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Abstract In this paper we study mono-stable traveling wave solutions for

a Lotka-Volterra reaction-diffusion competition model with time delay. By

constructing upper and lower solutions, we obtain the precise minimum wave

speed of traveling waves under certain conditions. Our results also extend the

known results on the minimum wave speed for Lotka-Volterra competition

model without delay.
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1. Introduction

Diffusive competition models are widely used in Agricultural pest control, dispersal
dynamics of populations, disease transmission dynamics, chemical reaction, and so
on. Nowadays the time delay effect has been considered as an important factor in
modeling the functional response, or the reaction to a population growth because
in general this functional response or reaction not just depends on the current
state but is an accumulated effect over a previous time period. The following is a
Lotka-Volterra competition model with time delay which has been studied by many
authors( [1], [8]).

ut(x, t) = ∆u(x, t) + u(x, t)
[

1 − u(x, t) − a1

∫ 0

−σ

v(x, t + θ)dη1(θ)
]

vt(x, t) = d∆v(x, t) + rv(x, t)
[

1 − v(x, t) − a2

∫ 0

−σ

u(x, t + θ)dη2(θ)
]

(1.1)

where u(x, t)and v(x, t) are densities of two populations at time t and location
x ∈ IRn, ∆ =

∑n
i=1 ∂2/∂x2

i is the Laplace operator, a1, a2, d, r, and σ are positive
constants, for i = 1, 2, ηi : [−σ, 0] → IR is nondecreasing, and is of bounded vari-

ation with
∫ 0

−σ dηi(θ) = 1. The system (1.1) is a modification of the well known
Lotka-Volterra competition model with the consideration of time delay effect. The
system (1.1) has two equilibrium points (1, 0) and (0, 1) that represent the state of
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extinction of one population. One of the important and interesting problems for
the system (1.1) is the existence of traveling wave solutions connecting these two
equilibrium points, which gives a strong evidence of the principle of competitive
exclusion in evolution ecology. In the case of bistable case, that is, both the equi-
libria (1, 0) and (0, 1) are stable with respect to the corresponding reaction system
(equivalently a1 > 1 and a2 > 1), the existence of a bistable traveling was studied
previously in [6]. While in the mono-stable case, i.e., the equilibria (1, 0) and (0, 1)
have the opposite stability, the research on the existence of traveling wave solu-
tions, in particular, finding exact minimum wave speed, has not yet been conducted
carefully.

The purpose of this paper is to study the traveling wave solutions for mono-
stable (1.1). (1.1) is mono-stable if either a1 < 1 < a2 or a1 > 1 > a2. Without
loss of generality we suppose throughout this paper that

a1 < 1 < a2.

With this assumption, the equilibrium (1, 0) is stable and equilibrium (0, 1) is
unstable. Hence it is natural to expect that there exist traveling wave fronts moving
from (0, 1) to (1, 0). The existence of such mono-stable traveling wave solutions for
the Lotka-Volterra competition system without delay has been studied by several
authors [2], [3], [5]. In this paper, we shall extend the results for non-delay systems
to our system (1.1). In particular, we will give sufficient conditions under which the
minimum wave speed is precisely equal to c∗ = 2

√
1 − a1.

This paper is organized as follows. In Section 2 we provide some preliminary
results for traveling wave solutions of a monotone time-delayed reaction-diffusion
system. In Section 3 we establish our main theorems on the existence and minimum
wave speed of traveling wave solutions for the system (1.1). Although our approach
is standard monotone iteration arguments, the construction of upper solutions for
time delayed system is nontrivial.

2. Preliminaries

Consider the time delayed n-dimensional reaction-diffusion system

∂u(x, t)

∂t
= D∆u(x, t) + F

(

u(x, t),

∫ 0

−σ

dη(θ)u(x, t + θ)

)

, (2.1)

where u(x, t) ∈ IRn, F : IRn × IRn → IRn is a smooth function, D = dig(d1, · · · , dn)
is a nonnegative and nonzero diagonal matrix, η : [−σ, 0] → IRn×n is of bounded
variation with σ > 0. We further suppose that

H1 There is a strictly positive vector U+ ∈ IRn such that

F (0) = F (U+, η∗U+) = 0, where η∗ =
∫ 0

−σ dη(θ).

We look for a traveling wave front of (2.1) connecting the equilibrium points 0 and
U+, i.e., a solution of the form u(x, s) = U(x · k + cs) satisfying the boundary
condition

U(−∞) = 0, U(∞) = U+, (2.2)

where k ∈ IRn is a unit vector and c ∈ IR is a wave speed. A straightforward
substitution yields that U(t) with t = x · k + cs satisfying the system
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cU̇(t) = DÜ(t) + F
(

U(t),

∫ 0

−σ

dη(θ)U(t + cθ)
)

. (2.3)

Let R be a rectangle region:

R =
{

0 ≤ u ≤ U+
}

We further suppose that

H2 η(θ) is non-decreasing and η∗ : R → R.

H3 the function F (u, v) = (F1(u, v), · · · , Fn(u, v)) satisfies the monotone condi-
tion in R×R. That is, for u, v ∈ R,

∂Fi(u, v)

∂uj
≥ 0, i, j = 1, · · · , n, i 6= j,

∂Fi(u, v)

∂vj
≥ 0, i, j = 1, · · · .

(2.4)

H4 F (u, η∗u) 6= 0 for all 0 ≪ u ≪ U+ and there is a positive vector h ∈ IRn and
a positive number s0 such that F (sh, sη∗h) ≥ 0 for all 0 < s ≤ s0. (Here for
u = (u1, · · · , un), v = (v1, · · · , vn) ∈ IRn, u ≪ v if ui < vi for i = 1, · · · , n.)

Theorem 2.1. Under Assumptions H1 - H4, there is a c∗ ≥ 0 such that the system
(2.1) has a nonnegative traveling wave solution connecting 0 and U+ if and only if
c ≥ c∗. Here c∗ is called the minimum wave speed.

We shall omit the proof of this theorem because the proof is essentially similar
to the proof for non-delay system (see Theorem 4.2 in [7]).

By the monotone condition (2.4), we can pick a sufficiently large number ρ such
that the function

F ρ(U, V ) = ρU + F (U, V )

is monotone increasing for U, V ∈ R. It is well known that U(t) =
(

U1(t), · · · , Un(t)
)

is a bounded solution of (2.3) if and only if for i = 1, · · · , n,

Ui(t) =
1

di(βi − αi)

[
∫ t

−∞

eαi(t−s) F ρ
i

(

U(s),
∫ 0

−σ dη(θ)U(s + cθ)
)

ds+

∫

∞

t

eβi(t−s)F ρ
i

(

U(s),
∫ 0

−σ
dη(θ)U(s + cθ)

)

ds

]

def
= Fi(U)(t),

(2.5)

where αi < 0 and βi > 0 are two roots of the equation

diλ
2 − cλ − ρ = 0.

Definition 2.1. A function U ∈ C(IR; IRn) is an upper (lower) solution of (2.5) if

Ui(t) ≥ Fi(U)(t)
(

Ui(t) ≤ Fi(U)(t)), t ∈ IR.
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It is obvious that, if U ∈ C2(IR, IRn) and

cU̇(t) ≤ DÜ(t) + F
(

U(t),

∫ 0

−σ

dη(θ)U(t + cθ)
)

, t ∈ IR,

then U(t) is a lower solution of (2.5).
In general, finding an upper solution of (2.5) is more difficult. The following

lemma provides a way for construction of an upper solution.

Lemma 2.1. Suppose c ≥ 0 in (2.5). Let U = (U1, · · · , Un) ∈ C(IR,R). If U(t)
is nondecreasing and there are constants t1, · · · , tn such that U̇i(t) is continuous on
(−∞, ti] and U̇i(t) is piecewise continuous on (−∞, ti], in addition,

cU̇i ≥ diU̇i(t) + Fi

(

Ui(t),
∫ 0

−σ dη(θ)U(t + cθ)
)

, t ∈ (−∞, ti]

Ui(t) = U+
i , t ≥ ti

i = 1, 2, · · · , n,

(2.6)

then U(t) is an upper solution of (2.5).

Proof. Since Ui(t) is non-decreasing, U̇i(ti) ≥ 0, here U̇i(ti) is the left derivative.
Define Ū = (Ū1, · · · , Ūn) by

Ūi(t) =

{

Ui(t), t ≤ ti

U+
i + U̇i(ti)(t − ti), t > ti.

(2.7)

Then U(t) ≤ Ū(t), t ∈ IR. For i = 1, · · · , n, let

di
¨̄Ui(t) − c ˙̄Ui(t) − ρŪi(t) = −hi(t), t ∈ IR. (2.8)

Then (2.6)- (2.8) yield that

hi(t) ≥ ρUi(t) + Fi

(

U(t),
∫ 0

−σ dηi(θ)U(t + cθ)
)

, t ∈ (−∞, ti]. (2.9)

Recall that Fi(U
+, η∗U+) = 0 and U(t) ≤ U+. The monotonicity of F ρ(U, V )

implies that

ρU+
i = ρU+

i + Fi

(

U+,

∫ 0

−σ

dη(θ)U+
)

≥ F ρ
i

(

U(t),

∫ 0

−σ

η(θ)U(t + cθ)
)

. (2.10)

Hence for t > ti,

hi(t) = U̇i(ti) + ρŪi(t)

≥ ρU+
i

= ρU+
i + Fi(U

+, η∗U+)

≥ ρUi(t) + Fi

(

U(t),
∫ 0

−σ dη(θ)U(t + cθ)
)

, t > ti.

(2.11)

From (2.9) and (2.11) it follows that for t ≤ ti,

Ui(t) = Ūi(t)

=
1

di(βi − αi)

[

∫ t

−∞

eαi(t−s)hi(s)ds +

∫

∞

t

eβi(t−s)hi(s)ds
]

≥ Fi(U)(t).

(2.12)
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Now for t > ti, by (2.10) we have

Ui(t) = U+
i

=
1

di(βi − αi)

[

∫ t

−∞

eαi(t−s)ρU+
i ds +

∫

∞

t

eβi(t−s)ρU+
i ds

]

≥ Fi(U)(t).

(2.13)

(2.12) and (2.13) therefore imply that U(t) is an upper solution.
The following lemma is an immediate consequence of monotone iteration argu-

ment.

Lemma 2.2. Under Assumptions H1 - H4, if (2.5) has a nondecreasing lower
solution U0(t) and a nondecreasing upper solution U0(t) such that

0 ≪ U0(t) ≤ U0(t) ≤ U+, t ∈ IR,

then the system (2.1) has a traveling wave solution of wave speed c connecting 0
and U+.

3. Minimum wave speed of traveling waves for com-

petition model

Let us now turn to the time delayed competition system (1.1). If we let

w(x, t) = 1 − v(x, t),

then (1.1) is transformed to the system

ut(x, t) = ∆u(x, t) + u(x, t)[1 − u(x, t) − a1(1 −
∫ 0

−σ

w(x, t + θ)dη1(θ))]

wt(x, t) = d∆w(x, t) + r(1 − w(x, t))[a2

∫ 0

−σ u(x, t + θ)dη2(θ) − w(x, t)]

(3.1)

The equilibrium points (0, 1) and (1, 0) are transformed to the equilibrium points
(0, 0) and (1, 1) of (3.1), respectively. For system (3.1), the corresponding reaction
function F = (F1, F2) are given by

F1

(

u,
∫ 0

−σ
w(t + θ)dη1(θ)

)

= u
[

1 − a1 − u + a1

∫ 0

−σ

w(t + θ)dη1(θ)
]

,

F2

( ∫ 0

−σ
u(t + θ)dη2(θ), w

)

= r(1 − w)
[

a2

∫ 0

−σ

u(t + θ)dη2(θ) − w
]

.

(3.2)

A straightforward verification indicates that, under the assumption of a1 < 1 < a2,
the functions F1 and F2 expressed in (3.2) satisfy all Assumptions H1 - H4. Let

u(x, s) = U(k · x + cs),

w(x, s) = W (k · x + cs)
(3.3)
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be a traveling wave solution connecting the equilibrium (0,0) and (1,1). Substituting
(3.3) into (3.1) and letting t = x + cs yield that

cU̇(t) = Ü(t) + U(t)[1 − U(t) − a1(1 −
∫ 0

−σ
W (t + cθ)dη1(θ)]

cẆ (t) = dẄ (t) + r[1 − W (t)][a2

∫ 0

−σ U(t + cθ)dη2(θ) − W (t)]

(3.4)

with the boundary condition

U(−∞) = W (−∞) = 0

U(∞) = W (∞) = 1.
(3.5)

The linearizion of (3.4) at (0, 0) is

cU̇ = Ü + (1 − a1)U

cẆ = dẄ + ra2

∫ 0

−σ

U(t + cθ)dη2(θ) − rW.

(3.6)

In order that (3.4) has a nonnegative solution (U(t), W (t)) connecting (0, 0) and
(1, 1), it is necessary that (3.6)) has at least one positive eigenvalue. The first equa-
tion of (3.6) implies that the eigenvalue λ is the solution of the equation

cλ = λ2 + (1 − a1)

or

λ =
c ±

√

c2 − 4(1 − a1)

2
.

Hence λ is real and positive if and only if c2 ≥ 4(1− a1) and c > 0, equivalently
c ≥ 2

√
1 − a1. That is, a necessary condition that (3.1) has a nonnegative traveling

wave solution connecting (0, 0) and (1, 1) is that the wave speed c ≥ 2
√

1 − a1. In
other words, 2

√
1 − a1 is a lower bound of the minimum wave speed. The interesting

question is whether the minimum wave speed is equal to 2
√

1 − a1. We shall find
sufficient conditions that guarantees that 2

√
1 − a1 is the minimum wave speed.

Throughout the rest of the paper we let

λ0 =
√

1 − a1, c∗ = 2
√

1 − a1 = 2λ0.

The above equalities implies that

λ0c∗ = 2(1 − a1).

We show the existence of traveling wave solution by constructing of upper and
lower solutions. We shall construct upper and lower solutions for the cases d ≤ 2
and d > 2 separately.

3.1. Minimum wave speed under condition d ≤ 2.

For the case of d ≤ 2, we first establish the following lemma.
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Lemma 3.1. Suppose that

[A1] a1

[

∫ 0

−σ e2(1−a1)θdη1(θ)
] [

∫ 0

−σ e2(1−a1)θdη2(θ)
]

≤ r + (2 − d)(1 − a1)

ra2
.

Let (U0(t), W 0(t)) be defined as follows:

U0((t) =

{

u0e
λ0t, t ≤ t1

1 t > t1.
(3.7)

W 0((t) =

{

w0e
λ0t, t ≤ t2

1 t > t2
(3.8)

where

u0 =
r + (2 − d)(1 − a1)

ra2
,

w0 =

∫ 0

−σ

dη2(θ)e
2(1−a1)θ =

∫ 0

−σ

dη2(θ)e
λ0c∗θ,

t1 =
1

λ0
ln

( 1

u0

)

, t2 =
1

λ0
ln

( 1

w0

)

.

(3.9)

Then (U0(t), W 0(t)) is an upper solution of (3.4) with c = c∗ = 2(1 − a1).

Proof. It is obvious that U0(t) ≤ u0e
λ0t, W 0(t) ≤ w0e

λ0t for all t ∈ IR. Hence for
t ≤ t1,

U0(t) − a1

∫ 0

−σ W 0(t + c∗θ)dη1(θ)

≥
[

u0 − a1w0

∫ 0

−σ
eλ0c∗θdη1(θ)

]

eλ0t

=
[r + (2 − d)(1 − a1)

ra2
− a1

∫ 0

−σ

e2(1−a1)θdη1(θ)

∫ 0

−σ

e2(1−a1)θdη2(θ)
]

≥ 0

(3.10)

Noting that

Ü0(t) − c∗U̇
0(t) + (1 − a1)U

0(t) = 0, t ≤ t1, (3.11)

from (3.10) and (3.11) it follows that

Ü0(t) − c∗U̇
0(t) + U0(t)

[

1 − U0(t) − a1 + a1

∫ 0

−σ W 0(t + cθ)dη1(θ)
]

= Ü0(t) − c∗U̇
0(t) + (1 − a1)U

0(t)

−U0(t)
[

U0(t) − a1

∫ 0

−σ
W 0(t + c∗θ)dη1(θ)

]

= −U0(t)
[

U0(t) − a1

∫ 0

−σ W 0(t + c∗θ)dη1(θ)
]

≤ 0.

(3.12)
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Similarly, we have U0(t) ≤ u0e
λ0t for t ∈ IR. Hence, for t ≤ t2,

r
[

a2

∫ 0

−σ
U0(t + c∗θ)dη2(θ) − W 0(t)

]

≤ r
[

a2u0

∫ 0

−σ
eλ0c∗θdη2(θ) − w0

]

eλ0t

= (2 − d)(1 − a1)w0e
λ0t

(3.13)

Since 1 − W 0(t) ≥ 0 and

dẄ 0(t) − c∗Ẇ
0(t) = w0(d − 2)(1 − a1)e

λ0t, t ≤ t2,

we have

dẄ 0(t) − c∗Ẇ
0(t) + r[1 − W 0(t)]

[

a2

∫ 0

−σ
U0(t + c∗θ)dη2(θ) − W 0(t)

]

≤ w0(d − 2)(1 − a1)e
λ0t + [1 − W 0(t)]w0(2 − d)(1 − a1)e

λ0t

= −(2 − d)(1 − a1)[W
0(t)]2

≤ 0.

(3.14)

Hence (U0(t), W 0(t)) is an upper solution by Lemma 2.2.
Next we shall construct a lower solution of (3.4). First, it is well known that

the following boundary value problem

ü − c∗u̇ + u(1 − a1 − u) = 0,

u(−∞) = 0, u(∞) = 1 − a1

(3.15)

has a monotone increasing solution U0(t). Moreover, U0(t) has the property

U0(t) = eλ0t + o(eλ0t) as t → −∞. (3.16)

Lemma 3.2. Let W0(t) ≡ 0. Then (U0(t), W0(t)) is a lower solution of (3.4).
Moreover, let F(U, W ) be the integral operator defined in (2.5) that is associated to
the system (3.4). Then 0 ≪ F(U0, W0)(t) for t ∈ IR.

Proof. The lemma follows a straightforward verification.

Theorem 3.1. Suppose that d ≤ 2 and Condition [A1] is satisfied. Then the
system (3.1) has a nonnegative traveling wave solution connecting equilibria (0, 0)
and (1, 1) if and only if c ≥ c∗. That is, the minimum wave speed is c∗ = 2

√
1 − a1.

Proof. By Lemmas 1 and 2 we have an upper solution (U0, W 0) and a lower
solution (U0, W0) of (3.4) with wave speed c = c∗. Note that both U0(t) and U0(t)
are monotone increasing and any translation U0(t + τ) of U0(t) is a solution of
(3.15). By (3.16), without loss of generality we can suppose U0(t) > U0(t) for all
t ∈ IR. Hence (U0(t), W0(t)) ≤ (U0(t), W 0(t)), for t ∈ IR. Noticing that F(U, W ) is
a monotone operator for U, W ∈ C(IR,R), Lamma 3.2 implies that

0 ≪ F(U0, W0)(t) = (U1(t), W1(t)) ≤ (U0(t), W 0(t)), t ∈ IR. (3.17)
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It is obvious that (U1(t), W1(t)) is a lower solution of (3.4) with c = c∗. Therefore
Theorem 3 follows from (3.17), Theorem 2.1 and Lemmas 2.3.

3.2. Minimum wave speed under condition d > 2.

Now let us study the case when d > 2. We suppose r−(d−2)λ2
0 > 0 and define the

following numbers and functions which will be used to construct an upper solution.

Ki =

∫ 0

−σ

e2(1−a1)θ[−(1 − a1)θ + 1]dηi(θ),

β =
r − (d − 2)λ2

0

ra2
K2

−1,

w0 =
λ0(d − 2)

2(d − 1)
e2/(d−2),

t∗ = −
2

λ0(d − 2)
,

ξ(t) = (−t +
2

λ0
)eλ0t,

µ(t) =
(

− t +
2

λ0

)2

eλ0t.

(3.18)

Straightforward computations yield that

ξ̇(t) = (1 − λ0t)e
λ0t,

ξ̈(t) = −λ2
0te

λ0t,

µ̈(t) = (−λ0t)
(

− t +
2

λ0

)

eλ0t.

(3.19)

From (3.19)) it follows that

dξ̈(t) − c∗ξ̇(t) = (d − 2)λ2
0ξ(t) − 2λ0(d − 1)eλ0t, (3.20)

and µ(t) is monotone increasing for t ≤ 0. Moreover, by the definition of t∗, we
have

w0ξ(t) < w0ξ(t∗) = w0(−t∗ +
2

λ0
)eλ0t∗ = 1, t ≤ t∗,

w0µ(t∗)(d − 2)λ2
0 = 2λ0(d − 1).

(3.21)

In addition, we have

r − ra2β

∫ 0

−σ

eλ0c∗θdη2(θ)

≥ r − ra2β

∫ 0

−σ

eλ0c∗θ(−λ0c∗θ

2
+ 1)dη2(θ)

= r − ra2
r − (d − 2)λ2

0

ra2
= (d − 2)λ2

0

(3.22)
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(3.22) yields that

r[ξ(t) − a2β
∫ 0

−σ
ξ(t + c∗θ)dη2(θ)]

= r

[

ξ(t) − a2β

∫ 0

−σ

eλ0c∗θdη2(θ)(−t)eλ0t

−a2β

∫ 0

−σ

eλ0c∗θ(−
λ0c∗θ

2
+ 1)dη2(θ)

2

λ0
eλ0t

]

=
[

r − ra2β

∫ 0

−σ

eλ0c∗θdη2(θ)
]

(−t)eλ0t

+
[

r − ra2β

∫ 0

−σ

eλ0c∗θ(−
λ0c∗θ

2
+ 1)dη2(θ)

] 2

λ0
eλ0t

≥ (d − 2)λ2
0(−t +

2

λ0
)eλ0t

= (d − 2)λ2
0ξ(t)

(3.23)

Now we define the function W 0(t) as

W 0(t) =







w0ξ(t), −∞ < t ≤ t∗

1, t > t∗

(3.24)

and we define U0(t) depending on two cases:
Case 1. If there is a t1 ≤ 0 such that

w0βξ(t1) = 1,

then we define

U0(t) =







w0βξ(t), t ≤ t1

1, t > t1

(3.25)

Case 2. If w0βξ(t) < 1 for all t ≤ 0. We define

U0(t) =



























w0βξ(t), t ≤ 0

w0βξ(0) + w0βξ̇(0)t, 0 < t ≤ t1

1, t > t1,

(3.26)

where

t1 =
1 − w0βξ(0)

w0βξ̇(0)
.
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Lemma 3.3. Suppose that

[A2]
r − (d − 2)λ2

0

ra2K2
≥ max

{

a1K1,
(d − 1)

2(d − 2)
e−2/(d−2),

a1(d − 1)

(d − 2)
e−2/(d−2)

}

.

Then (U0(t), W 0(t)) defined by (3.24), (3.25) or (3.24), (3.26) is an upper solution.

Proof. For either Case 1 or Case 2, we have

U0(t) ≤ w0βξ(t), t ≤ 0.

Hence by (3.20), (3.21), (3.23), for t ≤ t∗,

dẄ 0(t) − c∗Ẇ
0(t) − r(1 − W 0(t))(W 0(t) − a2

∫ 0

−σ

U0(t + c∗θ)dη2(θ))

= w0[dξ̈(t) − c∗ξ̇(t) − (1 − w0ξ(t))r(ξ(t) − a2

∫ 0

−σ ξ(t + c∗θ)dη2(θ))]

≤ w0[(d − 2)λ2
0ξ(t) − 2λ0(d − 1)eλ0t − (1 − w0ξ(t))(d − 2)λ2

0ξ(t)]

= w0[−2λ0(d − 1)eλ0t + w0(d − 2)λ2
0ξ

2(t)]

= w0[−2λ0(d − 1) + w0(d − 2)λ2
0µ(t)]eλ0t

≤ w0[−2λ0(d − 1) + w0(d − 2)λ2
0µ(t∗)]e

λ0t∗

= 0.

(3.27)

Now for U0(t) with Case 1, since W 0(t) ≤ w0ξ(t) for t ≤ t1, for t ≤ t1,

Ü0(t) − c∗U̇
0(t) + U0(t)[1 − a1 − U0(t) + a1

∫ 0

−σ W 0(t + c∗θ)dη1(θ)]

= Ü0(t) − c∗U̇
0(t) + λ2

0U
0(t) − U0(t)[U0(t) − a1

∫ 0

−σ
W 0(t + c∗θ)dη1(θ)]

≤ −w2
0βξ(t)[βξ(t) − a1

∫ 0

−σ
(−t − c∗θ +

2

λ0
)eλ0c∗θdη1(θ)e

λ0t]

= −w2
0βξ(t)

{

[β − a1

∫ 0

−σ eλ0c∗θdη1(θ)](−t)eλ0t+

2

λ0
[β − a1

∫ 0

−σ
eλ0c∗θ(−

λ0c∗θ

2
+ 1)dη1(θ)]e

λ0t
}

(3.28)
By the assumption [A2], we have
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β − a1

∫ 0

−σ

eλ0c∗θdη1(θ) ≥ β − a1

∫ 0

−σ

eλ0c∗θ(−
λ0c∗θ

2
+ 1)dη1(θ)

=
1

K2
[
r − (d − 2)λ2

0

ra2
− a1K1K2]

≥ 0.

(3.29)

(3.28) and (3.29) immediately imply that, for t ≤ t1,

Ü0(t) − c∗U̇
0(t) + U(t)

[

1 − a1 − U0(t) + a1

∫ 0

−σ
W 0(t + c∗θ)dη1(θ)

]

≤ 0. (3.30)

For Case 2, first it is obvious that (3.30) still holds for t ≤ 0. Let us first suppose

that a1 ≤
1

2
, then by Assumption [A2] and definitions of β and w0 (see 3.18), we

have

U0(0) = w0βξ(0) = w0β
2

λ0
≥

1

2
. (3.31)

Moreover,

2λ0U̇
0(0) = 2λ0w0β ≥

λ2

2
=

1 − a1

2
≥ 1

4
. (3.32)

By the definition of U0(t), Ü0(t) = 0 and 1 ≥ U0(t) ≥ U(0) ≥
1

2
for 0 < t ≤ t1.

Thus (3.31) and (3.32) imply that for all t > 0 with U0(t) ≤ 1,

Ü0(t) − c∗U̇
0(t) + U0(t)(1 − U0(t) − a1[1 −

∫ 0

−σ W 0(t + c∗θ)dη1(θ)])

≤ −1

4
+ U(t)(1 − U(t))

≤ −
1

4
+

1

2
(1 −

1

2
)

= 0.

(3.33)

Next suppose a1 >
1

2
, then from Assumption [A2] and definitions of w0 and β

it follows that for 0 < t ≤ t1,

1 ≥ U0(t) ≥ U0(0) = w0β
2

λ0
≥ a1. (3.34)

(3.34) yields that

U0(t)(1 − U0(t)) ≤ a1(1 − a1). (3.35)

Note that 2c∗U̇
0(0) = (1 − a1)U

0(0). From (3.34) and (3.35) we deduce that for
0 < t ≤ t1,
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Ü0(t) − c∗U̇
0(t) + U0(t)

[

1 − U0(t) − a1

(

1 −
∫ 0

−σ W (t + c∗θ)dη1(θ)
)

]

≤ −2c∗U̇
0(0) + U0(t)[1 − U0(t)]

≤ −(1 − a1)U
0(0) + a1(1 − a1)

≤ 0.

(3.36)

Hence (U0(t), W 0(t)) is an upper solution by Lemma 2.2.

By using the same argument for the proof of Theorem 3.3 we immediately have
the following

Theorem 3.2. If d > 2 and Assumption A2 hold, then the system (3.1) has a
nonnegative traveling wave solution connecting equilibria (0, 0) and (1, 1) if and
only if c ≥ c∗. That is, the minimum wave speed is c∗ = 2

√
1 − a1.

Remark. Note that, if

η1(θ) = η2(θ) = 0, θ ∈ [−σ, 0), η1(0) = η2(0) = 1,

then (1.1) is reduced to a non-delay system. In this case, we have K1 = K2 = 1.

Moreover, d > 2 implies that
d − 2

d − 1
< 1. Hence Assumption A2 is reduced to

[A2’ ]
r − (d − 2)(1 − a1)

ra2
≥ max

{

a1,
d − 1

2(d − 2)
e−2/(d−2)

}

.

We have

(d − 2)2e2/(d−2) ≥ (d − 2)2
[

1 +
2

d − 2
+

2

(d − 2)2

]

= (d − 2)2 + 2(d − 2) + 2

= d2 − 2d + 2

> (d − 1)2.

(3.37)

From (3.37) it follows that

d − 1

2(d − 2)
e−2/(d−2) <

d − 2

2(d − 1)
. (3.38)

(3.38) implies that Condition [A2’] is an improvement of Condition[C4]

r − (d − 2)(1 − a1)

ra2
≥ max

{

a1,
d − 2

2(d − 1)

}

given in [3].
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