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Abstract Recently, Xue etc. [37] discussed the Smith method for solving
Sylvester equation AX + XB = C, where one of the matrices A and B is at
least a nonsingular M -matrix and the other is an (singular or nonsingular)
M -matrix. Furthermore, in order to find the minimal non-negative solution
of a certain class of non-symmetric algebraic Riccati equations, Gao and Bai
[17] considered a doubling iteration scheme to inexactly solve the Sylvester
equations. This paper discusses the iterative error of the standard Smith
method used in [17] and presents the prior estimations of the accurate solution
X for the Sylvester equation. Furthermore, we give a new version of the
Smith method for solving discrete-time Sylvester equation or Stein equation
AXB + X = C, while the new version of the Smith method can also be used
to solve Sylvester equation AX + XB = C, where both A and B are positive
definite. We also study the convergence rate of the new Smith method. At last,
numerical examples are given to illustrate the effectiveness of our methods.

Keywords Sylvester equation, Discrete-time Sylvester equation, Smith method,
Positive definite matrix, Convergence.
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1. Introduction

The Sylvester equation and the discrete-time Sylvester equation or Stein equation
take the forms

AX +XB = C, (1.1)

and

AXB +X = C, (1.2)

respectively, where A, B, and C are known complex matrices of size m×m, n× n,
and m × n, respectively, and X is the unknown matrix of size m × n. It is well
known that if B = A∗, (1.1) and (1.2) are Lyapunov equations, where A∗ denotes
the complex conjugate transpose of A. The equation (1.1) has a unique solution if
and only if A and −B have no common eigenvalues [26]. The equation (1.2) has a
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unique solution if and only if λiλj 6= −1, i = 1, 2, . . . ,m; j = 1, 2, . . . , n, where λi
and λj are the eigenvalues of A and B, respectively [31,34].

The Sylvester equations and the discrete-time Sylvester equations appear fre-
quently in many areas of applied mathematics such as matrix eigen-decompositions
[19], control theory [11, 12], model reduction [1, 4, 31], numerical solutions of the
matrix differential Riccati equations [10,13,16,17], image processing [9], and so on.
Especially, Bhatia & Rosenthal gave an elegant survey [5] including the history of
the equation and many interesting and important theoretical results.

This paper is concerned with the numerical solutions of the Sylvester equation
and the discrete-time Sylvester equation [7,23,24,38–40]. For the Sylvester equation,
the standard ones are the Bartels-Stewart algorithm [3] and the Hessenberg-Schur
method [18]. By the Schur decomposition, these methods transformed the origi-
nal equation into a system that is easily solved by a forward substitution. The
Bartels-Stewart algorithm [3] transforms A and B into real Schur forms, while in
the Hesseberg-Schur algorithm [18], the matrix A is reduced to upper Hessenberg
form and the matrix B is transformed into real Schur form. All these methods are
efficient when A and B are dense. When A and B are large and sparse, the iterative
solution of (1.1) by the alternating-direction-implicit (ADI) method might be more
attractive. See [6,12,15,27,28,32,34–36]. The Krylov-subspace Galerkin and mini-
mal residual algorithms [22] for solving the Sylvester equation (1.1) were presented
by Hu & Reichel. In [29], Simoncini extended the work of Hu & Reichel to block
form by using the idea developed in [22]. Based on block-Arnoldi and nonsymmet-
ric block-Lanczos algorithms, El Guennouniet etc. [14] introduced some new Krylov
methods to solve (1.1). In [25], Robbe & Sadkane discussed the convergence prop-
erties of the block GMRES and FOM methods for solving large Sylvester equations
of the form (1.1). For the discrete-time Sylvester equation, the analytical solution
of the matrix equation (1.2) has been considered by many authors, see [18]. Direct
methods for solving the matrix equation (1.2) such as those proposed in [18,19] are
attractive if both matrices A and B are of small size. When both A and B are large
and sparse, the iterative solution of (1.2) by the alternating-direction-implicit (ADI)
method might also be more attractive, see [8, 33]. The Krylov-subspace Galerkin
and minimal residual algorithms for solving the discrete-time Sylvester equation
(1.2) were presented in [2]. Recently, Xue etc. [37] discussed the Smith method
for solving Sylvester equation AX + XB = C, where one of the matrices A and
B is at least a nonsingular M -matrix and the other is an (singular or nonsingular)
M -matrix. Furthermore, Gao & Bai [17] considered a doubling iteration scheme to
inexactly solve the Sylvester equations in order to find the minimal non-negative
solution of a certain class of non-symmetric algebraic Riccati equations. In this pa-
per, we will discuss a new version of the Smith method for solving the discrete-time
Sylvester equation AXB +X = C, while the new version of the Smith method can
also be used to solve Sylvester equation AX + XB = C, when both A and B are
positive definite.

Customarily, the notations of the paper are arranged as follows : ρ(A), ||A||2,
and ||A||F denote the spectral radius, 2-norm, and Frobenius norm of the matrix
A ∈ Cm×m, respectively [19].

The rest of this paper is organized as follows. In Section 2, we review the Smith
method for solving Sylvester equation AX + XB = C, where both A and B are
positive definite. By considering the convergence rate of the Smith method, we give
some results about the upper bounds of the error ‖X −Xk‖2 and the residual error



584 J. Li, Z. Mei & X. Kong

‖R(Xk)‖2 = ‖C −AXk −XkB‖2, where Xk is the k-order approximate solution of
(1.1). In addition, two prior estimations of the accurate solution X are given. In
Section 3, we present a new version of the Smith method for solving discrete-time
Sylvester equation AXB +X = C, where both A and B are positive definite. The
convergence analysis and a prior estimation of the accurate solutionX are presented.
In Section 4, some numerical examples are tested to illustrate the reliability and
effectiveness of the method we discussed. Finally, we summarize our findings in
Section 5.

2. The Smith method for solving Sylvester equa-
tions and error analysis

In this section, we review the Smith method described in [17,37] for solving Sylvester
equations AX +XB = C, where both A and B are positive definite. Furthermore,
we give some results about the upper bounds of the iterative error and the residual
error, respectively.

Let Im and In be m×m and n×n identity matrices, respectively. For any scalar
α > 0, the equation (1.1) can be rewritten as

(A+ αIm)X(B + αIn)− (A− αIm)X(B − αIn) = 2αC. (2.1)

Under the assumption that both A and B are positive definite matrices, natu-
rally, both A + αIm and B + αIn are nonsingular, hence, the system (2.1) can be
simply described as

X − UXV = W, (2.2)

where U = (A+ αIm)−1(A− αIm), V = (B − αIn)(B + αIn)−1 and W = 2α(A+
αIm)−1C(B + αIn)−1.

According to the iterative idea of the Smith method [17], we can get the iterative
scheme

Xk =

k∑
i=0

U iWV i for k ≥ 0. (2.3)

Although solving (1.1) by (2.3) is a practical method, its convergence rate is
slow. In general, (2.3) can be quickly approximated by

X0 = W, Xk+1 = Xk + U2k

XkV
2k

for k ≥ 0. (2.4)

By induction, we get

Xk =

2k∑
i=1

U i−1WV i−1 for k ≥ 0.

By using (2.4) and a simple transformation, we can also obtain an accelerated
Smith method for solving the discrete-time Sylvester equation AXB+X = C. That
is

X0 = W̃ , Xk+1 = Xk + Ũ2k

XkṼ
2k

for k ≥ 0, (2.5)

where Ũ = (A+ αIm)−1(A− αIm), Ṽ = (In − αB)(In + αB)−1 and W̃ = 2α(A+
αIm)−1C(In + αB)−1.

In the next subsection, we will study the convergence error of the Smith method
for solving the Sylvester equation, while the convergence error of the Smith method
for solving the discrete-time Sylvester equation can be discussed in a similar way.
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2.1. Analysis of convergence errors

Firstly, for the upper bound of the error ‖X −Xk‖2, the following conclusion can
be established, where Xk is the k-order approximate solution of (1.1) by the Smith
method (2.4).

Theorem 2.1. Let Xk be the k-order approximate solution of (1.1) by the Smith
method (2.4) and X be the accurate solution of (1.1). Then

‖X −Xk‖2 ≤M‖W‖2(1− r)−1r2k

. (2.6)

Proof. From (2.4), we get

‖X −Xk‖2 = ‖
+∞∑

i=2k+1

U i−1WV i−1‖2

≤
+∞∑

i=2k+1

‖U i−1‖2‖V i−1‖2‖W‖2

≤ M‖W‖2
+∞∑

i=2k+1

ri−1

= M‖W‖2r2k
+∞∑
i=0

ri

= M‖W‖2(1− r)−1r2k

.

Through Theorem 2.1, one sees that the sequence {Xk} converges to X very
rapidly. Furthermore, Theorem 2.2 gives an upper bound of the residual error
‖R(Xk)‖2 = ‖C − AXk − XkB‖2, that can be used to stop the iteration process
without computing extra matrix products AXk and XkB.

Theorem 2.2. Let Xk be the k-order approximate solution of (1.1) by the Smith
method (2.4) and X be the accurate solution of (1.1). Let R(Xk) = C−AXk−XkB
be the corresponding residual error. Then

‖R(Xk)‖2 ≤M(‖A‖2 + ‖B‖2)‖W‖2(1− r)−1r2k

.

Proof. By (2.6), we have

‖R(Xk)‖2 = ‖C −AXk −XkB‖2
= ‖A(X −Xk) + (X −Xk)B‖2
≤ ‖A‖2‖X −Xk‖2 + ‖B‖2‖X −Xk‖2
= (‖A‖2 + ‖B‖2)‖X −Xk‖2
≤ M(‖A‖2 + ‖B‖2)‖W‖2(1− r)−1r2k

.

2.2. Two prior estimations of the accurate solution X

For the Sylvester equation and the Lyapunov equation, in this section, we present
two prior estimations for the accurate solutions X, respectively.
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Theorem 2.3. If both A and B are positive definite matrices, then the solution X
of (1.1) satisfies

‖X‖2 ≤
1

2
‖C‖2‖P1‖1/22 ‖P2‖1/22 , (2.7)

where P1 and P2 satisfy

AP1 + P1A
∗ = 2Im, B∗P2 + P2B = 2In. (2.8)

Proof. For any nonzero vectors x ∈ Cm and y ∈ Cn, let

η∗i = x∗U i(A+ αIm)−1, ζi = (B + αIn)−1V iy,

where η∗i denotes the conjugate transpose of the vector ηi.
From the Theorem 2.1 and the expression of W in (2.2), we have

|x∗Xy| = |
+∞∑
i=0

x∗U i(A+ αIm)−12αC(B + αIn)−1V iy|

= |
+∞∑
i=0

η∗i (2αC)ζi|

≤ ‖2αC‖2
+∞∑
i=0

‖ηi‖2‖ζi‖2.

By the Schwarz’s inequality, we have

|x∗Xy| ≤ ‖2αC‖2(

+∞∑
i=0

‖ηi‖22)1/2(

+∞∑
i=0

‖ζi‖22)1/2. (2.9)

Since the two equations in (2.8) have the same forms as (1.1), their solutions P1

and P2 can be expressed in the following form

P1 =

+∞∑
i=0

U iW1V
i
1 ,

where U = (A + αIm)−1(A − αIm), V1 = (A∗ − αIm)(A∗ + αIm)−1 and W1 =
4α(A+ αIm)−1(A∗ + αIm)−1. Then

x∗P1x =

+∞∑
i=0

4αx∗U i(A+ αIm)−1(A∗ + αIm)−1V i1x

= 4α

+∞∑
i=0

η∗i ηi

= 4α

+∞∑
i=0

‖ηi‖22. (2.10)

Similarly,

y∗P2y = 4α

+∞∑
i=0

ζ∗i ζi = 4α

+∞∑
i=0

‖ζi‖22. (2.11)
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Substituting (2.10) and (2.11) into (2.9), we get

|x∗Xy| ≤ 1

2
‖C‖2(x∗P1x)1/2(y∗P2y)1/2. (2.12)

Divide both sides of (2.12) by ‖x‖2‖y‖2, we get

|x∗Xy|
‖x‖2‖y‖2

≤ 1

2
‖C‖2

(x∗P1x)1/2

‖x‖2
(y∗P2y)1/2

‖y‖2
.

Let max
06=x∈Cm

06=y∈Cn

|x∗Xy|
‖x‖2‖y‖2 =

|x∗0Xy0|
‖x0‖2‖y0‖2 , then

‖X‖2 =
|x∗0Xy0|
‖x0‖2‖y0‖2

≤ 1

2
‖C‖2

(x∗0P1x0)1/2

‖x0‖2
(y∗0P2y0)1/2

‖y0‖2
. (2.13)

Note that,

|x
∗
0P1x0

x∗0x0
| ≤ ‖x0‖2‖P1x0‖2

x∗0x0
=
‖P1x0‖2
‖x0‖2

=
(x∗0P

∗
1 P1x0)1/2

‖x0‖2

≤ ρ(P ∗1 P1)1/2 (x∗0x0)1/2

‖x0‖2
= ‖P1‖2,

similarly, we have

|y
∗
0P2y0

y∗0y0
| ≤ ‖P2‖2. (2.14)

From (2.13)− (2.14), we get

‖X‖2 =
|x∗0Xy0|
‖x0‖2‖y0‖2

≤ 1

2
‖C‖2‖P1‖1/22 ‖P2‖1/22 .

Hence, (2.7) is obtained.

Remark 2.1. In the above theorem, we give a prior estimation of the accurate
solution X of the Sylvester equation whose coefficient matrices are positive definite.
It should be noted that if the real part of all eigenvalues of A and B are positive, then
the conclusion still maintains. For the Sylvester equation AX + XB = C, where
both A and B are Hurwitzian matrices (i.e., all their eigenvalues have negative real
parts), [30] had given a similar result.

For the Lyapunov equation, we are going to present a more practical prior esti-
mation of the accurate solution X.

Lemma 2.1. Let A ∈ Cm×m be a nonsingular matrix and B ∈ Cm×m, then,

‖AB‖F ≥ ‖A−1‖−1
2 ‖B‖F .

Proof. Let B = (b1, b2, · · · bm) , where bi ∈ Cm×1, i = 1, 2, · · · ,m, then

‖AB‖2F = ‖(Ab1, Ab2, · · · , Abm)‖2F
= ‖Ab1‖22 + ‖Ab2‖22 + · · ·+ ‖Abm‖22
≤ ‖A‖22(‖b1‖22 + ‖b2‖22 + · · ·+ ‖bm‖22)

= ‖A‖22‖B‖2F ,
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i.e.
‖AB‖F ≤ ‖A‖2‖B‖F .

Since A is nonsingular, we have

‖B‖F = ‖A−1AB‖F ≤ ‖A−1‖2‖AB‖F ,

i.e. ‖AB‖F ≥ ‖A−1‖−1
2 ‖B‖F .

By Lemma 2.1, one can prove the following conclusion.

Theorem 2.4. For a symmetric positive definite matrix A ∈ Cm×m and a sym-
metric matrix C ∈ Cm×m, if the Lyapunov equation AX + XA = C is valid over
symmetric matrix X, then

‖X‖F ≤
√
m

2

ρ(C)

λmin(A)
, (2.15)

where λmin(A) is the minimum eigenvalue of A.

Proof. The square of the both sides of the equation AX +XA = C is

AXAX +AXXA+XAAX +XAXA = C2.

Then, it holds

tr(C2) = tr(AXAX) + tr(AXXA) + tr(XAAX) + tr(XAXA),

where tr(·) denotes the trace of a matrix. Since A, X, and C are symmetric matrices
and ‖C‖F =

√
tr(CTC), we have

tr(C2) = tr(CTC) = ‖C‖2F ,
tr(AXAX) = tr((XAXA)T ) = tr(XAXA),

tr(AXXA) = tr(AX(AX)T ) = ‖AX‖2F ,
tr(XAAX) = tr(XA(XA)T ) = ‖XA‖2F = ‖(XA)T ‖2F = ‖AX‖2F .

It follows

2‖AX‖2F + 2tr(XAXA) = ‖C‖2F . (2.16)

Under the assumption that A is a symmetric positive definite matrix, we get

A
1
2XAXAA−

1
2 = A

1
2XA

1
2A

1
2XA

1
2 = (A

1
2XA

1
2 )TA

1
2XA

1
2 .

Hence, XAXA is similar to (A
1
2XA

1
2 )TA

1
2XA

1
2 . It follows

tr(XAXA) = tr((A
1
2XA

1
2 )TA

1
2XA

1
2 ) = ‖A 1

2XA
1
2 ‖2F ≥ 0.

Thus (2.16) implies

‖AX‖F ≤
‖C‖F√

2
. (2.17)

Furthermore, the matrix A is nonsingular because A is symmetric positive definite
matrix, from Lemma 2.1, we also have

‖AX‖F ≥ ‖A−1‖−1
2 ‖X‖F .
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Combined with (2.17), we have

‖X‖F ≤
‖C‖F ‖A−1‖2√

2
. (2.18)

Noting that A−1 is also symmetric positive definite , it follows

‖A−1‖2 = ρ(A−1) =
1

λmin(A)
. (2.19)

In addition, we have

‖C‖F ≤
√
m‖C‖2 =

√
mρ(C). (2.20)

Substituting (2.19) and (2.20) into (2.18), we get

‖X‖F ≤
√
m

2

ρ(C)

λmin(A)
.

Hence, (2.15) is obtained.

3. A new version of Smith method for solving discrete-
time Sylvester equations and Sylvester equations

In this section, through a simple computation, we present a new version of the
Smith method for solving discrete-time Sylvester equation AXB + X = C, while
the new version of the Smith method can also be used to solve Sylvester equation,
AX +XB = C, where both A and B are positive definite.

For any scalar α > 0, the equation (1.2) can be rewritten as

(A+ αIm)X(B + αIn)− (αIm −A)X(B − αIn) + 2X = 2α2X + 2C. (3.1)

Considering the case that both A + αIm and B + αIn are nonsingular, we can
rewrite (3.1) as

X − UXV + 2(A+ αIm)−1X(B + αIn)−1 = 2W,

where U = (A + αIm)−1(αIm − A), V = (B − αIn)(B + αIn)−1 and W = (A +
αIm)−1(α2X + C)(B + αIn)−1.

Recursively, for any natural number l, we get

UXV − U2
XV

2
+ 2U(A+ αIm)−1X(B + αIn)−1V = 2U W V ;

U
2
XV

2 − U3
XV

3
+ 2U

2
(A+ αIm)−1X(B + αIn)−1V

2
= 2U

2
W V

2
;

U
3
XV

3 − U4
XV

4
+ 2U

3
(A+ αIm)−1X(B + αIn)−1V

3
= 2U

3
W V

3
;

· · ·

U
l−1

XV
l−1 − U lXV l + 2U

l−1
(A+ αIm)−1X(B + αIn)−1V

l−1
= 2U

l−1
W V

l−1
.

By adding them up, we can get the following system

X − U lXV l + 2

l−1∑
i=0

U
i
(A+ αIm)−1X(B + αIn)−1V

i
= 2

l−1∑
i=0

U
i
W V

i
,
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i.e.

X = U
l
XV

l
+ 2

l−1∑
i=0

U
i
(A+ αIm)−1(α2X −X + C)(B + αIn)−1V

i
.

Let X0 = 0. We continue to consider the iteration system

Xk = U
l
Xk−1V

l
+ 2

l−1∑
i=0

U
i
(A+ αIm)−1(α2Xk−1 −Xk−1 + C)(B + αIn)−1V

i
,

k = 1, 2, · · · . (3.2)

The iterative scheme (3.2) is a new version of Smith method for solving discrete-
time Sylvester equation AXB +X = C. Through a simple transformation, we can
also obtain the following iterative scheme for the Sylvester equation AX+XB = C,

Xk = Û lXk−1V̂
l + 2

l−1∑
i=0

Û i(A+ αIm)−1(α2Xk−1B −Xk−1B + C)(In + αB)−1V̂ i,

k = 1, 2, · · · , (3.3)

where X0 = 0, Û = (A+ αIm)−1(αIm −A), and V̂ = (In − αB)(In + αB)−1.
For simplicity, we just consider the iterative scheme (3.2), and the iterative

scheme (3.3) can be discussed in a similar way.

3.1. Convergence analysis

Before we present the convergence analysis, we first review a lemma.

Lemma 3.1 ( [21], p.183). Given a discrete-time Sylvester equation AXB +X =
C, where both A and B are positive definite, the spectral radii ρ(U) and ρ(V ) are
less than 1, and there exist constants M > 0 and r > 0, such that

ρ(U)ρ(V ) < r < 1,

and for all i

‖U i‖2 · ‖V
i‖2 ≤Mri.

Theorem 3.1. Let Xk be the k-order approximate solution of (1.2) by the Smith
method (3.2), then we can get

‖Xk+1 −Xk‖2 < L‖Xk −Xk−1‖2, (3.4)

where L = Mrl + 2M |α2 − 1| 1−r
l−1

1−r

√
1

λmin(AA∗)

√
1

λmin(BB∗) .

Proof. According to the iterative scheme (3.2), we can get

Xk+1 = U
l
XkV

l
+ 2

l−1∑
i=0

U
i
(A+ αIm)−1(α2Xk −Xk + C)(B + αIn)−1V

i
.

Combined with (3.2), we have

Xk+1−Xk = U
l
(Xk−Xk−1)V

l
+2(α2−1)

l−1∑
i=0

U
i
(A+αIm)−1(Xk−Xk−1)(B+αIn)−1V

i
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and

‖Xk+1 −Xk‖2
≤ ‖U l‖2‖V

l‖2‖Xk −Xk−1‖2

+2|α2 − 1|
l−1∑
i=0

‖U i‖2‖(A+ αIm)−1‖2‖(B + αIn)−1‖2‖V
i‖2‖Xk −Xk−1‖2.

Noting that the matrix A is positive definite and the matrix α(A + A∗) + α2Im is
also positive definite, hence

‖(A+ αIm)−1‖2 =
√
λmax[(A+ αIm)−1(A∗ + αIm)−1]

=
√
λmax[(AA∗ + α(A+A∗) + α2Im]−1

=

√
1

λmin(AA∗ + α(A+A∗) + α2Im)

<

√
1

λmin(AA∗)
. (3.5)

Similarly,

‖(B + αIn)−1‖2 <

√
1

λmin(BB∗)
. (3.6)

By Lemma 3.1, (3.5) and (3.6), we have

‖Xk+1 −Xk‖2

<

[
Mrl + 2M |α2 − 1|

√
1

λmin(AA∗)

√
1

λmin(BB∗)

l−1∑
i=0

ri

]
‖Xk −Xk−1‖2

=

[
Mrl + 2M |α2 − 1|1− r

l−1

1− r

√
1

λmin(AA∗)

√
1

λmin(BB∗)

]
‖Xk −Xk−1‖2

= L‖Xk −Xk−1‖2.

Hence, (3.4) is obtained.
From the Theorem 3.1, we can find that 0 < L < 1 when l is large enough and

α is close to 1. Combined with the Cauchy criterion for convergence, it is easily to
prove that the new Smith method is convergent.

3.2. The prior estimation of the accurate solution X

In this section, we present a prior estimation of the accurate solution X of the
Lyapunov equation.

Theorem 3.2. For a symmetric positive definite matrix A ∈ Cm×m and a sym-
metric matrix C ∈ Cm×m, if the Lyapunov equation AXA + X = C is valid over
symmetric matrix X, then

‖X‖F ≤
√

m

1 + λ4
min(A)

ρ(C). (3.7)
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Proof. The square of the both sides of the equation AXA+X = C is

AXAAXA+AXAX +XAXA+X2 = C2,

then,

tr(C2) = tr(AXAAXA) + tr(AXAX) + tr(XAXA) + tr(X2).

Since A, X, and C are symmetric matrices and ‖C‖F =
√
tr(CTC), we have

tr(C2) = tr(CTC) = ‖C‖2F ,
tr(AXAX) = tr((XAXA)T ) = tr(XAXA),

tr(X2) = tr(XTX) = ‖X‖2F ,
tr(AXAAXA) = tr((AXA)T (AXA)) = ‖AXA‖2F .

So,

‖AXA‖2F + 2tr(XAXA) + ‖X‖2F = ‖C‖2F . (3.8)

As
A

1
2XAXAA−

1
2 = A

1
2XA

1
2A

1
2XA

1
2 = (A

1
2XA

1
2 )TA

1
2XA

1
2 ,

XAXA is similar to (A
1
2XA

1
2 )TA

1
2XA

1
2 , and we get

tr(XAXA) = tr((A
1
2XA

1
2 )TA

1
2XA

1
2 ) = ‖A 1

2XA
1
2 ‖2F ≥ 0.

Thus (3.8) implies

‖AXA‖2F + ‖X‖2F ≤ ‖C‖2F . (3.9)

Furthermore, the matrix A is nonsingular because A is symmetric positive definite
matrix. From the Lemma 2.1, we have

‖AXA‖F ≥ ‖A−1‖−1
2 ‖XA‖F = ‖A−1‖−1

2 ‖AX‖F ≥ (‖A−1‖−1
2 )2‖X‖F .

Combined with (3.9), we also have

‖X‖2F ≤
‖C‖2F

1 + ‖A−1‖−4
2

. (3.10)

Noting that A−1 is symmetric positive definite, we get

‖A−1‖2 = ρ(A−1) =
1

λmin(A)
. (3.11)

In addition, we have

‖C‖F ≤
√
m‖C‖2 =

√
mρ(C). (3.12)

Substituting (3.11) and (3.12) into (3.10), we get

‖X‖F ≤
√

m

1 + λ4
min(A)

ρ(C).

Hence, (3.7) is obtained.



A new version of the Smith method 593

4. Numerical examples

In this section, we present some numerical examples to illustrate the effectiveness of
the method proposed in the paper for solving the discrete-time Sylvester equation
and the Sylvester equation whose coefficient matrices are large positive definite
matrices. The computation is carried out by MATLAB R2008b on a personal
computer, equipped with a dual core 3.30 GHz processor and 2GByte of memory.

Example 4.1. Consider the discrete-time Sylvester equation AXB+X = C, where
the matrices A,B ∈ C100×100 are given by

A =



d̃1 −1

d̃2 −1

. . .
. . .

d̃99 −1

−1 d̃100


, B =



d̂1 −1

−1 d̂2

−1
. . .

. . . d̂99

−1 d̂100


,

respectively, where the diagonal elements d̃i and d̂i of A and B, respectively, are
generated by the uniform distribution on the interval [3, 10]. We choose the suitable
matrix C such that the solution X of the equation AXB +X = C is

X =



0 2

2 0 2

2
. . .

. . .

. . . 0 2

2 0


. (4.1)

With the assumption above, it is easy to verify that the discrete-time Sylvester
equation AXB + X = C has a unique solution X. We apply the new Smith
method (3.2) to seek for the unique solution X. Fig. 1, Fig. 2, and Fig. 3 display
the convergence of the Smith method when the parameter l takes 3, 6, and 9,
respectively.

In addition, we use the the Smith method (2.5) to seek for the unique solution X.
Fig. 4 displays the convergence of the Smith method. Furthermore, the convergence
results of the new Smith method with l = 6 and Smith accelerative method (2.5)
for Example 4.1 are displayed in Fig. 5. From Fig. 5, we see that although
the convergence speed for the iteration (3.2) is linearly and the convergence speed
for Smith accelerative method (2.5) is quadratically, the convergence speed for the
iteration (3.2) is faster than the Smith accelerative method (2.5) for the first several
iterative steps. Hence, if the requirement on the computation precision for the
solution is not high, the new Smith method (3.2) is a good choice. For example, for
the case that the discrete-time Sylvester equation is not need to be solved exactly
[17], then the new Smith method (3.2) can be used.

We continue to consider the Sylvester equation

AX +XB = C.
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Figure 1. Convergence of the new Smith
method, l = 3.
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Figure 2. Convergence of the new Smith
method, l = 6.
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Figure 3. Convergence of the new Smith
method, l = 9.
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Figure 4. Convergence of the standard Smith
method.
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Figure 5. Convergence results of the new
Smith method and standard Smith method.
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Figure 6. Convergence results of the new
Smith method and standard Smith method.

Similarly, we choose the suitable matrix C such that the matrix X defined by (4.1)
is the the solution of the equation AX +XB = C. With the assumption above, it
is easy to verify that both matrices A and B are positive definite, so the Sylvester
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equation AX + XB = C has a unique solution X. We apply the Smith methods
(2.4) and (3.3) with l = 6 to seek for the unique solution X. Fig. 6 displays
the convergence of the two Smith methods. Similar to the discussion above, if the
requirement on the computation precision for the solution is not high, the new
Smith method (3.3) can be used.

Example 4.2. Consider the discrete-time Sylvester equation AXB+X = C, where
the matrices A,B ∈ C100×100 are given by

A =



d̃1 1 −1

d̃2 1 −1

. . .
. . .

. . .

d̃98 1 −1

d̃99 1

d̃100


, B =



d̂1

1 d̂2

−1 1
. . .

−1
. . . d̂98

. . . 1 d̂99

−1 1 d̂100


,

the diagonal entries d̃i and d̂i of the coefficient matrices A and B, respectively, are
generated by the uniform distribution on the interval [3, 10]. We choose the suitable
matrix C such that the solution X is

X =



0 2i

2 0 2i

2
. . .

. . .

. . . 0 2i

2 0


.
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Figure 7. Convergence results of the new
Smith method and standard Smith method.
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Figure 8. Convergence results of the new
Smith method and standard Smith method.

The convergence results of the new Smith method with l = 6 and Smith acceler-
ative method (2.5) for Example 4.2 are displayed in Fig. 7. Similar to the discussion
above, we choose the suitable matrix C such that the matrix X defined by (4.1)
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is the the solution of the equation AX + XB = C. We apply the Smith methods
(2.4) and (3.3) with l = 6 to seek for the unique solution X. Fig. 8 displays the
convergence of the two Smith methods.

From the above two examples, one sees that the parameter selection affects the
convergence rate of the Smith method. Furthermore, the next experiment will reveal
the relationship between l and α when we use the Smith method (3.2) for solving
the discrete-time Sylvester equation.

For the Example 4.1, we continue to use the the Smith method (3.2) to solve
the discrete-times Sylvester equation AXB+X = C. Let α = 1.2, we compute the
CPU-time when the parameter l takes different values and the common logarithm
of the error satisfies ln‖X −Xk‖2 < −12. The result is shown in Fig. 9.
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Figure 9. CPU time for the different values of
the parameter l.
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Figure 10. CPU time for the different values
of the parameter α.

Let l = 5, we also compute the CPU-time when the parameter α takes different
values and the common logarithm of the error satisfies ln‖X −Xk‖2 < −12. The
result is shown in Fig. 10.

From the above two experiments, we also find that the Smith method (3.2)
gets the desired solution rapidly and the parameter selection not only affects the
convergence rate but also affects the CPU-time.

5. Conclusions

We have discussed the new version of the Smith method for solving the the discrete-
time Sylvester equation AXB + X = C and Sylvester equation AX + XB = C,
whose coefficient matrices are positive definite, and obtained some new results on the
convergence rate and the prior estimations of the accurate solution X. Numerical
examples are presented to show the effectiveness of the method we discussed.
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