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NUMERICAL STUDY OF MIXED
CONVECTION FLOW OF A MICROPOLAR
FLUID TOWARDS PERMEABLE VERTICAL
PLATE WITH CONVECTIVE BOUNDARY

CONDITION
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Abstract In this article, the mixed convective flow of a micropolar fluid
along a permeable vertical plate under the convective boundary condition is
analyzed. The scaling group of transformations is applied to get the similarity
representation of the system of partial differential equations of the problem and
then the resulting equations are solved by using Spectral Quasi-Linearisation
Method. This study reveals that the dual solutions exists for certain values of
mixed convection parameter. The outcomes are analyzed with dual solutions
in detail. Effects of micropolar parameter, Biot number and suction/injection
parameters on different flow profiles are discussed and depicted graphically.
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1. Introduction

In the past few decades, most of the researchers considered convective heat transfer
problems either with wall temperature, heat flux or Newtonian heating in a Newto-
nian and/or non-Newtonian fluid. But, these models cannot explain the supply of
heat with a finite heat capacity to the convecting fluid through a bounding surface.
To overcome this, a novel mechanism for the heating process, known as Convective
Boundary Condition (CBC), has drawn the involvement of many researchers. Be-
sides, it is more realistic and general, especially in various technologies and industrial
operations such as textile drying, transpiration cooling process, laser pulse heating,
and so on. Aziz [2] showed that a similarity solution for the thermal boundary layer
in a uniform stream of fluid under a convective boundary condition is possible if
the convective heat transfer is proportional to x−1/2, where x is the distance from
the leading edge. In presence of the convective boundary condition, Makinde and
Olanrewaju [13] illustrated that the combined effects of the Prandtl number and
the Grashof number reduces the thermal boundary layer thickness along the plate,
whereas Ishak [9] found that suction increases the surface shear stress and as a
consequence increases the heat transfer rate at the surface. Subhashini etc [28, p11]
discussed the simultaneous effects of thermal and concentration diffusions over a
permeable surface in a Newtonian fluid, but RamReddy etc [22, p11] investigated
the role of the thermal diffusion on combined convection in a nanofluid under the
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convective boundary conditions. Recently, Ramesh and Gireesha [21] explored the
effect of convective boundary conditions on the boundary layer flow of Maxwell
fluid.

A great deal of involvement has been brought forth to illustrate the nonlinear
relationship between the rate of strain and stress in non-Newtonian fluid models.
But there is no single fluid flow model which undoubtedly exhibits all the properties
of real fluids. Therefore, during the last century, several fluid models to characterize
the real fluid behavior were proposed. Among these, micropolar fluids introduced
by Eringen [7] have distinct features, such as microscopic effects arising from the
local structure and micromotion of fluid elements, the presence of couple stresses,
body couples and non-symmetric stress tensor. Micropolar fluids are the fluids with
microstructure. Physically micropolar fluids may represent fluids consisting of rigid
randomly oriented (or spherical) particles suspended in a viscous medium, where
the deformation of fluid particles is ignored. More interesting aspects of the theory
and application of micropolar fluids can be found in the books of Lukaszewicz [12]
and Eremeyev etc [6, p11]. Mixed convection boundary layer flow of an incompress-
ible micropolar fluid from an isothermal vertical flat plate has been considered by
Jena and Mathur [10]. For an exhaustive discussion of the mixed convection in the
boundary layers along a vertical surface in a micropolar fluid in the presence of
double stratification and cross diffusion effects, the reader is referred to the works
of Srinivasacharya and RamReddy ( [26,27]) (also see the references cited therein).
Recently, Prakash and Muthtamilselvan [20] analyzed the radiation effect on fully
developed flow of micropolar fluid between the two infinite parallel porous vertical
plates in the presence of transverse magnetic field under convective boundary con-
dition. Merely from the literature, it is noticed that most of the researchers found
the local similarity and/or non-similarity solutions only.

In the recent past, several researchers are focused on obtaining the similarity
solutions of the convective transport phenomena problems arising in fluid dynamics,
aerodynamics, plasma physics, meteorology and some branches of engineering by
using different procedures. One such procedure is Lie group analysis. The concept
of Lie group analysis also called symmetry analysis initiated by Sophus Lie to
determine transformations which map a given differential equation to itself and it
combines almost all known exact integration techniques (For Ref. See [4, 19, 24,
25]). To provide a sophisticated, potent and systematic tool for generating the
invariant solutions of the system of nonlinear partial differential equations with
appropriate initial or boundary conditions, the scaling group transformations have
been suggested by various researchers to study convective transport of different
flow phenomena [see Hassanien and Hamad [8]; Seddeek etc [23, p11]; Kandasamy
etc [11, p11] etc. are worth observing].

No effort has been gained so far to examine the similarity solution of mixed
convection in a micropolar fluid on a permeable vertical plate under the convective
boundary condition. Hence, the present investigation is aimed to find new simi-
larity transformations, corresponding similarity solutions and to investigate mixed
convection flow of a micropolar fluid on a permeable vertical plate under the convec-
tive boundary condition using the Lie group transformations. Besides, the influence
parameters, namely, micropolar, suction/injection and convective heat transfer pa-
rameters on the physical quantities of the flow, heat and mass transfer coefficients
are investigated. Further, the outcomes are analyzed with dual solutions in detail.
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2. Mathematical Formulation

Consider the steady, laminar, mixed convective flow along a permeable vertical
surface in an incompressible micropolar fluid. Choose the coordinate system such
that the x-axis is along the vertical plate and y-axis normal to the plate. The
physical model and coordinate system are shown in Fig.(1). The velocity of the
outer flow is of the form ue, the free stream temperature and concentration are T∞
and C∞ respectively. The suction/injection velocity distribution is assumed to be
vw. The plate is either heated or cooled from left by convection from a fluid of
temperature Tf with Tf > T∞ corresponding to a heated surface (assisting flow)
and Tf < T∞ corresponding to a cooled surface (opposing flow) respectively. On
the wall the solutal concentration is taken to be constant and is given by Cw.

Figure 1. Physical model and coordinate system.

By employing Boussinesq approximation and making use of the standard bound-
ary layer approximations, the governing equations for the micropolar fluid ( [1,10])
are given by

∂u

∂x
+
∂v

∂y
= 0, (2.1)

ρ(u
∂u

∂x
+ v

∂u

∂y
) = (µ+ κ)

∂2u

∂y2 + ρue
due
dx

+ κ
∂ω

∂y

+ ρg∗ (βT (x)(T − T∞) + βC(x)(C − C∞)) , (2.2)

ρj

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2 − κ
(

2ω +
∂u

∂y

)
, (2.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 , (2.4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2 , (2.5)

where u and v are the velocity components in x and y directions respectively, T is
the temperature, C is the concentration, ω is the component of microrotation whose
direction of rotation lies in the x y-plane, g∗ is the acceleration due to gravity, ρ
is the density, µ is the dynamic coefficient of viscosity, βT (x) is the coefficient of
thermal expansion, βC(x) is the coefficient of solutal expansions, κ is the vortex
viscosity, j is the micro-inertia density, γ is the spin-gradient viscosity, α is the
thermal diffusivity and D is the solutal diffusivity of the medium.
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The boundary conditions are

u = 0, v = vw, ω = −n∂u
∂y
, −k∂T

∂y
= hf (Tf − T ), C = Cw at y = 0,

(2.6a)

u = ue, ω = 0, T = T∞, C = C∞ as y →∞, (2.6b)

where, the subscripts w and ∞ indicate the conditions at the wall and at the outer
edge of the boundary layer respectively, hf is the convective heat transfer coefficient,
k is the thermal conductivity of the fluid and n is a material constant. Further, the

assumption γ =
(
µ+

κ

2

)
j is incorporated to allow the field of equations predicts

the correct behavior in the limiting case when the microstructure effects become
negligible and the total spin ω reduces to the angular velocity [1].

Introducing the following dimensionless variables

x =
x

L
, y =

y

L
Re1/2, u =

u

U∞
, v =

v

U∞
Re1/2,

ue =
ue
U∞

, ω =
L2

νRe3/2
ω, θ =

T − T∞
Tf − T∞

, φ =
C − C∞
Cw − C∞

,

 (2.7)

where U∞ is the reference velocity and Re =
U∞L

ν
is the global Reynold’s number.

In view of the continuity equation (2.1), we introduce the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.8)

Using (2.7) and (2.8) into (2.2)-(2.5), we get the following momentum, angular
momentum, energy, and concentration equations

∆1 =
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
−
(

1

1−N

)
∂3ψ

∂y3
−
(

N

1−N

)
∂ω

∂y
− ue

due
dx

− g∗βT (x)(Tf − T∞)

ν2Re2
θ − g∗βC(x)(Cw − C∞)

ν2Re2
φ = 0, (2.9)

∆2 =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x
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∂y
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)(
2ω +

∂2ψ

∂y2

)
= 0, (2.10)

∆3 =
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0, (2.11)

∆4 =
∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Sc

∂2φ

∂y2
= 0, (2.12)

where ν is the kinematic viscosity, N =
κ

µ+ κ
is the coupling number, Pr =

ν

α
is

the Prandtl number and Sc =
ν

D
is the Schmidt number.

Now the boundary conditions (2.6) become

∂ψ

∂y
= 0,

∂ψ

∂x
= fw, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), φ = 1 at y = 0,

(2.13a)

∂ψ

∂y
= ue, ω = 0, θ = 0, φ = 0 as y →∞, (2.13b)
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where fw = −Re
1/2

U∞
vw is the suction/injection parameter and Bi =

hf L

kRe1/2
is the

Biot number. It is worth mentioning that fw determines the transpiration rate at
the surface, with fw > 0 for suction, fw < 0 for injection, and fw = 0 corresponds
to an impermeable surface.

3. Similarity Solutions via Lie Group Analysis

A one-parameter scaling group of transformations which is a simplified form of Lie
group transformation, is selected as ( [11])

Γ : x∗ = x eε α1 , y∗ = y eε α2 , ψ∗ = ψ eε α3 , ω∗ = ω eε α4 , θ∗ = θ eε α5 ,

φ∗ = φ eε α6 , β∗T = βT e
ε α7 , β∗C = βC e

ε α8 , u∗e = ue e
ε α9 .

 (3.1)

Here ε 6= 0 is the parameter of the group and α′s are arbitrary real numbers not
all simultaneously zero. Equations (2.9)-(2.12) along with the boundary conditions
(2.13) will remain invariant under the group of transformations in Eq.(3.1) if αi’s
hold following relationship

α1 + 2α2 − 2α3 = 3α2 − α3 = α2 − α4 = −α5 − α7 = −α6 − α8 = α1 − 2α9,

α1 + α2 − α3 − α4 = 2α2 − α4 = −α4 = 2α2 − α3,

α1 + α2 − α3 − α5 = 2α2 − α5, α1 + α2 − α3 − α6 = 2α2 − α6,

α1 − α3 = 0;−α4 = 2α2 − α3;α2 − α5 = 0 = −α5;α6 = 0;α2 − α3 = −α9.


(3.2)

Using the procedure explained in the article by Uddin etc [29, p11] and Mutlag
etc [17, p11], we have the following similarity transformations:

η = y, ψ = xf(η), ω = xg(η),

ue = x, βT = βT0
x, βC = βC0

x, θ = θ(η), φ = φ(η),

}
(3.3)

where βT0
and βC0

are constant thermal and mass coefficient of expansion.
Using Eq. (3.3) into Eq. (2.9)-(2.12), we get the following similarity equations(

1

1−N

)
f ′′′ + ff ′′ + 1− f ′2 +

(
N

1−N

)
g′ + λ(θ + Bφ) = 0, (3.4)(

2−N
2− 2N

)
g′′ + fg′ − f ′g −

(
N

1−N

)
(2g + f ′′) = 0, (3.5)

1

Pr
θ′′ + fθ′ = 0, (3.6)

1

Sc
φ′′ + fφ′ = 0, (3.7)

where the primes indicate partial differentiation with respect to η alone. Gr =
g∗βT0

(Tf − T∞)L3

ν2
is the thermal Grashof number, Gc =

g∗βC0
(Cw − C∞)L3

ν2
is

the solutal Grashof, B =
Gc

Gr
is the buoyancy ratio and λ =

Gr

Re2
is the mixed
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convection parameter. We also notice that λ > 0 and λ < 0 correspond to assisting
flow and opposing flow respectively whereas λ = 0 produces forced convection flow
problem. Boundary conditions (2.13) in terms of f , g, θ and φ become

η = 0 : f(0) = fw, f
′(0) = 0, g(0) = −nf ′′(0), θ′(0) = −Bi[1− θ(0)], φ(0) = 1,

(3.8a)

η →∞ : f ′(∞) = 1, g(∞) = 0, θ(∞) = 0, φ(∞) = 0. (3.8b)

4. Skin friction, Wall couple stress, Heat and Mass
transfer coefficients

The wall shear stress and the wall couple stress are

τw =

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

and mw = γ

[
∂ω

∂y

]
y=0

(4.1a)

and the heat and mass transfers from the plate respectively are given by

qw = −k
[
∂T

∂y

]
y=0

and qm = −D
[
∂C

∂y

]
y=0

. (4.2a)

The non-dimensional skin friction Cf =
2τw

ρu2
e

, wall couple stress Mw =
mw

ρu2
ex

, the

local Nusselt number Nux =
qwx

k(Tf − T∞)
and local Sherwood number

Shx =
qmx

D(Cw − C∞)
are given by

CfRex1/2 = 2

(
1− nN
1−N

)
f ′′(0), MwRex =

(
2−N
2− 2N

)
g′(0)

Nux
Rex1/2

= −θ′(0),
Shx
Rex1/2

= −φ′(0),

 (4.3)

where Rex =
uex

ν
is the local Reynold’s number.

5. Numerical Solution using the Spectral Quasilin-
earization Method(SQLM)

In this section, we introduce the quasilinearization method (QLM) for solving the
governing system of Eqs.(3.4)-(3.7) along with the boundary conditions(3.8). This
QLM is a generalization of the Newton-Raphson method and was proposed by
Bellman and Kalaba [3] for solving nonlinear boundary value problems.

Assume that the solutions fr, gr, θr and φr of Eqs. (3.4)-(3.7) at the (r + 1)th

iteration are fr+1, gr+1, θr+1 and φr+1. If the solutions at the previous iteration are
sufficiently close to the solutions at the present iteration, the nonlinear components
of the Eqs.(3.4)-(3.7) can be linearised using one term Taylors series for multiple
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variables so that the Eqs.(3.4)-(3.7) give the following iterative sequence of linear
differential equations:(

1

1−N

)
f ′′′r+1 + a1,r f

′′
r+1 + a2,r f

′
r+1 + a3,r fr+1 +

(
N

1−N

)
g′r+1

+ λ θr+1 + λB φr+1 = R1,r, (5.1)(
2−N
2− 2N

)
g′′r+1 + b3,r g

′
r+1 + b4,r gr+1 + b1,r f

′
r+1 + b2,r fr+1

−
(

N

1−N

)
f ′′r+1 = R2,r, (5.2)

c1,r fr+1 +
1

Pr
θ′′r+1 + c2,r θ

′
r+1 = R3,r, (5.3)

d1,r fr+1 +
1

Sc
φ′′r+1 + d2,r φ

′
r+1 = R4,r, (5.4)

where the coefficients as1,r(s1 = 1, 2, 3), bs2,r(s2 = 1, 2, .., 4), cs3,r(s3 = 1, 2) ,
ds4,r(s4 = 1, 2) and Rs5,r(s5 = 1, 2, .., 4)are known functions (from previous calcu-
lations) and are defined as

a1,r = fr, a2,r = −2 f ′r, a3,r = f ′′r , R1,r = fr f
′′
r − 1− (f ′r)

2,

b1,r = −gr, b2,r = g′r, b3,r = fr, b4,r = −f ′r −
(

2N

1−N

)
, R2,r = fr g

′
r − f ′r gr,

c1,r = θ′r, c2,r = fr, R3,r = fr θ
′
r,

d1,r = φ′r, d2,r = fr, R4,r = fr φ
′
r.

The above system (5.1) to (5.4) constitute a linear system of coupled differential
equations with variable coefficients and can be solved iteratively using any numerical
method for r = 1, 2, 3, .... In this work, as will be discussed below, the Chebyshev
pseudo-spectral method was used to solve the QLM scheme (5.1) to (5.4) [For more
details, one can refer the works of Motsa etc [15, p11] and [16, p11]].

The initial guesses to start the SQLM scheme for the system of equations (5.1)-
(5.4) are chosen as functions that satisfy the boundary conditions as follows:

f0(η) = fw + η − 1 + e−η, g0(η) = −n e−η, θ0 =
Bi

1 +Bi
e−η, φ0 = e−η,

starting from these set of initial approximations f0, g0, θ0, φ0, the iteration schemes
(5.1) to (5.4) can be solved iteratively for fr+1(η), gr+1(η), θr+1(η), φr+1(η) when
r = 0, 1, 2,.... For this, we discretise the equation using the Chebyshev spectral
collocation method. The basic idea behind the spectral collocation method is that
the first appearance of a differentiation matrix D which is applied to approximate
the differential coefficients of the unknown variables. In this procedure, the function
f(η) can be written as the matrix vector product

df

dη
=

N∑
k=0

Dlkf(τk) = DF, l = 0, 1, ..., N, (5.5)

at the Gauss-Lobatto collocation points

τj = cos
πj

N
, j = 0, 1, 2, ..., N, (5.6)
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where N + 1 is the number of collocation points (grid points), D =
2D
η∞

is the

differentiation matrix and its entries are clearly defined in Canuto etc [5, p11],
and F = [f(τ0), f(τ1), ..., f(τN )]T is the vector function at the collocation points.
Similar vector functions corresponding to g, θ and φ are denoted by G, θ and φ
respectively. Higher order derivatives are obtained as powers of D, that is

f (p) = DpF, g(p) = DpG, θ(p) = Dpθ, φ(p) = Dpφ, (5.7)

where p is the order of the derivatives, η∞ is a finite length that is chosen to be
numerically large enough to approximate the conditions at infinity in the governing
problem and τ is a variable used to map the truncated interval [0, η∞] to the interval
[−1, 1] on which the spectral method can be implemented.

Substituting Eqs.(5.5)-(5.7) into Eqs. (5.1)-(5.4) leads to the matrix equation
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




Fr+1

Gr+1

θr+1

φr+1

 =


R1

R2

R3

R4


where

A11 =

(
1

1−N

)
D3 + diag[a1,r] D2 + diag[a2,r]D + diag[a3,r], A12 =

(
N

1−N

)
D,

A13 = λI, A14 = λB I,

A21 = −
(

N

1−N

)
D2 + diag[b1,r] D + diag[b2,r],

A22 =

(
2−N
2− 2N

)
D2 + diag[b3,r] D + diag[b4,r], A23 = 0, A24 = 0,

A31 = diag[c1,r], A32 = 0, A33 =
1

Pr
D2 + diag[c2,r] D, A34 = 0,

A41 = diag[d1,r], A42 = 0, A43 = 0, A44 =
1

Sc
D2 + diag[d2,r] D,

R1 = R1,r, R2 = R2,r, R3 = R3,r, R4 = R4,r,

subject to reduced boundary conditions

fr+1(0) = fw, f
′
r+1 = 0, f ′r+1(∞) = 1, (5.8)

gr+1 = −n f ′′r+1(0), gr+1(∞) = 0, (5.9)

θ′r+1(0) = −Bi(1− θ(0)), θr+1(∞) = 0, (5.10)

φr+1(0) = 1, φr+1(∞) = 0, (5.11)

where I is an identity matrix, the size of the matrix 0 is (N + 1)× 1 and diag[ ] is
a diagonal matrix, all of size (N + 1)× (N + 1). f , g, θ and φ are the values of the
functions f , g, θ and φ when evaluated at the grid points. The subscript r denotes
the iteration number.
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Table 1. Comparison of f ′′(0) and − θ′(0) for mixed convection along a vertical flat plate in Newtonian
fluids ( [14]; [18, p11]) when N = 0, n = 0, Pr = 1, Bi→∞ and fw = 0.

λ f ′′(0) −θ′(0)

Merkin [14] Nazar etc Present Merkin [14] Nazar etc Present
[18, p11] [18, p11]

-1.0 0.6489 0.6497 0.648861 0.5067 0.5071 0.506658
-0.6 0.8963 0.8971 0.896272 0.5357 0.5360 0.535659
-0.2 1.1241 1.1250 1.124101 0.5597 0.5601 0.559725
0.0 1.2326 1.2336 1.232588 0.5705 0.5708 0.570462
0.6 1.5416 1.5428 1.541593 0.5990 0.5993 0.598949
1.0 1.7367 1.7380 1.736681 0.6156 0.6160 0.615581
3.0 2.6259 2.6282 2.625893 0.6817 0.6822 0.681721
5.0 3.4230 3.4264 3.422943 0.7315 0.7320 0.731504

6. Results and Discussions

It is noticed that the present problem reduces to forced convection heat and mass
transfer along an impermeable vertical plate in a micropolar fluid without convective
boundary condition when fw = 0, Bi→∞ and λ = 0. Also, in the limit as N → 0,
the governing equations (2.2)-(2.5) reduce to the corresponding equations for a
mixed convection heat and mass transfer in a viscous fluid. In order to validate the
code generated, the results of the present problem have been compared with works
of Merkin [14] and Nazar etc [18, p11] as a special case by taking N = 0, n = 0,
Pr = 1, Bi→∞ and fw = 0 and found that they are in good agreement, as shown
in Tab. (1). In order to study the effects of coupling number N , suction/injection
parameter fw, Biot numberBi and material parameter n, computations were carried
out in the cases of B = 1.0 and Pr = 0.71, Sc = 0.22.

Figs. 2(a)-5(d) represent the existence of dual solutions on dimensionless veloc-
ity, microrotation, temperature and concentration with effect of parameters namely
coupling number, Biot number, suction/injection and material constant. In these
figures, the solid line represents the first solution whereas the dash line represents
the second solution. It can be observed that the dual solutions exist for (λ ≤ λc),
where λc = −1.42492 is known as critical point, beyond this critical point the
solution is unique.

The influence of the coupling number N on the dimensionless velocity, micro-
rotation, temperature and concentration are illustrated in Figs. 2(a)-2(d) with
existence of dual solutions for fixed values of other parameters. The coupling of
linear and rotational motion arising from the micromotion of the fluid molecules is
completely characterized by the coupling number N , where N → 0 represents the
non-polar fluid or viscous fluid. As N becomes large, the effect of microstructure
becomes significant, whereas with a diminished value of N the individuality of the
substructure is a lot less articulated. As N increases, it is found from Fig. 2(a) that
the maximum velocity decreases in amplitude in both the cases of first and second
solutions. It is significant to mention that the velocity of the micropolar fluid is
less compared to that of viscous fluid case. It can be noted from Fig. 2(b) that
the microrotation profiles tend to become flatter initially, then decreases with an
increasing value of N . This happens because the vanishing of antisymmetric part of



Numerical study of mixed convection flow of a micropolar fluid ... 263

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

fw = 0.5,  Bi = 1.0

  first solution
   second solution

f '

 

 

n=0.0, N=0.0
n=0.5, N=0.5
n=0.5, N=0.8

(a)

0 1 2 3 4 5 6 7 8

-0.10

-0.05

0.00

0.05

0.10

0.15

  first solution
   second solution

n=0.0, N=0.0
n=0.5, N=0.5
n=0.5, N=0.8

fw = 0.5,  Bi = 1.0

 

 

g

(b)

0 1 2 3 4 5

0.0

0.2

0.4

0.6 fw = 0.5,  Bi = 1.0

n=0.0, N=0.0
n=0.5, N=0.5
n=0.5, N=0.8

  first solution
   second solution

 

 

(c)

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

  first solution
   second solution

n=0.0, N=0.0
n=0.5, N=0.5
n=0.5, N=0.8

fw = 0.5, Bi = 1.0

 

 

(d)

Figure 2. Effect of N on (a)Velocity, (b)Microrotation, (c)Temperature, and (d)Concentration profiles
at λ = −1.5

the stress on the boundary corresponds to a weak concentration of microelements.
Likewise, an increment in the value of N implies a higher vortex viscosity of fluid
which promotes the microrotation of micropolar fluid. It is seen from Figs. 2(c)
and 2(d) that the temperature and concentration of the fluid increases with the
increase of coupling number N in both the cases of first and second solutions. The
temperature and concentration of micropolar fluid are more than that of the viscous
fluid case.

The Biot number Bi represents the ratio of the internal thermal resistance of a
solid to the boundary layer thermal resistance. When Bi = 0 the plate is totally
insulated, the internal thermal resistance of the plate is very high and no convective
heat transfer to the cold fluid on the upper part of the plate takes place. Fig. 3(a)
depicts the fluid velocity profiles with dual solutions for different values of Biot
number. Generally, at the plate surface the fluid velocity is zero and rises gradually
away from the plate to the free stream value satisfying the boundary conditions.
It is interesting to observe that an increase in the strength of convective surface
heat transfer Bi produces a substantial decrement in the fluid velocity within the
momentum boundary layer. In both the cases of first and second solutions, Fig.
3(b) brings out the effect of Bi on the microrotation profile for fixed values of other
parameters. As Bi increases, the microrotation showing reverse rotation near the
two limits. Hence, the condition of vanishing of the antisymmetric part of the stress
on the boundary results in a drastic change of the microrotation profiles. Given that
convective heating increases with Biot number, Bi → ∞ simulates the isothermal
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surface, which is clearly seen from the Fig. 3(c), where θ(0) = 1 as Bi → ∞. In
fact, a high Biot number indicates higher internal thermal resistance of the plate
than the boundary layer thermal resistance. The fluid temperature is maximum at
the plate surface and decreases exponentially to zero value far out from the plate
satisfying the boundary conditions. As a consequence, an increment in the Biot
number leads to increase of fluid temperature efficiency. Fig. 3(d) illustrates the
variation of dimensionless concentration for different values of Bi. An enhancement
in concentration boundary layer thickness is seen with increasing values of Bi for
both first and second solutions.
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Figure 3. Effect of Bi on (a)Velocity, (b)Microrotation, (c)Temperature, and (d)Concentration profiles
at λ = −1.5

The existence of dual solution for the effect of fw on the velocity profile is shown
in Fig. 4(a). Here, fw > 0 represents the suction and fw < 0 denotes the injection.
The higher velocity is noticed in the case of suction when compared to the case of
injection for both first and second solutions. From Fig. 4(b), it is seen that the
microrotation profile within the boundary layer is showing reverse rotation near
the two boundaries with the suction or injection parameter. For both the first and
second solutions, the dimensionless temperature is depicted in Fig. 4(c) for different
values of fw. It is readable that the temperature of the micropolar fluid is less in
the case of both injection and suction in comparison with the impermeable surface
case (fw = 0) for the first solution case, but reverse trend for second solution. Fig.
4(d) demonstrates the dimensionless concentration for different values of fw. It is
determined that the absorption of the fluid is more with impermeable surface case
(fw = 0), whereas less with suction and injection for the first and in case of second
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Figure 4. Effect of fw on (a)Velocity, (b)Microrotation, (c)Temperature, and (d)Concentration profiles
at λ = −1.5

solution the injecton is more than suction in comparison with the impermeable
surface case (fw = 0).

In Figs. 5(a)-5(d), the effect of material parameter n on the dimensionless
velocity, microrotation, temperature and concentration is presented by considering
the dual solutions. Generally, when n = 0, equation (2.6a) yields ω(x, 0) = 0. This
represents the case of concentrated particle flows in which the microelements close
to the wall are not able to rotate. The case corresponding to n = 1/2 results in the
vanishing of antisymmetric part of stress tensor and represents weak concentrations.
The particle spin is equal to fluid vorticity at the boundary for the fine particle
suspensions. From the Fig. 5(a), it reveals that as the value of n increases, the
dimensionless velocity enhances in the cases of first and second solutions. From Fig.
5(b), for both first and second solution cases, we observe that the microrotation is
increasing away from the plate within the boundary layer. It is clear from Figs. 5(c)-
5(d) that with the increase of n, the thermal and solutal boundary layer thickness
decrease in both the first and second solutions. Thus for n = 0, particles are not free
to rotate near the surface, whereas, as n increases from 0 to 1/2, the microrotation
term gets augmented and induces flow enhancement.

The effect of coupling number on skin friction, wall couple stress coefficients
and heat and mass transfer rates against mixed convection parameter are presented
in Figs. 6(a)-6(b). Fig. 6(a) depicts that the skin friction coefficient increases,
but, except at N = 0 the wall couple stress decreases with an increasing coupling
number. This is because of loss of micropolarity. From Fig. 6(b), it illustrates that
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Figure 5. Effect of n on (a)Velocity, (b)Microrotation, (c)Temperature, and (d)Concentration profiles
at λ = −1.5
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Figure 6. Effect of N on (a)skin friction and wall couple stress coefficients (b)Heat and mass transfer
rates

with an increase of coupling number the heat and mass transfer rates decrease in
the micropolar fluid comparing to the Newtonian fluid, they may be favorable in
flow, temperature and concentration control of polymer processing. We also notice
that the skin friction and wall couple stress coefficients, and heat and mass transfer
rates increase with an increasing of mixed convection parameter λ.

Figs. 7(a)-7(b) show the influence of the Biot number on skin friction and wall
couple stress coefficients, and heat and mass transfer rates against mixed convection
parameter. These results display that with an increase of the Biot number both the
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Figure 7. Effect of Bi on (a)skin friction and wall couple stress coefficients (b)Heat and mass transfer
rates
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Figure 8. Effect of fw on (a)skin friction and wall couple stress coefficients (b)Heat and mass transfer
rates

skin friction and wall couple stress coefficients are showing an opposite trend near
the boundaries. Similarly the mass transfer rate also depicts the same behavior
with that of skin friction and wall couple stress coefficients as shown in Fig. 7(b).
Further, it is observed that the heat transfer rate enhances with the rising of Biot
number.

The effect of suction/injection parameter on skin friction and wall couple stress
coefficients, and heat and mass transfer rates against mixed convection parameter
is analyzed in Figs. 8(a)-8(b). It is noticed that the skin friction and wall couple
stress coefficients, and heat and mass transfer rates are higher in case of suction and
lower in the injection case when comparison with the impermeable surface case.

Figs. 9(a)-9(b) depict the variation of material parameter n on skin friction
and wall couple stress coefficients, and heat and mass transfer rates against mixed
convection parameter. From Fig. 9(a), it is observed that the skin friction coefficient
decreases whereas wall couple stress coefficient increases with increasing of material
parameter. The heat and mass transfer rates are more in the case of n = 0.5
compared with that of n = 0 as shown in Fig. 9(b).
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Figure 9. Effect of n on (a)skin friction and wall couple stress coefficients (b)Heat and mass transfer
rates

7. Conclusions

In this paper, the similarity solution of the mixed convection flow along a perme-
able vertical plate of a micropolar fluid under the convective boundary condition
is obtained. Utilizing a set of similarity variables, which are found using Lie group
transformations, the governing equations are translated into a band of ordinary
differential equations depending on several non-dimensional parameters. These e-
quations are solved numerically using Spectral Quasi-Linearisation Method. This
study reveals that the dual solutions exists for certain values of mixed convection
parameter. The outcomes are analyzed with dual solutions in detail. The main
findings are summarized as follows:

• The numerical results show that the velocity distribution, microrotation, the
wall couple stress coefficient in the absence of polar fluid, heat and mass
transfer rates are lower, but the skin friction coefficient, temperature and
concentration distributions are higher with the increasing value of N .

• An increase in Biot number Bi, decreases in velocity distribution, whereas an
increase in temperature and concentration distributions in the boundary layer
for both first and second solutions. Further, with an increase in Biot number
the skin friction, wall couple stress, mass transfer rate and microrotation
are showing a reverse trend near the boundaries, but the heat transfer rate
increases.

• It is noted that more velocity, skin friction and wall couple stress coefficients,
heat and mass transfer rates, but less temperature and concentration distri-
bution, in the case of suction compared to the case of injection. We remark
that microrotation shows the opposite trend far away from the wall.

• It is found that more temperature, concentration distributions and skin fric-
tion, but less velocity distribution, wall couple stress, heat and mass transfer
rates in the case of n = 0 compared to the case of n = 1/2.
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