponentially
stable. Moreover, the system have a regularity effect in the sense that the solution
U = (u,ut, @, @, 0) satisfy

U € C(0,T; D(A®)).

However, D(A) is not necessary a space regular, which in particular implies that
the solution U is not in C*°(]0, T'[x]0, L[) when the initial data is not regular.
A consequence of the analyticity of solutions is the following result:

Corollary 5.1. Let (u, ¢, 0) be a solution of the problem determined by the system
(2.7)-(2.9), the initial conditions (2.11) and the boundary conditions (2.10) such that
u = ¢ = 6 = 0 after a finite time ¢ty > 0. Then u = ¢ = 0 = 0 for every ¢t > 0.

6. Case A* =0

When the parameters A* vanishes the dissipation is not so strong. In order to
guarantee the sign of the dissipation we also need to impose D* + G* = 0,d* = 0
and P 4 a* = 0. The system of equations becomes
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Pl = gy +bps + Doy — B0z + Yige + 00z + D Qpp + MOy, (6.1)
Jo = Az + Dugy — (a + R)0, — buy — Ep + mb

— D™igy — 0" 0p — F iy — 79 (6.2)
A = Kbpp+ fiige+ (0" = a)py — Bliy — mp + a* Py

and the dissipation is
T = ylig|? + €@ + k02 + (b* + F*)igp + (M + figfy + (R +b**)p0,.

In case that we assume that there exists a positive constant C' such that the in-
equality
" > Clia]? + |9f” + 62),

holds we can obtain the exponential stability of the solutions for the problem deter-
mined by the system (6.1)-(6.3) and the boundary and initial conditions proposed
previously. This is natural, because we also have sufficient dissipation mechanisms.
Even more the aim of this section is to prove that in case that we have a strong
coupling mechanism a* # 0, then we also can guarantee the analyticity of solutions.
We point out that our approach is inspired in the arguments used in the case of
plates [10].

We can consider the same Hilbert space and with the same inner product con-
sidered in the general case. We note that the semigroup of solutions is generated
by the operator

0 I 0 0 0
Aoi Asp Az Ass Ass
A= 0o o o 1 o0 (6.4)
A Al A Al Al
0 .A52 0 .A54 A55
where A}, = —J Y F*0 + D*9%), Aj, = —J ¢ 1), Ajs = T H(ml —a*d* — (a +
R)9), and the other operators were defined in the fourth section.

We can give an easy proof of the exponential stability by means of the energy
arguments. If we consider the function

1 ™
B®) =5 [ (lil? + 16 + ol + 20)d. (6.5)
0
we obtain . .
E(t) = —/ IT*dx < —c/ (Jiz|® + []? + 62)dz. (6.6)
0 0
The functions
™ 1 K ™
R(t):/ pﬁud:c—FE/ |ug |2da, J(t):/ Jpede, (6.7)
0 0 0
satisfy
R(t) = / p|1l|2da:—,u/ |uz|2d:c—b/ Uy pdx
0 0 0
—D/ umgpzd:c—ﬁ/ 9mud:c—b*/ DUz dx (6.8)
0 0 0

—D*/ umgbzda:—M/ Uz 0zdx,
0 0
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Jt) = /J|gb|2da:—A/ |gaz|2da:—D/ uz%ﬁda:—(a—l—R)/ 0 odz
0 0 0 0

—5/ |<p|2d:c—b/ Ugppdr +m @Gdz—l—D*/ Uy P dr
0 0 0

0
+a*/ chpwd:v—F*/ umcpd:v—ﬁ*/ ppde.
0 0 0
(6.9)

Thus, the time derivative of the function S(t) = R(t) + J(t) + D* [ ugpada is

S(t) = / p|u|2dar+/ J|¢|2d:z:—/ 2Uda:—6/ 0, udz
0 0 0
—b*/ wuzdx—M/ UzOy da:—(a—FR)/ O, pdx

(6.10)
+m/ 309d:v+2D*/ Uz prdr + a* / 0, pdx
0

—F*/ Ugpdx — & / Ppda.
0 0

We can see that the following estimate
Sty < / plu|*dz +/ J|p|*dx —/ 2Udx + C*/ (1027 + [¢1* + [tie|*)dz
0 0 0 0

T
te / (pal? + ol + o)
0

(6.11)
holds, where e can be selected positive, but such small as we want and C* also
depends on €. But taking € small enough and recalling the positivity of the internal
energy we see that

S < /p|u|2dx+/ J|<p|2d:zc+C*/ (18] + |02 + |ita|?)da
L 0 0 (6.12)
K / (Igal? + [0 + lus?)de

Here K is a strictly positive constant.

We can always find a positive constant €; such that for every 0 < € < ¢; the
function E(t) + eS(t) is equivalent to E(t) and a positive constant ez such that for
O0<e<e

E(t) +eS(t) < —K*(e)/ (|2 + |2 + |@z|® + o) + |ug|?)dz. (6.13)
0

By taking € < min(ep, e2) we obtain that the function X(t) = E(t) + €S(t) satisfies
() + wX(t) <0, (6.14)

for a positive k. Thus the exponential decay of 3(t) follows, and then the exponen-
tial decay of the energy function E(t). That is, there exist two positive constants
M*, c* such that

B(t) < M*E(0) exp(—c"t),
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for every solution and where M™ and c¢* are uniform for every solution.

Our intention on the remain of this section is to prove that in case that a* is
different from zero the solutions are generated by an analytic semigroup. We note
that the fact that the complex axis is contained in the resolvent of the operator is
clear. Thus to prove our aim it is sufficient to prove the second condition of the
Theorem 5.1.

Let us to assume that this condition does not hold. Then, there exists a sequence
ay, of positive numbers such that a,, — oo; and a sequence (U, Un, ©n, Pn, Oy) with

[tn 212+ [val|* + [|@n,zl1? + |6nll* + [16a]1* = 1, (6.15)
such that
o, (ianu, —v,) — 0in H' (6.16)
ar_Ll (ianpvn - (Mun,mm + bSDn,;E + /YU’II,:ELIJ - ﬁen,m
O‘;1 (ictnon — Pn)
04;1(7;0471&]¢n - (ASDR,LE:E - bun,w - 59071 + men - a*en,mm
~F*vpp — & bp + D gy — D0 ww — (@ + R)0,.2)) — 0in L? (6.19)
Oégl(ianCQn - (kon,mm - 6'071,1 + fvn,mm - m¢n
+a* P ze + (B —a)pn.)) — 0in L2 (6.20)
From the dissipation properties of the operator we have that

a7 2 (o al| + 16l + 116 ) = 0. (6:21)

From (6.16) it follows that

0in L? (6.17)
0in H' (6.18)

!

!

In view of (6.18), we see that a,, *¢, is bounded in H'. From ( 6.20), we note
that o ||k0, + fo, +a*én|| g2 is uniformly bounded and ||k6,, + fv, +a* ¢, |12 is

also bounded. Then, by Gagliardo-Nirenberg interpolation inequality o, Y 2||k9n +

FUn + a*én || is also bounded. In view of (6.21) an */?||¢n|| g must be bounded.
We now we multiply (6.20) by 6,,. In view of (6.21) we also obtain

16,1 — 0.
If we multiply (6.20) by ,,, we obtain

Oéﬁl(k < Ona,Pnaz > +f <Vnz Pnae >
+(a—=b") < Pnyonz > +m < dn, on > +a* < Ipg, Pna >) — 0.

We see that the first fourth terms tend to zero and in view of (6.18), we may
substitute a;l@w by ¢n. . Thus we see

a* < Pn,z; P,z > 0.

From (6.17) and ( 6.19), we obtain that v, and ¢,, also tends to zero in the LZ.
This contradicts (6.15). Thus, we have proved

Theorem 6.1. The semigroup generated by operator Ay given in (6.4) is analytic.

Corollary 6.1. Let (u, ¢, #) be a solution of the problem determined by the system
(6.1)-(6.3), the initial conditions (2.11) and the boundary conditions (2.10) such that
u = ¢ = 6 = 0 after a finite time ¢ty > 0. Then u = ¢ = 6 = 0 for every ¢t > 0.
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