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STABILITY IN TOTALLY NONLINEAR DELAY
DIFFERENCE EQUATIONS
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Abstract In this paper we use fixed point method to prove asymptotic sta-
bility results of the zero solution of a nonlinear delay difference equation.
An asymptotic stability theorem with a sufficient condition is proved, which
improves and generalizes some results due to Raffoul (2006) [23], Yankson
(2009) [27], Jin and Luo (2009) [17] and Chen (2013) [9].
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1. Introduction

Certainly, the Lyapunov direct method has been, for more than 100 years, the
efficient tool for the study of stability properties of ordinary, functional, partial d-
ifferential and difference equations. Nevertheless, the application of this method to
problems of stability in differential and difference equations with delay has encoun-
tered serious difficulties if the delay is unbounded or if the equation has unbounded
terms ( [5, 6, 11–13, 15, 25]). Recently, Burton, Furumochi, Zhang, Raffoul, Islam,
Yankson and others have noticed that some of these difficulties vanish or might
be overcome by means of fixed point theory (see [1, 5, 6, 9, 16, 17, 23, 24, 27–29]).
The fixed point theory does not only solve the problem on stability but has a sig-
nificant advantage over Lyapunov’s direct method. The conditions of the former
are often averages but those of the latter are usually pointwise (see [5]). Yet the
stability theory of difference equations with/without delay has been considered by
many authors without the application of Lyapunov and fixed point methods, see
the papers [3, 4, 7, 8, 14,19–22,30].

Let a, aj : Z+ → R and τ, τj : Z+ → Z+ with n−τ (n)→∞ and n−τj (n)→∞
as n→∞. Here4 denotes the forward difference operator4x (t) = x (n+ 1)−x (n)
for any sequence {x (n) , n ∈ Z+}.

In [23], Raffoul studied the equation

4x (n) = −a (n)x (n− τ (n)) , (1.1)

and proved the following theorem.

Theorem A (Raffoul [23]). Suppose that τ (n) = r and a (n+ r) 6= 1 and there
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exists a constant α < 1 such that

n−1∑
s=n−r

|a (s+ r)|+
n−1∑
s=0

(
|a (s+ r)|

∣∣∣∣∣
n−1∏
k=s+1

[1− a (k + r)]

∣∣∣∣∣
s−1∑

u=s−r
|a (u+ r)|

)
≤ α,

(1.2)

for all n ∈ Z+ and

n−1∏
s=0

[1− a (s+ r)]→ 0 as n→∞. Then, for every small initial

sequence ψ : [−r, 0] ∩ Z → R, the solution x (n) = x (n, 0, ψ) of (1.1) is bounded
and tends to zero as n→∞.

In [27], Yankson studied the generalization of (1.1) as follows

4x (n) = −
N∑
j=1

aj (n)x (n− τj (n)) (1.3)

and obtained the following theorem.

Theorem B (Yankson [27]). Suppose that Q (n) 6= 0 for all n ∈ [n0,∞) ∩ Z, the
inverse sequence gj of n− τj (n) exists and there exists a constant α ∈ (0, 1) for all
n ∈ [n0,∞) ∩ Z such that

N∑
j=1

n−1∑
s=n−τj(n)

|aj (gj (s))|+
n−1∑
s=n0

|1−Q (s)|

∣∣∣∣∣
n−1∏
k=s+1

Q (k)

∣∣∣∣∣
N∑
j=1

s−1∑
u=s−τj(s)

|aj (gj (u))|


≤α, (1.4)

where Q (n) = 1−
∑N
j=1 aj (gj (n)). Then the zero solution of (1.3) is asymptotically

stable if

n−1∏
s=n0

Q (s)→ 0 as n→∞.

Obviously, Theorem B improves and generalizes Theorem A. On other hand, Jin
and Luo in [17] and Chen in [9] considered the generalized form of (1.1),

4x (n) = −a (n) f (x (n− τ (n))) (1.5)

and obtained the following theorems.

Theorem C (Jin and Luo [17]). Suppose that τ (n) = r. Let f be odd, increasing
on [0, l], satisfy a Lipschitz condition, and let x − f (x) be nondecreasing on [0, l].
Suppose that |a (n)| < 1 and for each l1 ∈ (0, l] we have

|l1 − f (l1)| sup
n∈Z+

n−1∑
s=0

|a (s+ r)|
n−1∏
k=s+1

[1− a (k + r)]

+ f (l1) sup
n∈Z+

n−1∑
s=0

|a (s+ r)|
n−1∏
k=s+1

[1− a (k + r)]

n−1∑
u=s−r

|a (u+ r)|

+ f (l1) sup
n∈Z+

n−1∑
s=n−r

|a (s+ r)|

≤αl1. (1.6)
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Then the zero solution of (1.5) is stable.

Theorem D (Chen [9]). Suppose that the following conditions are satisfied

(i) the function f is odd, increasing on [0, l],

(ii) f (x) and x−f (x) satisfy a Lipschitz condition with constant K on an interval
[−l, l], and x− f (x) is nondecreasing on [0, l],

(iii) the inverse function g (n) of n− τ (n) exists and |a (g (n))| < 1,

(iv) there exists a constant α ∈ (0, 1) for all n ∈ Z+ such that

n−1∑
s=0

|a (g (s))|
n−1∏
k=s+1

[1− a (g (k))] +

n−1∑
s=n−τ(n)

|a (g (s))|

+

n−1∑
s=0

|a (g (s))|
n−1∏
k=s+1

[1− a (g (k))]

n−1∑
u=s−τ(s)

|a (g (u))|

≤α. (1.7)

Then the zero solution of (1.5) is asymptotically stable if

n−1∏
k=0

[1− a (g (k))]→ 0

as n→∞.

Obviously, Theorem D improves Theorem C.
Recently, in the continuous case, the authors [2] have studied the linear delay

differential system with time varying coefficients

x′i (t) = −
N∑
j=1

rij∑
k=1

akij (t)xj
(
hkij (t)

)
, i = 1...N

and obtained the uniform exponential stability results by using Bohl–Perron theo-
rem.

In this paper, we consider the generalization of a nonlinear delay difference
equation (1.5) of the form

4x (n) = −
N∑
j=1

aj (n) fj (x (n− τj (n))) (1.8)

with the initial condition

x (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z, (1.9)

where ψ : [m (n0) , n0] ∩ Z→ R is a bounded sequence and for n0 ≥ 0,

mj (n0) = inf {n− τj (n) , n ≥ n0} , m (n0) = min {mj (n0) , 1 ≤ j ≤ N} .

Note that (1.8) includes (1.1), (1.3) and (1.5) as special cases.
Our purpose here is to improve Theorems A–D and extend it to investigate a

wide class of nonlinear delay difference equation presented in (1.8). Our results are
obtained with no need of further assumptions on the inverse of sequence n−τj (n), so
that for a given bounded initial sequence ψ a mapping P for (1.8) is constructed in
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such a way to map a, carefully chosen, complete metric space Sεψ into itself on which
P is a contraction mapping possessing a fixed point. This procedure will enable us
to establish and prove by means of the contraction mapping theorem an asymptotic
stability theorem for the zero solution of (1.8) with a less restrictive conditions. For
details on contraction mapping principle we refer the reader to [26] and for more on
the calculus of difference equations, we refer the reader to [10] and [18]. The results
presented in this paper improve and generalize the main results in [9, 17,23,27].

2. Main results

For a fixed n0, we denote D (n0) the set of bounded sequences ψ : [m (n0) , n0]∩Z→
R with the norm |ψ|0 = max {|ψ (n)| : n ∈ [m (n0) , n0] ∩ Z}. For each (n0, ψ) ∈
Z+×D (n0), a solution of (1.8) through (n0, ψ) is a sequence x : [m (n0) ,∞)∩Z→ R
such that x satisfies (1.8) on [n0,∞)∩Z and x = ψ on [m (n0) , n0]∩Z. We denote
such a solution by x (n) = x (n, n0, ψ). For each (n0, ψ) ∈ Z+×D (n0), there exists
a unique solution x (n) = x (n, n0, ψ) of (1.8) defined on [m (n0) ,∞) ∩ Z.

Let hj : [m (n0) ,∞) ∩ Z→ R be an arbitrary sequence. Rewrite (1.8) as

4x (n) =−
N∑
j=1

hj (n) fj (x (n)) +4n
N∑
j=1

n−1∑
s=n−τj(n)

hj (s) fj (x (s))

+

N∑
j=1

{hj (n− τj (n))− aj (n)} fj (x (n− τj (n)))

=−
N∑
j=1

hj (n)x (n) +

N∑
j=1

hj (n) [x (n)− fj (x (n))]

+4n
N∑
j=1

n−1∑
s=n−τj(n)

hj (s) fj (x (s))

+

N∑
j=1

{hj (n− τj (n))− aj (n)} fj (x (n− τj (n))) , (2.1)

where 4n represents that the difference is with respect to n. If we let H (n) =

1−
∑N
j=1 hj (n) then (2.1) is equivalent to

x (n+ 1) =H (n)x (n) +

N∑
j=1

hj (n) [x (n)− fj (x (n))]

+4n
N∑
j=1

n−1∑
s=n−τj(n)

hj (s) fj (x (s))

+

N∑
j=1

{hj (n− τj (n))− aj (n)} fj (x (n− τj (n))) . (2.2)

In the process, For any sequence x, we denote

b∑
k=a

x (k) = 0 and

b∏
k=a

x (k) = 1 for any a > b.
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Lemma 2.1. Suppose that H (n) 6= 0 for all n ∈ [n0,∞)∩Z. Then x is a solution
of equation (1.8) if and only if

x (n) =

x (n0)−
N∑
j=1

n0−1∑
s=n0−τj(n0)

hj (s) fj (x (s))


n−1∏
u=n0

H (u)

+

N∑
j=1

n−1∑
s=n0

hj (s)

n−1∏
u=s+1

H (u) [x (s)− fj (x (s))]

+

N∑
j=1

n−1∑
s=n−τj(n)

hj (s) fj (x (s))

−
N∑
j=1

n−1∑
s=n0

{1−H (s)}
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

hj (v) fj (x (v))

+

N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) {hj (s− τj (s))− aj (s)} fj (x (s− τj (s))) . (2.3)

Proof. Let x be a solution of (1.8). By multiplying both sides of (2.2) by

n∏
u=n0

[H (u)]
−1

and by summing from n0 to n− 1 we obtain

n−1∑
s=n0

4

[
s−1∏
u=n0

[H (u)]
−1
x (s)

]

=

n−1∑
s=n0

s∏
u=n0

[H (u)]
−1

N∑
j=1

hj (s) [x (s)− fj (x (s))]

+

n−1∑
s=n0

s∏
u=n0

[H (u)]
−14s

N∑
j=1

s−1∑
v=s−τj(s)

hj (v) fj (x (v))

+

n−1∑
s=n0

s∏
u=n0

[H (u)]
−1

N∑
j=1

{hj (s− τj (s))− aj (s)} fj (x (s− τj (s))) .

As a consequence, we arrive at

n−1∏
u=n0

[H (u)]
−1
x (n)−

n0−1∏
u=n0

[H (u)]
−1
x (n0)

=

n−1∑
s=n0

s∏
u=n0

[H (u)]
−1

N∑
j=1

hj (s) [x (s)− fj (x (s))]

+

n−1∑
s=n0

s∏
u=n0

[H (u)]
−14s

N∑
j=1

s−1∑
v=s−τj(s)

hj (v) fj (x (v))

+

N∑
j=1

n−1∑
s=n0

s∏
u=n0

[H (u)]
−1 {hj (s− τj (s))− aj (s)} fj (x (s− τj (s))) .
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By dividing both sides of the above expression by
n−1∏
u=n0

[H(u)]−1 we get

x (n) =x (n0)

n−1∏
u=n0

H (u) +

n−1∑
s=n0

n−1∏
u=s+1

H (u)

N∑
j=1

hj (s) [x (s)− fj (x (s))]

+

N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u)4s
s−1∑

v=s−τj(s)

hj (v) fj (x (v))

+

N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) {hj (s− τj (s))− aj (s)} fj (x (s− τj (s))) . (2.4)

By performing a summation by parts, we have

n−1∑
s=n0

n−1∏
u=s+1

H (u)4s
s−1∑

v=s−τj(s)

hj (v) fj (x (v))

=

n−1∑
s=n−τj(n)

hj (s) fj (x (s))−
n−1∏
u=n0

H (u)

n0−1∑
s=n0−τj(n0)

hj (s) fj (x (s))

−
n−1∑
s=n0

{1−H (s)}
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

hj (v) fj (x (v)) . (2.5)

Finally, substituting (2.5) into (2.4) completes the proof.

From equation (2.3) we shall derive a fixed point mapping P for (1.8). But the
challenge here is to choose a suitable metric space of sequences on which the map
P can be defined. Below a weighted metric on a specific space is defined. Let C
be the Banach space of real bounded sequences ϕ : [m (n0) ,∞) ∩ Z → R with the
supremum norm ‖.‖, that is, for ϕ ∈ C,

‖ϕ‖ = sup {|ϕ (n)| : n ∈ [m (n0) ,∞) ∩ Z} .

In other words, we carry out investigations in the complete metric space (C, d)
where d denotes the supremum metric d (ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖ for ϕ1, ϕ2 ∈ C. For
a given initial sequence ψ : [m (n0) , n0] ∩ Z→ [−l, l] with l > 0, define the set

Slψ = {ϕ ∈ C, ϕ (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z, |ϕ (n)| ≤ l} .

Since Slψ is a closed subset of C, the metric space
(
Slψ, d

)
is complete.

Definition 2.1. The zero solution of (1.8) is Lyapunov stable if for any ε > 0 and
any integer n0 ≥ 0 there exists a δ > 0 such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0]∩Z
implies |x (n, n0, ψ)| ≤ ε for n ∈ [n0,∞) ∩ Z.

Theorem 2.1. Define a mapping P on Slψ as follows, for ϕ ∈ Slψ (Pϕ) (n) = ψ (n)
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if n ∈ [m (n0) , n0] ∩ Z, while, for n ∈ [n0,∞) ∩ Z

(Pϕ) (n) =

ψ (n0)−
N∑
j=1

n0−1∑
s=n0−τj(n0)

hj (s) fj (ψ (s))


n−1∏
u=n0

H (u)

+

N∑
j=1

n−1∑
s=n0

hj (s)

n−1∏
u=s+1

H (u) [ϕ (s)− fj (ϕ (s))]

+

N∑
j=1

n−1∑
s=n−τj(n)

hj (s) fj (ϕ (s)) (2.6)

−
N∑
j=1

n−1∑
s=n0

{1−H (s)}
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

hj (v) fj (ϕ (v))

+

N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) {hj (s− τj (s))− aj (s)} fj (ϕ (s− τj (s))) .

Suppose that the following conditions are satisfied,

(i) the function fj is odd, increasing on [0, l],

(ii) fj (x) and x − fj (x) satisfy a Lipschitz condition with constant Kj on an
interval [−l, l], and x− fj (x) is nondecreasing on [0, l],

(iii)
∑N
j=1 |hj (n)| < 1 for n ∈ [m (n0) ,∞)∩Z and |hj (s− τj (s))− aj (s)| < 1 for

n ∈ [n0,∞) ∩ Z, j = 1, 2, ..., N ,

(iv) there exist constants αj , α ∈ (0, 1) for all n ∈ [n0,∞) ∩ Z such that

n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

H (u) +

n−1∑
s=n−τj(n)

|hj (s)|

+

n−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)|

+

n−1∑
s=n0

n−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)| ≤ αj

and

α =

N∑
j=1

αj .

Then there exists δ > 0 such that for any ψ : [m (n0) , n0] ∩ Z → (−δ, δ), we have
that P : Slψ → Slψ and P is a contraction mapping with respect to the metric defined

on Slψ.

Proof. Since fj is odd and satisfies the Lipshitz condition on [−l, l], fj (0) = 0
and fj is uniformly continuous on [−l, l]. So we can choose a δ that satisfies

δ

1 +

N∑
j=1

Kj

n0−1∑
s=n0−τj(n0)

|hj (s)|

 ≤ (1− α) l. (2.7)
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Let ψ ∈ D (n0) such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0]∩Z. Note that (2.7) implies
δ < l since fj (l) ≤ l by condition (ii). Thus, |ψ (n)| ≤ l for n ∈ [m (n0) , n0] ∩ Z.
Now we show that for such a ψ the mapping P : Slψ → Slψ. Indeed, consider (2.6).

For an arbitrary ϕ ∈ Slψ, if follows from conditions (i) and (ii) that

|(Pϕ) (n)| ≤

‖ψ‖+

N∑
j=1

n0−1∑
s=n0−τj(n0)

|hj (s)| ‖fj (ψ)‖


n−1∏
u=n0

H (u)

+

N∑
j=1

n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

H (u) |ϕ (s)− fj (ϕ (s))|

+

N∑
j=1

n−1∑
s=n−τj(n)

|hj (s)| |fj (ϕ (s))|

+

N∑
j=1

n−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)| |fj (ϕ (v))|

+

N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)| |fj (ϕ (s− τj (s)))|

≤

δ + δ

N∑
j=1

Kj

n0−1∑
s=n0−τj(n0)

|hj (s)|


+

N∑
j=1

(l − fj (l))

n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

H (u) +

N∑
j=1

fj (l)

n−1∑
s=n−τj(n)

|hj (s)|

+

N∑
j=1

fj (l)

n−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)|

+

N∑
j=1

fj (l)

n−1∑
s=n0

n−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)| ,

for n ∈ [n0,∞) ∩ Z. By applying (iv) and (2.7), we see that

|(Pϕ) (n)| ≤δ

1 +

N∑
j=1

Kj

n0−1∑
s=n0−τj(n0)

|hj (s)|


+

N∑
j=1

(l − fj (l))αj +

N∑
j=1

fj (l)αj

≤ (1− α) l +

N∑
j=1

[(l − fj (l)) + fj (l)]αj = l.

Hence, |(Pϕ) (n)| ≤ l for n ∈ [m (n0) ,∞) ∩ Z because |(Pϕ) (n)| = |ψ (n)| ≤ l for
n ∈ [m (n0) , n0] ∩ Z. Therefore, Pϕ ∈ Slψ.
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Suppose that ρ > max
{

4, 1/
∑N
j=1Kj

}
. If we define a metric on Slψ as follows,

|ϕ− η|ρ := sup
n∈[n0,∞)∩Z

n−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (s− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

× |ϕ (n)− η (n)| , (2.8)

then
(
Slψ, |.|k

)
is a complete metric space.

Next, we show that P is a contraction mapping on Slψ with respect to the metric

(2.8). For ϕ, η ∈ Slψ, we have

|(Pϕ) (n)− (Pη) (n)|

≤
N∑
j=1

n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

H (u) |ϕ (s)− fj (ϕ (s))− η (s) + fj (η (s))|

+

N∑
j=1

n−1∑
s=n−τj(n)

|hj (s)| |fj (ϕ (s))− fj (η (s))|

+

N∑
j=1

n−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)| |fj (ϕ (v))− fj (η (v))|

+

N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)| |fj (ϕ (s− τj (s)))− fj (η (s− τj (s)))| .

(2.9)

Let Fj (x) = x − fj (x), then Fj (x) satisfies a Lipschitz condition with constant
Kj > 0 on an interval [−l, l]. If we multiply both sides of (2.9) by

n−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

,

then the first term on the right-hand side of (2.9) becomes

n−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

×
N∑
j=1

n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

H (u) |Fj (ϕ (s))− Fj (η (s))|
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≤
N∑
j=1

Kj

n−1∑
s=n0

|hj (s)|
N∏
k=1

[1− |hk (s)|] [1− |hk (s− τk (s))− ak (s)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (s)|] [1 + |hk (s− τk (s))− ak (s)|]

×
s−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

|ϕ (s)− η (s)|

×
n−1∏
u=s+1

H (u)

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

≤
N∑
j=1

Kj
1

ρ
N∑
i=1

Ki

|ϕ− η|ρ
n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

[1− |hj (u)|]

≤1

ρ
|ϕ− η|ρ .

Similarly, we have

n−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

×
N∑
j=1

n−1∑
s=n−τj(n)

|hj (s)| |fj (ϕ (s))− fj (η (s))|

≤
N∑
j=1

Kj

n−1∑
s=n0

|hj (s)|
N∏
k=1

[1− |hk (s)|] [1− |hk (s− τk (s))− ak (s)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (s)|] [1 + |hk (s− τk (s))− ak (s)|]

×
s−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

|ϕ (s)− η (s)|
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×
n−1∏
u=s+1

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

≤
N∑
j=1

Kj
1

ρ
N∑
i=1

Ki

|ϕ− η|ρ
n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

[1− |hj (u)|]

≤1

ρ
|ϕ− η|ρ ,

n−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

×
N∑
j=1

n−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)| |fj (ϕ (v))− fj (η (v))|

≤
N∑
j=1

Kj

n−1∑
s=n0

|1−H (s)|
N∏
k=1

[1− |hk (s)|] [1− |hk (s− τk (s))− ak (s)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (s)|] [1 + |hk (s− τk (s))− ak (s)|]

×
n−1∏
u=s+1

H (u)

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

×
s−1∑

v=s−τj(s)

|hj (v)|
v−1∏
u=n0

N∏
k=1

[1− |hk (v)|] [1− |hk (v − τk (v))− ak (v)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (v)|] [1 + |hk (v − τk (v))− ak (v)|]

× |ϕ (v)− η (v)|

×
s−1∏
u=v

N∏
k=1

[1− |hk (v)|] [1− |hk (v − τk (v))− ak (v)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (v)|] [1 + |hk (v − τk (v))− ak (v)|]

≤
N∑
j=1

Kj
1

ρ
N∑
i=1

Ki

|ϕ− η|ρ
n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

[1− |hj (u)|]
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×
s−1∑

v=s−τj(s)

|hj (v)|
s−1∏
u=v

[1− |hj (v)|]

≤1

ρ
|ϕ− η|ρ

and

n−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

×
N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)| |fj (ϕ (s− τj (s)))− fj (η (s− τj (s)))|

≤
N∑
j=1

Kj

n−1∑
s=n0

|hj (s− τj (s))− aj (s)|
N∏
k=1

[1− |hk (s)|] [1− |hk (s− τk (s))− ak (s)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (s)|] [1 + |hk (s− τk (s))− ak (s)|]

×
s−1∏
u=n0

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

|ϕ (s)− η (s)|

×
n−1∏
u=s+1

H (u)

N∏
k=1

[1− |hk (u)|] [1− |hk (u− τk (u))− ak (u)|]

ρ
N∑
i=1

Ki

N∏
k=1

[1 + |hk (u)|] [1 + |hk (u− τk (u))− ak (u)|]

≤
N∑
j=1

Kj
1

ρ
N∑
i=1

Ki

|ϕ− η|ρ
n−1∑
s=n0

|hj (s− τj (s))− aj (s)|

×
n−1∏
u=s+1

[1− |hk (u− τk (u))− ak (u)|]

≤1

ρ
|ϕ− η|ρ .

Hence, |Pϕ− Pη|ρ ≤
4

ρ
|ϕ− η|ρ, since ρ > 4, we have that P is a contraction

mapping on Slψ.

Theorem 2.2. Assume that the hypotheses of Theorem 2.1 hold. Then the zero
solution of (1.8) is stable.

Proof. Let P be defined as in Theorem 2.1. By the contraction mapping principle
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( [26], p. 2), P has a unique fixed point in Slψ, which is a solution of (1.8) with
x = ψ on [m (n0) , n0] ∩ Z.

To prove stability at n = n0, let ε > 0 be given, then we choose m > 0 so that
m < min {l, ε}. By considering Smψ , we obtain there is a δ > 0 such that ‖ψ‖ < δ
implies that the unique solution of (1.8) with x = ψ on [m (n0) , n0] ∩ Z satisfies
|x (n)| ≤ m < ε for all n ∈ [m (n0) ,∞) ∩ Z. This proves that the zero solution of
(1.8) is stable.

Definition 2.2. The zero solution of (1.8) is asymptotically stable if it is Lyapunov
stable and if for any integer n0 ≥ 0 there exists a δ > 0 such that |ψ (n)| ≤ δ for
n ∈ [m (n0) , n0] ∩ Z implies x (n, n0, ψ)→ 0 as n→∞.

Theorem 2.3. Assume that the hypotheses of Theorem 2.1 hold. Also assume that

n−1∏
u=n0

H (u)→ 0 as n→∞. (2.10)

Then the zero solution of (1.8) is asymptotically stable.

Proof. From Theorem 2.2, the zero solution of (1.8) is stable. For a given ε > 0
let ψ ∈ D (n0) such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0]∩Z where δ > 0 and define

Sεψ=
{
ϕ ∈ C, ϕ (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z,
‖ϕ‖ ≤ ε and ϕ (n)→ 0 as n→∞

}
.

Then Sεψ is a complete metric space with respect to the metric (2.8). Define P :
Sεψ → Sεψ by (2.6). From the proof of Theorem 2.1, the mapping P is a contraction
and for every ϕ ∈ Sεψ, ‖Pϕ‖ ≤ ε.

We next show that (Pϕ) (n) → 0 as n → ∞. There are five terms on the right
hand side in (2.6). Denote them, respectively, by Ik, k = 1, 2, ..., 5. It is obvious
that the first term I1 tends to zero as t → ∞, by condition (2.10). Therefore, the
second term I2 in (2.6) satisfies

|I2| =

∣∣∣∣∣∣
N∑
j=1

n−1∑
s=n0

hj (s)

n−1∏
u=s+1

H (u) [ϕ (s)− fj (ϕ (s))]

∣∣∣∣∣∣
≤

N∑
j=1

Kj

n−1∑
s=n0

|hj (s)|
n−1∏
u=s+1

H (u) |ϕ (s)|

≤ ε
N∑
j=1

Kjαj < ε

N∑
j=1

Kj .

Thus, I2 → 0 as n→∞. Also, due to the facts that ϕ (n)→ 0 and n− τj (n)→∞
for j = 1, 2, ..., N as n→∞, the third term I3 tends to zero, as n→∞.

Now, for a given ε1 ∈ (0, ε), there exists a N1 > n0 such that s ≥ N1 implies
|ϕ (s− τj (s))| < ε1 for j = 1, 2, ..., N . Thus, for n ≥ N1, the term I4 in (2.6)
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satisfies

|I4| =

∣∣∣∣∣∣
N∑
j=1

n−1∑
s=n0

{1−H (s)}
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

hj (v) fj (ϕ (v))

∣∣∣∣∣∣
≤

N∑
j=1

N1−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)| |fj (ϕ (v))|

+

N∑
j=1

n−1∑
s=N1

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)| |fj (ϕ (v))|

≤ sup
σ≥m(n0)

|ϕ (σ)|
N∑
j=1

Kj

N1−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)|

+ ε1

N∑
j=1

Kj

n−1∑
s=N1

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)| .

By (2.10), we can find N2 > N1 such that n ≥ N2 implies

sup
σ≥m(n0)

|ϕ (σ)|
N∑
j=1

Kj

N1−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)|

= sup
σ≥m(n0)

|ϕ (σ)|
N∑
j=1

Kj

n−1∏
u=N2

H (u)

N1−1∑
s=n0

|1−H (s)|
N2−1∏
u=s+1

H (u)

s−1∑
v=s−τj(s)

|hj (v)|

<ε1

N∑
j=1

Kj .

Now, apply condition (iv) to have |I4| < ε1
∑N
j=1Kj+ε1

∑N
j=1Kjαj < 2ε1

∑N
j=1Kj .

Thus, I4 → 0 as n → ∞. Similarly, by using (2.10), then, if n ≥ N2 then term I5
in (2.6) satisfies

|I4| =

∣∣∣∣∣∣
N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) {hj (s− τj (s))− aj (s)} fj (ϕ (s− τj (s)))

∣∣∣∣∣∣
≤

N∑
j=1

N1−1∑
s=n0

n−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)| |fj (ϕ (s− τj (s)))|

+

N∑
j=1

n−1∑
s=N1

n−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)| |fj (ϕ (s− τj (s)))|

≤ sup
σ≥m(n0)

|ϕ (σ)|
N∑
j=1

Kj

n−1∏
u=N2

H (u)

N1−1∑
s=n0

N2−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)|

+ ε1

N∑
j=1

Kj

n−1∑
s=N1

n−1∏
u=s+1

H (u) |hj (s− τj (s))− aj (s)|
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≤ε1
N∑
j=1

Kj + ε1

N∑
j=1

Kjαj < 2ε1

N∑
j=1

Kj .

Thus, I5 → 0 as n→∞. In conclusion (Pϕ) (n)→ 0 as n→∞, as required. Hence
P maps Sεψ into Sεψ.

By the contraction mapping principle, P has a unique fixed point x ∈ Sεψ which
solves (1.8). Therefore, the zero solution of (1.8) is asymptotically stable.

Letting N = 1, τ1 = τ , f1 = f , we have

Corollary 2.1. Let h : [m (n0) ,∞) ∩ Z → R be an arbitrary sequence. Suppose
that the following conditions are satisfied,

(i) the function f is odd, increasing on [0, l],

(ii) f (x) and x−f (x) satisfy a Lipschitz condition with constant K on an interval
[−l, l], and x− f (x) is nondecreasing on [0, l],

(iii) |h (n)| < 1 for n ∈ [m (n0) ,∞) ∩ Z and |h (n− τ (n))− a (n)| < 1 for n ∈
[n0,∞) ∩ Z,

(iv) there exist constants α ∈ (0, 1) for all n ∈ [n0,∞) ∩ Z such that

n−1∑
s=n0

|h (s)|
n−1∏
u=s+1

[1− h (u)] +

n−1∑
s=n−τ(n)

|h (s)|

+

n−1∑
s=n0

|h (s)|
n−1∏
u=s+1

[1− h (u)]

s−1∑
v=s−τ(s)

|h (v)|

+

n−1∑
s=n0

n−1∏
u=s+1

[1− h (u)] |h (s− τ (s))− a (s)|

≤α.

Then the zero solution of (1.5) is asymptotically stable if

n−1∏
u=n0

[1− h (u)]→ 0 as n→∞.

Remark 2.1. When h (s) = a (g (s)), where g (s) is the inverse function of s−τ (s),
Corollary 2.1 reduces to Theorem D. Thus Theorem 2.3 generalizes and improves
Theorem D.

For the special case fj (x) = x, we can get

Corollary 2.2. Suppose that H (n) 6= 0 for all n ∈ [n0,∞) ∩ Z and there exists a
constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z

N∑
j=1

n−1∑
s=n−τj(n)

|hj (s)|+
N∑
j=1

n−1∑
s=n0

|1−H (s)|
n−1∏
u=s+1

|H (u)|
s−1∑

v=s−τj(s)

|hj (v)|

+

N∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

|H (u)| |hj (s− τj (s))− aj (s)|

≤α.
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Then the zero solution of (1.3) is asymptotically stable if

n−1∏
u=n0

H (u)→ 0 as n→∞.

Remark 2.2. When hj (s) = aj (gj (s)), where gj (s) is the inverse function of
s − τj (s), for j = 1, 2, ..., N , Corollary 2.2 reduces to Theorem B. Thus Theorem
2.3 improves Theorem B.

Remark 2.3. The method in this paper can be extended to the following nonlinear
delay difference systems with several variable delays

4xi (n) = −
N∑
j=1

rij∑
k=1

akij (n) fkij
(
xj
(
n− τkij (n)

))
, i = 1, ..., N.
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