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RESONANCES OF THE SD OSCILLATOR DUE

TO THE DISCONTINUOUS PHASE

Qingjie Caoa,†, Yeping Xiongb, Marian Wiercigrochc

Abstract Resonance phenomena of a harmonically excited system with mul-
tiple potential well play an important role in nonlinear dynamics research.
In this paper, we investigate the resonant behaviours of a discontinuous dy-
namical system with double well potential derived from the SD oscillator to
gain better understanding of the transition of resonance mechanism. Firstly,
the time dependent Hamiltonian is obtained for a Duffing type discontinuous
system modelling snap-through buckling. This system comprises two subsys-
tems connected at x = 0, for which the system is discontinuous. We construct
a series of generating functions and canonical transformations to obtain the
canonical form of the system to investigate the complex resonant behaviours
of the system. Furthermore, we introduce a composed winding number to
explore complex resonant phenomena. The formulation for resonant phenom-
ena given in this paper generalizes the formulation of nω0 = mω used in the
regular perturbation theory, where n and m are relative prime integers, ω0

and ω are the natural frequency and external frequencies respectively. Un-
derstanding the resonant behaviour of the SD oscillator at the discontinuous
phase enables us to further reveal the vibrational energy transfer mechanism
between smooth and discontinuous nonlinear dynamical systems.

Keywords SD oscillator, resonance, generating function, canonical transfor-
mation, stochastic web, discontinuous Hamiltonian
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1. Introduction

Much attention has been paid to the resonance phenomena of harmonically excited
forcing system with multiple well dynamics, [13, 9, 10], which plays an important
role in the nonlinear dynamics research, e.g. [1, 5, 11]. The formulation of reso-
nances by regular perturbation theory, Hamiltonians and KAM theory [16, 25, 21],
is inconvenient to study the resonant phenomena exhibited in a harmonically ex-
cited forcing system with multiple well potentials, as it is impossible to find a pair
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of co-prime numbers m and n which satisfies the condition mω0 = nω, where ω0

and ω are the natural frequency and the external excitation frequency [17, 18],
respectively.

This paper aims to study the resonant phenomena by presenting a discontinuous
time dependent Hamiltonian derived from the discontinuous phase of SD oscillator
[2, 3, 4] in the presence of a novel discontinuity [8, 7, 15] of Duffing type with
snap-through buckling [14, 19]. This system comprises two subsystems connected
at x = 0, where each of them exhibits regular resonance, while the overall system
generates complex resonances due to its discontinuous nature. Even the formulation
presented in this paper is proposed for the particular discontinuous system, it is
valid for both smooth and discontinuous system with multiple potential well, such
as Duffing oscillator with a double winged homoclinic orbit.

The paper is organized as follows. In Section 2, generalized generating functions
and the canonical transformations are constructed to derive the canonical form of
the time dependent discontinuous Hamiltonian system. In Section 3, the general-
ized winding number is introduced to formulate the resonances. This formulation
generalizes the resonant condition described in the regular perturbation theory and
reveals the complex discontinuous resonant structure of the stochastic web. Finally
in Section 4, we provide summary and discussion.

2. Time dependent Hamiltonian

Consider the dimensionless SD oscillator, introduced and described in [2, 3], as
follows.

ẍ + x(1 − 1√
x2 + α2

) = 0, (2.1)

which exhibits both smooth and discontinuous dynamics depending on the value of
parameter α. When α > 0, system (2.1) is smooth exhibiting the standard dynamics
of snap through and double well [2], while α = 0, system (2.1) is discontinuous,
which can be written as

ẍ + (x − sign(x)) = 0. (2.2)

Such a formulation leads to a novel example of non-standard dynamics of discon-
tinuous snap through buckling and a double well potential [2, 3].

If the system is excited by an external force of frequency ω and amplitude f0,
system (2.2) becomes

x′′ + (x − sign(x)) = f0 cosωτ, (2.3)

for which the time-dependent Hamiltonian can be obtained by letting y = x′,

Hτ (x, y, τ) =
1

2
y2 +

1

2
x2 − |x| − f0x cosωτ. (2.4)

The first order term |x| can be incorporated into the above Hamiltonian by shifting
the origin from (0, 0) to the equilibria (±1, 0), by means of the time dependent
canonical transformation, [16, 19]. New variables (x, y, τ) → (p, q, τ) are defined as
p = x − sign(x) and q = y, and the canonical generating function is constructed as

F2(p̄, q̄, t) = yp̄ = y(x − sign(x)). (2.5)
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This transformation maps two half-planes Σ1 and Σ2 in xy plane onto two half-
planes Σ̄1 and Σ̄2 in q̄p̄ plane, as shown in Figure 1, and defined below
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Σ1 = {(x, y)|x > 0}⋃{(x, y)|x = 0, y > 0},
Σ2 = {(x, y)|x < 0}⋃{(x, y)|x = 0, y < 0},
Σ̄1 = {(p̄, p̄)|p̄ > −1}⋃{(p̄, q̄)|p̄ = −1, q̄ > 0},
Σ̄2 = {(p̄, q̄)|p̄ < 1 }

⋃

{(p̄, q̄)|p̄ = 1, q̄ < 0 }.

(2.6)

As can be seen from the Figure 1 that the overlap for p̄q̄ plane in the region p̄ ∈
(−1, 1) has to be taken into account for appropriate reconstruction of the trajectory.

Hamiltonian (2.4) can be transformed into the following form in term of the new
variables p, q.

Hτ (p̄,q̄, τ) =







1

2
p̄2 + 1

2
q̄2 − (p̄ + 1)f0 cosωτ, (p̄, q̄) ∈ ¯∑

1
,

1

2
p̄2 + 1

2
q̄2 − (p̄ − 1)f0 cosωτ, (p̄, q̄) ∈ ¯∑

2
.

(2.7)
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Figure 1. (Colour online) a. Trajectory in xy plane, b. trajectory and the transient at

p̄ = ±1: the solid curve marks the part of the trajectory in Σ̄1 and Σ̄2. The trajectory
starts from Ā ∈ Σ̄1 and the transients or the jumps at B̄ → B̄′; C̄′

→ C̄ and D̄ → D̄′ such

that the arc d̄AB̄ ∈ Σ̄1,
̂̄B′C̄′ ∈ Σ̄2 and d̄CD̄ ∈ Σ̄1.

We can treat time τ and E = −H̄τ as additional co-ordinates in an extended
phase space, by introducing an auxiliary parameter ξ playing the role of time [16, 19].

The new Hamiltonian of the forced system with the canonical generating func-
tion F2 = p̄q̄ + Eτ in the extended phase space is

H̄(p̄, q̄, E, τ) =

{

1

2
p̄2 + 1

2
q̄2 + E − (p̄ + 1)f0 cosωτ, (p̄, q̄) ∈ ¯∑

1
,

1

2
p̄2 + 1

2
q̄2 + E − (p̄ − 1)f0 cosωτ, (p̄, q̄) ∈ ¯∑

2
.

(2.8)

Each of the branches of Eq.(2.8) is similar to an autonomous two degrees-of-freedom
and it is non-integrable due to a lack of the integral factor. The first two terms of the
extended Hamiltonian represent a simple harmonic oscillator, whose corresponding
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action and angle variables (J, θ) are introduced and defined as p̄ =
√

2J sin θ, q̄ =√
2J cos θ, see [16] for details. This maps Σ̄1 → Ξ1 and Σ̄2 → Ξ2, which leads to

HJ(J, E, θ, τ) =







J + E − (
√

2J sin θ + 1)f0 cosωτ, (J, θ) ∈ Ξ1,

J + E − (
√

2J sin θ − 1)f0 cosωτ, (J, θ) ∈ Ξ2.
(2.9)

To obtain the action angle variables, canonical transformation is made via gen-
erating function F̄2(Jθ, Jϕ; θ, ϕ) = ϕJϕ + θJθ, such that (J, θ, E, τ) → (Jθ, θ, Jϕ, ϕ)
defined by Jθ = J, θ = θ, Jϕ = E

ω
and ϕ = ωτ . The Hamiltonian is then in the form

ĤJ(Jθ, Jϕ; θ, ϕ) = Ĥ0

J(Jθ, Jϕ) + ĤJ(Jθ, Jϕ; θ, ϕ)

= ωθJθ + ωJϕ −
{
(√

2Jθ sin θ + 1
)

f0 cosϕ, (Jθ, θ) ∈ Ξ1,
(√

2Jθ sin θ − 1
)

f0 cosϕ, (Jθ, θ) ∈ Ξ2.

(2.10)
This extended four dimensional system has only three independent variables.

One of them is the angle ϕ = (ωτ) mod (2π). The Poincaré section for ϕ = 0 is
equivalent to T = 2π/ω.

Two frequencies for the two angle function (θ, ϕ) can be introduced to charac-
terise the extended tori for the unperturbed part of the Hamiltonian and written
as

ωθ =
∂Ĥ0

J

∂Jθ

= ω0 = 1, ωϕ =
∂Ĥ0

J

∂Jϕ

= ω, (2.11)

where ωϕ and ωθ are the forcing and natural frequencies, respectively. The dynamic
behaviour of the forced system depends on the ratio of these two frequencies.

If there are co-prime integers m and n, such that the frequencies are commen-
surate, satisfying mωϕ − nωθ = 0. The ratio α = ωθ/ωϕ = m/n is defined as the
winding number, or an m : n primary resonance occurs [19, 23].

An m : n resonance is the closed orbit on the torus (ϕ, θ), m turns in the short
way and n turns in the long way. On the Poincaré section (or stroboscopic map,
t = t0 +k 2π

ω
), this resonance is observed as a series of fixed points. The stable series

of fixed points are surrounded by the corresponding closed orbits in the neighbor-
hood of the fixed points. These closed orbits make the island chains representing
the quasi-periodic motions. The unstable series of fixed points are always associated
with chaotic orbit connecting the corresponding islands. In addition to the reso-
nances, the system also exhibits generic KAM curves densely covering the closed
curve in a long period of time. There exists a special chaotic orbit filling in the
finite region between the separatrices of the lower order of resonances, forming the
stochastic web [16, 12].

3. Generalized winding number and resonances

Even the resonant and the winding number have been defined in regular pertur-
bation theory, one cannot find the relative prime integers m and n such that
mωϕ − nωθ = 0 for each resonance in system (2.10). As shown in Figure 2, the
resonances cannot be described as mωϕ − nωθ = 0 for any co-prime integers m and
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Figure 2. (Colours online) Stochastic web and trajectories for f0 = 0.2, ω = 1

3
: a.

Stochastic web showing a pair of harmonic motion areas of (1 : 3) for each of the single
system, and the pair of composite resonant solution with the winding number (3 : 7)
marked with blue and red, respectively, b. resonant trajectories for one of the (1 : 3) and
c. the (3 : 7) respectively.

n for ωθ = 1 and ωϕ = 1

3
. To understand these resonances, the resonant trajecto-

ries in this system can be divided into two types: the first type are the trajectories
which belong to either of the two half planes, while the other type are located in
the opposite half plane, respectively.

For the perturbation ĤJ(Jθ, Jϕ; θ, ϕ) 6= 0 in Hamiltonian (2.10), the periodic
trajectory can be divided into pieces by the pair of successive transient points. Each
of these pieces is composed of two half circles located in their half planes. Suppose
that there are 2k transient points and i circles and j twists for angle variables ω
and θ in each piece of the trajectory. We say that (i, j) is the piece winding number
for the corresponding piece of the trajectory. The composed winding number for
the combined resonant orbit can be formulated in the following way.

Assuming that (m : n) is the co-prime integers satisfying mωϕ − nωθ = 0, we
split both m and n into m1, m2, · · · , mk and n1, n2, · · · , nl. All the possible piece
winding numbers are (mki

: nlj ), mki
= 0, 1, · · · , m and nlj = 0, 1, · · · , n. The
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Figure 3. a. Resonant layer separatrix for f0 = 0.4, ω = 3 showing the pair of harmonic
motion areas for both (3 : 1) and (3 : 3) resonance and the resonant solution with winding
number (5 : 1), b. one of the trajectory of winding number (3 : 3) and c. the resonant
trajectories of winding number (5 : 1). respectively.

composed resonant co-relative number, or the winding number, can be defined as:

(M : N) =
k
∑

i=1

(mki
: nli) =

(

k
∑

i=1

mki
:

k
∑

i=1

nli

)

(3.1)

where (mki
: nli) are the segment resonant number of the piece of the trajectory.

Figure 2a. for parameters taken as f0 = 0.2, ωϕ = 1

3
shows the stochastic or res-

onant web [6, 12] with a chaotic orbit, marked grey, surrounding a pair of harmonic
motion areas of (1 : 3) for each of the subsystem, and the pair of composite resonant
solutions of (3 : 7), the corresponding islands for the quasi-periodic solutions are
marked in blue and red respectively. Figure 2b. displays one of the (1 : 3) and
Figure 2c is one of the (3 : 7) resonant trajectories.

Figure 3a. shows a resonant separatrix for f0 = 0.2, ωϕ = 3 for the harmonic
motion areas for both (3 : 1) and (3 : 3) and the resonant solution of winding
number (5 : 1). Figure 3b. shows one of the (3 : 3) harmonic solutions, and Figure
3c. depicts the trajectory of resonance of winding number (5 : 1).

Figure 4 plots the structures of the resonance webs or a chaos sea [2, 6, 12]
with a chaotic trajectory, plotted in grey, entering different resonant layers of the
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Figure 4. (Colours online) Chaotic seas comprising a chaotic trajectory, marked in grey,
and the island chains: a. chaos sea with two pairs of prime resonances island chains of
winding number (3 : 8) for parameter f0 = 1.2, ωϕ = 1

3
, marked in green and black, red

and yellow, respectively and the islands chain of the second resonance of (15 : 39) plotted
in blue; b. chaos sea for f0 = 10, ωϕ = 3 with a prime resonance of winding number (1 : 1),
marked in red, a (5 : 5) resonant island chain, marked in purple, a pair of (4 : 4) resonant
island chains, marked in yellow and green respectively, the chain of (11 : 11), marked in
blue, and the second resonant island chains of (5 : 5) near the (1 : 1) plotted in black and
the outer one of (17 : 25), plotted in dark grey.

corresponding resonant islands. Figure 4a computed for f0 = 1.2, ωϕ = 1

3
presents

two pairs of prime resonances with winding number (3 : 8), the corresponding
islands are marked in red, yellow, green and black, respectively, and the islands of
the second resonance of (15 : 39) are marked in blue. Figure 4b for f0 = 10, ωϕ =
3 demonstrates a prime resonance of winding number (1 : 1), the corresponding
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resonant islands is marked in red, the (5 : 5) resonant islands, marked in purple,
a pair of (4 : 4) resonant islands, marked as yellow and green respectively. The
resonance of (11 : 11) and the corresponding islands are blue. In addition to the
prime resonance, the second resonances are also formulated with the composed
winding number, which is not multiple of the prime resonance. The second resonant
islands of (5 : 5) near the (1 : 1) resonance are coloured in black, and the outer
second resonance of (17 : 25) are plotted in dark grey.

4. Summary and discussion

We have presented a novel discontinuous system derived from the SD oscillator at
the discontinuous phase, for which the resonant behaviour has been investigated
by introducing the generalised winding number and the generalised canonical gen-
erating functions. The time dependent Hamiltonian for the discontinuous system
with snap-through bucking has been derived, which enables us to understand such
a resonant motion by a composed winding number consisting of multiple phases,
each of which is confined within one of the separate resonant area (half plane, as
described in Figure 1), satisfying the regular resonant condition. Although the for-
mulation derived in this paper concerns the particular discontinuous system, it is
valid for any nonlinear nonlinear dynamic systems with multiple well potentials.
The results presented herein also showed the resonant structure of stochastic webs
with a stochastic trajectory entering different resonant layers of resonant island
chains. These complex resonant behaviours observed may inspire further investiga-
tions into resonant synchronization [22, 20] and on mechanisms of vibrational power
flow transfer [24] of nonlinear smooth and discontinuous dynamical systems.
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