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DYNAMICS OF STAGE-STRUCTURED

DISCRETE MOSQUITO POPULATION

MODELS
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Abstract We formulate discrete-time stage-structured models, based on sys-
tems of difference equations, for mosquito populations. We include the four
distinct mosquito metamorphic stages, egg, pupa, larva, and adult, in the
models. We derive a formula for the inherent net reproductive number, and
investigate existence and stability of fixed points. We also show that the
models, by means of numerical simulations, exhibit richer dynamics.
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1. Introduction

Mosquito-borne diseases, such as malaria, dengue fever, and West Nile, transmitted
between humans by blood-feeding mosquitoes, have been big concerns for the public
health in the United States and in the world.

Malaria is by far the world’s most important tropical parasitic disease. It is the
5th cause of death from infectious diseases worldwide (after respiratory infections,
HIV/AIDS, diarrheal diseases, and tuberculosis), and the 2nd leading cause of death
from infectious diseases in Africa, after HIV/AIDS. It is a public health problem
today in more than 109 countries and territories inhabited by some 3.3 billion people,
and approximately half of the world’s population is at risk of malaria, particularly
those living in lower-income countries. There were 247 million cases of malaria in
2006, causing nearly one million deaths, mostly among African children, and 190 -
311 million clinical episodes, and 708,000 - 1,003,000 deaths in 2008. Malaria has
been eradicated in the United States since the early 1950’s. However, 63 outbreaks
of locally transmitted mosquito-borne malaria have occurred between 1957 and
2009, and 1500 cases of malaria, on average, are reported every year in the United
States [8, 37].

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are second only to
malaria in the number of people affected worldwide by mosquito-borne diseases.
Globally, there are an estimated 50 to 100 million cases of DF and several hundred
thousand cases of DHF per year. In 2007, 900,782 cases of DF and 26,413 cases of
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DHF reported in Americas. Outbreaks were reported in 11 countries. Between 100
to 200 suspected cases introduced into the U.S. each year by travelers [9].

The West Nile virus (WNV) was first detected in the Western Hemisphere in
1999 and has since rapidly spread across the North American continent into all 48
continental states, seven Canadian provinces, and throughout Mexico. Over 15,000
people in the U.S. have tested positive for WNV infection since 1999, including over
500 deaths. People of all ages can develop serious illness [30].

The life cycle of the mosquito-borne diseases is complicated. For example,
malaria in humans is due to infection by one of four Plasmodium species and the
infection begins when sporozoites are injected into the blood of a human host by
a female mosquito of the genus Anopheles. The sporozoites migrate to the liver
where they enter liver cells and develop schizonts, which give rise, via asexual re-
production, to the form which invades the blood cells, the merozoites. In the blood,
some merozoites differentiate into sexual erythrocytic stages (gametocytes), and the
gametocytes are ingested by a mosquito when it ingests human blood. Within the
mosquito the gametocytes develop into microgametes and macrogametes (the male
and female gametes) that fuse to form a zygote. This becomes a motile ookinete
form which bores through the gut wall of the vector and forms an oocyst from which
large numbers of sporozoites are released. These sporozoites then invade the salivary
glands of the mosquito from which they are injected into a human host when the
vector feeds. Such a life-cycle of the Plasmodium species causes the transmission
of malaria between infected humans and mosquitoes [4, 6, 36].

No vaccines are available for these mosquito-borne diseases. An effective way to
prevent the mosquito-borne diseases is to control mosquitoes, which has been one
of the major intensive efforts in many years. To set any feasible optimal strategy
in the control of mosquitoes, we need to have a better understanding of the popu-
lation dynamics of mosquitoes. and hence to formulate appropriate mathematical
mosquito models.

There are modeling works on mosquitoes in the literature in malaria transmission
models. However, the metamorphic structure differences of mosquitoes has been
ignored by assuming homogeneous mosquito populations in most of the disease
modeling [4, 22,26,31–33,38].

Mosquitoes undergo complete metamorphosis going through four distinct stages
of development, egg, pupa, larva, and adult, during a lifetime. They are completely
metamorphically as well as ecologically distinct. After drinking blood, adult females
lay a raft of 40 to 400 tiny white eggs in standing water or very slow-moving water.
Within a week, the eggs hatch into larvae (sometimes called wrigglers) that breathe
air through tubes which they poke above the surface of the water. Larvae eat bits of
floating organic matter and each other. Larvae molt four times as they grow; after
the fourth molt, they are called pupae. Pupae (also called tumblers) also live near
the surface of the water, breathing through two horn-like tubes (called siphons) on
their back. Pupae do not eat. When the skin splits after a few days from a pupa,
an adult emerges. The adult lives for only a few weeks and the full life-cycle of a
mosquito takes about a month [5, 27,28].

It is clear that, to have more realistic modeling of mosquitoes, we need to in-
clude the stage structure. In particular, the different stages have different responses
to environment and regulating factors to the population [35]. Some mosquitoes
modeling works have included mosquito stages [23], and the four mosquito stages
are included in the malaria model in [34], the analysis for which nevertheless seems
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mathematically untractable.
In this paper, we formulate stage-structured mosquitoes models based on dif-

ferent assumptions, where the four stages are explicitly included, in Section 2. We
then calculate the inherent net reproductive number and determine the global sta-
bility for the trivial fixed (the origin) in Section 3. The existence, uniqueness, and
stability of positive fixed points are investigated in Section 4. Numerical examples
are given in Section 5 to demonstrate the rich dynamics of the stage-structured
mosquito models. Brief discussions are given in Section 6.

2. The model formulation

Let E(t), L(t), P (t) and M(t) denote the numbers of eggs, larvae, pupae, and adults
of mosquitoes, respectively, at time t. We then assume that the oviposition rate,
denoted by b, and the survival probability of the eggs, denoted by s0, are constants.
While interspecific competition and predation are rather rare events and could be
discounted as major causes of larval mortality, intraspecific competition could rep-
resent a major density dependent source for them, and hence the effect of crowding
could be an important factor in the population dynamics of mosquitoes [14,16,34].
More specifically, considering the inhibitory effects of larvae density on the egg
hatching, we assume the surviving-adjusted hatching rate, denoted by se = se(L),
to be a function of larvae L. Due to the intraspecific competition, the effect of
crowding, and possible cannibalism that larvae may eat smaller larvae, we assume
the surviving-adjusted pupation rate, denoted by sl = sl(L), is a function of larvae
L. Because the pupae do not eat, we assume the surviving-adjusted emergence rare
from pupae to adults to be constant and denoted by sp. The adults survival func-
tion is also assumed to be density-dependent, denoted by sm = sm(M). Then we
arrive at the following four-stage-structured model of for the mosquito population:

E(t + 1) = bs0M(t),
L(t + 1) = se(L(t))E(t),
P (t + 1) = sl(L(t))L(t),
M(t + 1) = spP (t) + sm(M(t))M(t).

(2.1)

Comparing the different lifespan for the four stages, we assume function sm(M)
satisfies the following conditions (H1) [2].

si(z) ∈ C1[0,∞), si(0) := αi, 0 < αi ≤ 1, s′i(z) ≤ 0, (si(z)z)′ > 0,

lim
z→∞

si(z) = 0, lim
z→∞

si(z)z := ki, 0 < ki < ∞.
(H1)

The density-dependent functions se(L) and sl(L) are assumed to satisfy either con-
ditions (H1), or conditions (H2) given below.

si(z) ∈ C1[0,∞), si(0) := αi, 0 < αi ≤ 1, s′i(z) ≤ 0, lim
z→∞

si(z) = 0,

∃ ki > 0, (si(z)z)′
{

> 0, z < ki,

< 0, z > ki,
lim

z→∞
si(z)z = 0.

(H2)

Conditions (H1) assume that the surviving-adjusted hatching and pupation rates
and the adult survival rate are all decreasing, but the total numbers of eggs, pupae,
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and adults are increasing and saturating to fixed numbers, as the number of individ-
uals increases. For example, these rates may have the Beverton-Holt form such that
si(z) = (αiki)/(ki + αiz), [7]. On the other hand, conditions (H2) characterize the
fact that while those rates are decreasing, as the number of individuals increases,
the total numbers increase to certain levels, ki, but then decrease as the number of
individuals exceeds the threshold. The Ricker-type function si(z) = αie

−z/ki has
such properties.

Define x(t) := (E(t), L(t), P (t),M(t))T . System (2.1) can be written as the
following matrix form:

x(t + 1) = A(x(t))x(t), (2.2)

where the projection matrix A(x) is given by

A(x) =




0 0 0 bs0

se(L) 0 0 0
0 sl(L) 0 0
0 0 sp sm(M)


 .

Let A = (aij) ∈ IRn×m and B = (bij) ∈ IRn×m. We say that A ≤ B if and only
if aij ≤ bij for all i = 1, · · · , n, and j = 1, · · · ,m. Hence, from assumption (H1) or
(H2), we have A(x) ≥ A(y), for any x ≤ y.

Furthermore, it is easy to see that system (2.1) or (2.2) is point dissipative
[17,20]. In fact, under assumption (H1) or (H2), it follows that

M(t + 1) = spP (t) + sm(M(t))M(t) = spse(L(t))L(t) + sm(M(t))M(t)
≤ spk̄e + km := ω4,

for all t ≥ 0. Then, it follows from system (2.1) that

E(t + 1) ≤ bs0(spk̄e + km) := ω1,

L(t + 1) ≤ se(0)bs0(spk̄e + km) := ω2,

P (t + 1) ≤ k̄l,

for all t ≥ 0, where k̄i = ki if (H1) is assumed, or k̄i = si(ki)ki, if (H2) is assumed.
We summarize the basic properties of the system as follows.

Theorem 2.1. System (2.1) or (2.2) is point dissipative. Define set Ω by

Ω := {x(t) = (E, L, P, M) ∈ IR4
+ : 0 ≤ E ≤ ω1, 0 ≤ L ≤ ω2, 0 ≤ P ≤ k̄l, 0 ≤ M ≤ ω4}.

(2.3)
Then Ω is positively invariant under the flows of system (2.2) and is attracting to
all solutions of (2.2) if conditions (H1) or (H2) hold.

3. The inherent net reproductive number and dy-
namics of the trivial fixed point

System (2.2) has the trivial fixed point, E0 := (0, 0, 0, 0)T , and its linearization at
the trivial fixed point is an age-structured linear Leslie population model. As is well-
known, one of the important characterizations for a linear Leslie matrix model is
the inherent net reproductive number which is the expected number of offspring per



STAGE-STRUCTURED MOSQUITO MODELS 57

mosquito over the course of its lifetime, and the inherent net reproductive number
also determines the asymptotic dynamics of the linear system [10,12,13]. Using the
techniques in [1,3,13], we find the inherent net reproductive number, r0, for system
(2.2) as follows.

Define the fertility and the transition matrices, respectively, as

F =




0 0 0 bs0

0 0 0 0
0 0 0 0
0 0 0 0


 , T =




0 0 0 0
α1 0 0 0
0 α2 0 0
0 0 α3 α4


 .

Then the inherent projection matrix of the nonlinear system (2.2) is

A(0) =




0 0 0 bs0

α1 0 0 0
0 α2 0 0
0 0 α3 α4


 = F + T,

and thus, the inherent net reproductive number is the positive, simple, and strictly
dominant eigenvalue of F (I − T )−1, denoted by r0. Simple calculation show that

r0 =
bs0α1α2α3

1− α4
=

bs0se(0)sl(0)sp

1− sm(0)
.

We then determine the stability of the trivial fixed point.
Since x(t) ≥ 0 for all x ≥ 0, it follows from (2.2) and conditions (H1) that

x(1) = A(x(0))x(0) ≤ A(0)x(0),

and
x(2) = A(x(1))x(1) ≤ A(0)x(1) ≤ A2(0)x(0).

Continuing in this manner, we have

x(t) ≤ At(0)x(0).

Note that A(0) is non-negative, irreducible, and primitive. Then A(0) has a
positive, simple, and strictly dominant eigenvalue, which is the inherent net repro-
ductive number, r0. If r0 < 1, then it follows, [18], that

lim
t→∞

At(0) = 0.

If r0 > 1, A(0) has a positive strictly dominant eigenvalue greater than one.
That is, the linearization of system (2.2) at the trivial fixed point has a positive
eigenvalue greater than one, which implies the instability of the trivial fixed point.
Therefore, we arrive at the following stability result for the trivial fixed point.

Theorem 3.1. The trivial fixed point of system (2.2), E0 = (0, 0, 0, 0), is globally
asymptotically stable if the inherent net reproductive number r0 < 1, and is unstable
if r0 > 1.
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4. The positive fixed point

System (2.2) may have positive fixed points. We first determine its existence and
uniqueness, and then find conditions that ensure the stability of the positive fixed
point.

4.1. Existence of the positive fixed point

Let E1 = (E, L, P, M) be a positive fixed point. Then its components satisfy the
following system

E =bs0M, (4.1a)
L =se(L)E, (4.1b)
P =sl(L)L, (4.1c)
M =spP + sm(M)M. (4.1d)

It follows from (4.1b) that

L

se(L)
= E = bs0M. (4.2)

Define F (L) = L/se(L). Then

F ′(L) =
1

se(L)
− Ls′e(L)

s2
e(L)

> 0.

Note that F (0) = 0 and lim
L→∞

F (L) = ∞ under assumption (H1) or (H2). Then

there exists a unique positive solution, L(M), to equation (4.2). We also note that,
as a function of M ,

L′(M) = bs0se(L(M)) + s′e(L(M))L′(M)bs0M. (4.3)

Solving (4.3) for L′(M), we have

L′(M) =
bs0se(L(M))

1− bs0Ms′e(L(M))
> 0. (4.4)

That is, L is a monotone increasing function of M .
Substituting this solution L(M) into (4.1c) and then into (4.1d), we obtain

M = spsl(L(M))se(L(M))bs0M + sm(M)M. (4.5)

To solve for a positive solution M > 0 to equation (4.5), we define function

H(M) := bs0spsl(L(M))se(L(M)) + sm(M)− 1. (4.6)

Then system (2.2) has a positive fixed point if and only if there exists a positive
root of H(M) = 0.

Since

H ′(M) = bs0sp (s′l(L(M))se(L(M)) + sl(L(M))s′e(L(M))L′(M) + s′m(M), (4.7)
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it follows from (H1), or (H2), and (4.4) that H ′(M) < 0; that is, H(M) is a
monotone decreasing function with respect to M .

Since limM→∞H(M) = −1 from assumption (H1) or (H2), then H(M) = 0 has
a unique positive root if and only if H(0) > 0, which is equivalent to

r0 =
bs0spsl(0)se(0)

1− sm(0)
> 1.

In summary, we obtain the following existence result.

Theorem 4.1. System (2.2) has a unique positive fixed point if and only if the
inherent next reproductive number r0 > 1.

4.1.1. The stability of the positive fixed point

Suppose r0 > 1 and that E1 is the unique positive fixed point. The Jacobian of
system (2.2) at E1 has the form of

J =




0 0 0 bs0

se(L) s′e(L)E 0 0
0 (sl(L)L)′ 0 0
0 0 sp (sm(M)M)′


 .

Then the characteristic polynomial of J is given by

f(λ) = λ4 + a1λ
3 + a2λ

2 + a4,

where

a1 = − (
s′e(L)E + (sm(M)M)′

)
= −(s′e(L)bs0M + sm(M) + s′m(M)M),

a2 = s′e(L)E (sm(M)M)′ = s′e(L)bs0M(sm(M) + s′m(M)M),

a4 = − bs0spse(L) (sl(L)L)′ = −bs0spse(L)(sl(L) + s′l(L)L).

Define

b1 = −a4a1, b2 = a2 − a4a2, b3 = a1, b4 = 1− a2
4,

and

c2 = b4b2 − b1b3, c3 = b4b3 − b1b2, c4 = b2
4 − b2

1 = (b4 − b1)(b4 + b1).

It follows from the Jury stability criterion [21, 29] that the roots of the charac-
teristic polynomial f(λ) all have magnitudes less than one if

f(1) > 0, f(−1) > 0, |a4| < 1, |b4| > |b1|, |c4| > |c2|.
We focus on the case where conditions (H1) are satisfied, and have the following

local stability results for the positive fixed point.

Theorem 4.2. Assume the density-dependent functions si, i = e, l,m, all satisfy
conditions (H1). The unique positive fixed point, E1, is locally asymptotically stable
if either condition

s′e(L)bs0M + (sm(M)M)′ > 0 (H3)
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holds, or condition

0 < −s′e(L)bs0M−(sm(M)M)′ < sm(M)−bs0spses
′
l(L)L+s′e(L)bs0M(sm(M)M)′

(H4)
is satisfied, where E, L, P , and M are the components of the positive fixed point
E1.

Proof. Since
f(±1) = 1± a1 + a2 + a4,

f(1)− f(−1) = 2a1. (4.8)

Assume condition (H3) holds. Then a1 < 0, and

f(1) = 1 + a1 + a2 + a4

= 1− (s′e(L)bs0M + sm(M) + s′m(M)M) + s′e(L)bs0M(sm(M) + s′m(M)M)
− bs0spse(L)(sl(L) + s′l(L)L)

= s′e(L)bs0M(s′m(M)M − bs0spse(L)sl(L))− s′m(M)M − bs0spse(L)s′l(L)L
>0.

Furthermore, it follows from (4.8) that f(−1) > 0.
Notice that, at the positive fixed point from (4.6),

1 = sm(M) + bs0spse(L)sl(L) > bs0spse(L)sl(L) > |a4|.
Then

|b4| − |b1| = 1− a2
4 − |a4||a1| > |a4| (1− |a4| − |a1|) . (4.9)

If assumption (H3) holds, then

1− |a4| − |a1| =1− bs0spse(L)(sl(L) + s′l(L)L)− s′e(L)bs0M − sm(M)− s′m(M)M
=− bs0spse(L)s′l(L)L− s′e(L)bs0M − s′m(M)M > 0,

and hence |b4| > |b1|.
Suppose |b4| > |b1|. Then c4 > 0, and it follows from a2 < 0 and −1 < a4 < 0

that

c2 = b4b2 − b1b3 = (1− a2
4)(a2 − a4a2) + a4a

2
1

= (1− a2
4)(1− a4)a2 + a2

1a4 < 0.

Then

|c4| − |c2| =c4 + c2 = b2
4 − b2

1 + b2b4 − b1b3

=b4(b2 + b4)− b1(b1 + b3)

=(1− a2
4)

(
1− a2

4 + a2(1− a4)
)

+ a4a
2
1(1− a4)

=(1− a4)
(
(1− a2

4)(1 + a4 + a2) + a2
1a4

)
.

Suppose (H3) holds and hence f(1) > 0. Then −a1 > 0 and it follows, in
addition from −1 < a4 < 0, that |c4| − |c2| > 0, if 1− a2

4 − a1a4 > 0. However,

1− a2
4 − a1a4 =1− a4(a4 + a1) = 1− a4(f(1)− 1− a2)

=1 + a4 − a4f(1) + a2a4 > 0.
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Hence |c4| − |c2| > 0.
Therefore, if (H3) holds, the positive fixed point is locally asymptotically stable.
We next assume

s′e(L)bs0M + (sm(M)M)′ < 0.

Then a1 > 0, and f(1) > 0 provided f(−1) > 0. It follows from f(−1) = 1− a1 +
a2 + a4 that if 0 < a1 < 1 + a2 + a4, that is, if (H4) holds, then f(−1) > 0.

Suppose assumption (H4) holds. Then a1 > 0 and it follows from (4.9) that

|b4| − |b1| = 1− a2
4 − |a4||a1| = 1− a4(a4 + a1) = 1− a4f(1) + a4 + a4a2 > 0.

Moreover, since

|c4| − |c2| = (1− a4)((1− a2
4)f(−1) + (1− a2

4)a1 + a2
1a4)

= (1− a4)((1− a2
4)f(−1) + a1(1− a2

4 + a1a4)),

|c4| − |c2| > 0, if 1− a2
4 + a1a4 > 0. It is easy to see that

1− a2
4 + a1a4 = 1− a4(a4 − a1)

= 1− a4(a4 − a1 + 1 + a2 − 1− a2)
= 1− a4f(−1) + a4 + a2a4 > 0.

Hence |c4| > |c2|. Therefore, positive fixed E1 is locally asymptotically stable. The
proof is complete.

The dynamics of system (2.2) are richer and more complex if se and sl satisfy
conditions (H2). We give local stability results for the positive fixed point in the
following theorem.

Theorem 4.3. Let sm(M) satisfy conditions (H1), and se(L) and sl(L) both satisfy
conditions (H2). Then we have the following stability results.

1. Assume (sl(L)L)′ > 0. Then E1 is locally asymptotically stable if conditions
(H3) or (H4) are satisfied.

2. Assume (sl(L)L)′ < 0 and (sm(M)M)′ < −s′e(L)bs0M . Then E1 is locally
asymptotically stable if

−s′e(L)bs0M − (sm(M)M)′ < 1 + bs0spse(L)sl(L) + bs0spse(L)s′l(L)L
+ s′e(L)bs0M(sm(M)M)′.

(H5)

3. Assume (sl(L)L)′ < 0 and −s′e(L)bs0M < (sm(M)M)′. Then E1 is locally
asymptotically stable if

−bs0spse(L)s′l(L)L < 2bs0spse(L)sl(L)− s′e(L)bs0M − s′m(M)M. (H6)

Here E, L, P , and M are the components of the positive fixed point E1.

The proof, with tedious algebra, is similar to that of Theorem 4.2, and is omitted.
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4.2. Uniform persistence

We have shown that if r0 > 1, the trivial fixed point is unstable and there exists a
unique positive fixed point. Moreover, employing the technique shown in [1, 2], we
can show that if r0 > 1, system (2.2) is uniformly persistent; that is, there exists a
positive number ρ ∈ IR4

+, such that for every solution, x(t), of (2.2) with x(0) > 0,
lim inft→∞ x(t) ≥ ρ > 0. This is equivalent to say that the trivial fixed point is a
uniform repeller [15,19].

Let G := A(x(t))x(t) be the map from IR4
+ to IR4

+ and let D be the boundary
of Ω defined in (2.3). Then it follows from Theorem 2.1 that Gt(Ω \D) ⊂ Ω \D,
where Gt(x) denotes the tth iteration of x under G, and hence there exists a global
attract X in Ω [18].

For r0 > 1, the trivial fixed point is unstable. Let M := {(0, 0, 0, 0)} ⊂ X. Then
M is a compact subset of Ω and Ω\M is positively invariant. Set M is also isolated
in X.

Since A(0) is nonnegative and irreducible, it has a dominant positive eigenvalue,
r > 1, which has a corresponding positive left eigenvector, η > 0, such that

ηT A(0) = rηT .

Let 1 < r∗ < r. Then
ηT A(0) > r∗ηT .

We define a vector norm || · || such that ||x|| := ηT x. Clearly this norm is
equivalent to the 2− norm, ||x||2 = (

∑
xi)1/2. Since A(x) is continuous, there

exists ρ > 0, such that
ηT A(x) > r∗ηT , (4.10)

for all x ∈ Nρ(0) := {x ∈ IR4
+, ||x|| ≤ ρ}.

Let x(t) be a solution of system (2.2). If x(t) ∈ Nρ(0), then it follows from
(4.10) that

pT x(t + 1) = ηT A(x(t))x(t) > r∗ηT x(t),

that is, ||x(t+1)|| > r∗||x(t)|| > ||x(t)||, for all x(t) ∈ Nρ(0). Hence lim inft→∞ x(t) ≥
ρ, which implies that the trivial fixed point is a uniform repeller and then system
(2.2) is uniformly persistent. In summary, we have the following result.

Theorem 4.4. The trivial fixed point is a uniform repeller and system (2.2) is
uniformly persistence if r0 > 1.

5. Numerical examples

We provide simple numerical examples to demonstrate the dynamics of system (2.2)
as follows.

Example 5.1. In this example, we assume se, sl, and sm all have the Beverton-Holt
form such that si(z) = αiki

ki+αiz
, i = e, l,m, and use the following parameters

s0 = 0.6, αe = 0.5, αl = 0.4, αm = 0.7,
ke = 500, kl = 200, km = 1000, sp = 0.5.

If b = 4.5, the inherent net reproductive number r0 = 0.9 < 1. Trivial fixed point
E0 is globally stable and the mosquito population goes extinct. If b = 8, the inherent
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net reproductive number r0 = 1.6 > 1. The trivial fixed point becomes unstable
and there exists a positive fixed point, E1 = (313.8399, 137.9042, 43.2367, 65.3841),
which is asymptotically stable. Both cases are shown in Figure 1.
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Figure 1. The function forms and parameters are given in Example 5.1. As b = 4.5, the inherent
net reproductive number r0 = 0.9 < 1. E0 is globally asymptotically stable. Solutions approach E0

as t →∞, shown in the left figure. As b = 8, the inherent net reproductive number r0 = 1.6 > 1.
E0 is unstable and E1 = (313.8399, 137.9042, 43.2367, 65.3841) is asymptotically stable. Solutions
approach E1, as t →∞, shown in the right figure.

Example 5.2. We assume, in this example, that sm(M) still has the Beverton-
Holt form such that sm(z) = αmkm

km+αmz , but si(L), i = e, l, have the Ricker-type
nonlinearity such that si(L) = αie

−L/ki , i = e, l. We use the following set of
parameters

s0 = 0.6, αe = 0.3, αl = 0.8, αm = 0.01,
ke = 500, kl = 200, km = 1000, sp = 0.8.

If b = 13, the inherent net reproductive number r0 = 0.9455 < 1. Triv-
ial fixed point E0 is globally stable and the mosquito population goes extinct.
As b = 16, the inherent net reproductive number r0 = 1.1636 > 1. The triv-
ial fixed point becomes unstable and there exists a positive fixed point E1 =
(75, 3596, 21.6499, 15.5429, 7.8500) which is asymptotically stable. Both cases are
shown in Figure 2.

Example 5.3. Population models with the Ricker-type nonlinearity have richer and
more complex dynamics [11,24,25]. We assume, in this example, the same structure
as that given in Example (5.2), that is, sm(z) = αmkm

km+αmz , and si(L) = αie
−L/ki ,

i = e, l. We use the following set of parameters

s0 = 0.8, αe = 0.8, αl = 0.8, αm = 0.2,
ke = 300, kl = 350, km = 500, sp = 0.8,

and let b vary, but keep all r0 > 1. The period-doubling bifurcation appears as
expected.
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Figure 2. The function forms and parameters are given in Example 5.2. As b = 13, the
inherent net reproductive number r0 = 0.9455 < 1. E0 is globally asymptotically stable. Solutions
approach E0 as t →∞, shown in the left figure. As b = 16, the inherent net reproductive number
r0 = 1.1636 > 1. E0 is unstable and E1 = (75, 3596, 21.6499, 15.5429, 7.8500) is asymptotically
stable. Solutions approach E1, as t →∞, shown in the right figure.

If b = 5, the inherent net reproductive number r0 = 2.56. There exists a unique
positive fixed point, E1, which is asymptotically stable. If b = 15, we have r0 = 7.68.
A stable 2-cycle appears. As b = 21.5, we have r0 = 11.008. A cycle with a large
period exists. At b = 70, we have r0 = 35.84. The system exhibits chaotic behavior.
All are shown, with only larvae for clearer views, in Figure 3 .

6. Concluding remarks

Mosquito-borne diseases have been big concerns for the public health in the United
States and in the world. An effective way to prevent these diseases is to control
mosquitoes. To set any feasible optimal strategy in the control of mosquitoes, we
need to have a better understanding of the population dynamics of mosquitoes.

Mosquitoes undergo complete metamorphosis going through four distinct stages
of development, and these different stages have different responses to environment
and different regulating factors to the population. To build a theoretical framework
and a fundamental analytic basis for further studies, we formulated discrete-time
models for mosquitoes, including the four distinct stages. We assumed density-
dependent vital rates with either the Beverton-Holt form or the Ricker-type form.
We derived the formula for the net inherent net reproductive number, r0, and
determined the global stability of the trivial fixed point as r0 < 1. We further
showed that if r0 > 1, the trivial fixed point becomes unstable, and there exists a
unique positive fixed point. We also established conditions for the stability of the
positive fixed point.

While we are only able to show the local stability of the positive fixed point
for the models with the Beverton-Holt form survival functions, the stability seems
global. The models with the Ricker-type nonlinearity, nevertheless, have much more
complex dynamics. Using numerical examples, we demonstrated that the period-
doubling bifurcation occurs. Further investigation is needed, particularly as we
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Figure 3. The function forms and parameters are given in Example 5.3. As b = 5, r0 = 2.56.
Positive fixed point E1 is asymptotically stable, as shown in the upper left figure. At b = 15,
r0 = 7.68, and a stable 2-cycle appears, as shown in the upper right figure. If b = 21.5, r0 = 11.008,
and a cycle with a large period exists, as shown in the lower left figure. At b = 70, r0 = 35.84, and
the system exhibits chaotic behavior, as shown in the lower right figure. All populations shown in
the figures are only larvae for clearer views.

incorporate the mosquitoes into disease transmission models, and is planned in our
future research.
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