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NORM ESTIMATIONS FOR PERTURBATIONS
OF THE WEIGHTED MOORE-PENROSE

INVERSE∗

Xiaobo Zhang1, Qingxiang Xu1,† and Yimin Wei2

Abstract For a complex matrix A ∈ Cm×n, the relationship between the
weighted Moore-Penrose inverse A†

M1N1
and A†

M2N2
is studied, and an impor-

tant formula is derived, whereM1 ∈ Cm×m, N1 ∈ Cn×n andM2 ∈ Cm×m, N2 ∈
Cn×n are different pair of positive definite hermitian matrices. Based on this
formula, this paper initiates the study of the perturbation estimations for A†

MN

in the case that A is fixed, whereas both M and N are variable. The obtained
norm upper bounds are then applied to the perturbation estimations for the
solutions to the weighted linear least squares problems.
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1. Introduction

Throughout this paper Cm×n is the set of m×n complex matrices and ∥A∥ denotes
the 2-norm or spectral-norm of A ∈ Cm×n. When m = n a positive definite matrix
of Cn×n is always assumed to be hermitian, and the identity matrix of Cn×n is
denoted by In or simply by I. For any A ∈ Cm×n, the range, the null space and
the conjugate transpose of A are denoted by R(A),N (A) and A∗ respectively. Let
M ∈ Cm×m and N ∈ Cn×n be two positive definite matrices, the weighted Moore-
Penrose inverse A†

MN is the unique element X of Cn×m which satisfies

AXA = A,XAX = X, (MAX)∗ = MAX and (NXA)∗ = NXA. (1.1)

The weighted Moore-Penrose inverse has many applications in the weighted lin-
ear least squares problem [2–5, 7, 15–17], statistics [6], analytical dynamics [12],
two-point boundary value problems [8] and so on. In this paper we study the

perturbation estimation for the weighted Moore-Penrose inverse A†
MN . Some liter-

atures [13,18] are focused on the case that the weights M and N are fixed, whereas
A is variable. Some others [1, 3–5, 9–11, 14] studied another case that A is fixed,
N is the identity matrix, while M is a variable positive definite diagonal matrix.
For a motivation to the study of the later case, the reader is referred to [3, Section
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8], [4, Section 1.1] and [5, Section 1.1] for the interior methods in linear programming
and convex quadratic programming. The key point of this paper is the characteriza-
tion of the relationship between the weighted Moore-Penrose inverses A†

MN , where
A is fixed, while both M and N are variable. Based on this formula, this paper
initiates the study of the perturbation estimations for A†

MN in the case that A is
fixed, whereas both M and N are variable. The obtained norm upper bounds are
then applied to the perturbation estimations for the solutions to the weighted linear
least squares problems.

The paper is organized as follows. In Section 2, the relationship between the
weighted Moore-Penrose inverses A†

M1N1
and A†

M2N2
is studied, and an important

formula (2.7) is derived. This formula is applied in Section 3 to the study of the

perturbation estimations for A†
MN , where A is fixed, while M and N are variable.

The obtained norm upper bounds are then applied in Section 4 to the study of
the perturbation estimations for the solutions to the weighted linear least squares
problems. Finally, two numerical examples are provided in Section 5 to illustrate
the upper bounds obtained in Sections 3 and 4.

2. Relationship between the weighted Moore-Penrose
inverse

Throughout this sectionA ∈ Cm×n is arbitrary, andM,M1,M2 ∈ Cm×m, N,N1, N2 ∈
Cn×n are all positive definite.

Lemma 2.1. [13, Theorem 1.4.4] It holds that

R(A†
MN ) = N−1R(A∗) and N (A†

MN ) = M−1N (A∗).

Lemma 2.2. It holds that AA†
MN1

= AA†
MN2

and A†
M1N

A = A†
M2N

A.

Proof. Clearly, R(AA†
MN1

) = R(A) = R(AA†
MN2

), and by Lemma 2.1 we have

N (AA†
MN1

) = N (A†
MN1

) = M−1N (A∗) = N (AA†
MN2

).

This completes the proof that AA†
MN1

and AA†
MN2

have the same range and the
same null space. Since both of them are idempotent, they must be equal. The proof
of A†

M1N
A = A†

M2N
A is similar.

Lemma 2.3. It holds that

(I −A†
MN1

A)N−1
1 N2A

†
MN2

A = 0, (2.1)

AA†
M2N

M−1
2 M1(I −AA†

M1N
) = 0. (2.2)

Proof. By (1.1), we have

N2A
†
MN2

A = (A†
MN2

A)∗N2 and A†
MN1

AN−1
1 = N−1

1 (A†
MN1

A)∗.

It follows that

A†
MN1

AN−1
1 N2A

†
MN2

A = N−1
1 (A†

MN1
A)∗(A†

MN2
A)∗N2

=N−1
1

(
A†

MN2
(AA†

MN1
A)

)∗
N2 = N−1

1 (A†
MN2

A)∗N2 = N−1
1 N2A

†
MN2

A.

This completes the proof of (2.1). The proof of (2.2) is similar.
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Lemma 2.4. It holds that A†
MN2

= R−1
M ;N1,N2

·A†
MN1

, where

RM ;N1,N2 = A†
MN1

A+ (I −A†
MN1

A)N−1
1 N2. (2.3)

Proof. First, we prove that RM ;N1,N2 is nonsingular. Let x ∈ Cn be given such
that RM ;N1,N2x = 0. Then it is obvious from (2.3) that

A†
MN1

Ax = 0 and (I −A†
MN1

A)N−1
1 N2x = 0,

which in turn impliesAx = 0, andN−1
1 N2x ∈ R(A†

MN1
A) = R(A†

MN1
) = N−1

1 R(A∗).

Thus, x = N−1
2 A∗u for some u ∈ Cm. It follows that⟨

N−1
2 A∗u,A∗u

⟩
=

⟨
x,A∗u

⟩
=

⟨
Ax, u

⟩
= 0 =⇒ A∗u = 0 =⇒ x = N−1

2 (A∗u) = 0.

Next, we prove that A†
MN1

= RM ;N1,N2 · A
†
MN2

. In fact, by (2.3) and (2.1), we
have

RM ;N1,N2 ·A
†
MN2

A = A†
MN1

(AA†
MN2

A) = A†
MN1

A,

which is combined with Lemma 2.2 to conclude that

RM ;N1,N2 ·A
†
MN2

= RM ;N1,N2 ·A
†
MN2

AA†
MN2

=RM ;N1,N2 ·A
†
MN2

AA†
MN1

= A†
MN1

AA†
MN1

= A†
MN1

.

Lemma 2.5. It holds that A†
M2N

= A†
M1N

· L−1
M1,M2;N

, where

LM1,M2;N = AA†
M1N

+M−1
2 M1(I −AA†

M1N
). (2.4)

Proof. First, we prove that LM1,M2;N is nonsingular. For any x ∈ Cm, if

LM1,M2;Nx = AA†
M1N

x+M−1
2 M1(I −AA†

M1N
)x = 0, (2.5)

then by (2.5) and (2.2) we get

AA†
M1N

x = (AA†
M2N

)AA†
M1N

x = AA†
M2N

LM1,M2;Nx = 0.

Substituting the above equation into (2.5) yields

M−1
2 M1(I −AA†

M1N1
)x = 0

=⇒(I −AA†
M1N1

)x = 0

=⇒x = AA†
M1N1

x+ (I −AA†
M1N1

)x = 0.

Next, we prove that A†
M2N

· LM1,M2;N = A†
M1N

. In fact, from (2.2) we have

A†
M2N

M−1
2 M1(I −AA†

M1N
) = 0. (2.6)

Therefore, by (2.4), (2.6) and Lemma 2.2, we obtain

A†
M2N

· LM1,M2;N = (A†
M2N

A)A†
M1N

= (A†
M1N

A)A†
M1N

= A†
M1N

.

Now we state the main result of this section as follows:
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Theorem 2.1. It holds that

A†
M2N2

= R−1
M1;N1,N2

·A†
M1N1

· L−1
M1,M2;N1

, (2.7)

where RM1;N1,N2 and LM1,M2;N1 are defined by (2.3) and (2.4), respectively.

Proof. First note from (2.3) and Lemma 2.2 that RM2;N1,N2 = RM1;N1,N2 . Thus,
we may apply Lemmas 2.4 and 2.5 to conclude that

A†
M2N2

= R−1
M1;N1,N2

·A†
M2N1

= R−1
M1;N1,N2

·A†
M1N1

· L−1
M1,M2;N1

.

3. Norm estimations for the weighted Moore-Penrose
inverse

Throughout this section, A ∈ Cm×n is fixed, M ∈ Cm×m and N ∈ Cn×n are two
positive definite matrices. Let M̂ and N̂ be perturbations of M and N defined by

M̂ = M + δM and N̂ = N + δN , (3.1)

such that

δM ∈ Cm×m and δN ∈ Cn×n are hermitian, (3.2)

∥δM∥ <
1

∥M−1∥
and ∥δN∥ <

1

∥N−1∥
. (3.3)

It follows from (3.2) and (3.3) that both M̂ = M + δM and N̂ = N + δN are also
positive definite. Based on the formula (2.7), we study norm estimations associated

with A†
MN and A†

M̂N̂
.

Lemma 3.1. The matrices M(I−AA†
MN ) ∈ Cm×m and (I−A†

MNA)N−1 ∈ Cn×n

are both positive semi-definite.

Proof. For simplicity, we put

T = M(I −AA†
MN ) and S = (I −A†

MNA)N−1. (3.4)

By (1.1), we have

(AA†
MN )∗T = (MAA†

MN )∗(I −AA†
MN ) = MAA†

MN (I −AA†
MN ) = 0,

so T = (I − AA†
MN )∗T = (I − AA†

MN )∗M(I − AA†
MN ), which is positive semi-

definite.
Similarly, S = (I−A†

MNA)N−1(I−A†
MNA)∗ is also positive semi-definite.

Remark 3.1. By Lemma 3.1 we know that∥∥M(I −AA†
MN )

∥∥ = r1 and
∥∥(I −A†

MNA)N−1
∥∥ = r2, (3.5)

where r1 and r2 are the largest eigenvalues of M(I−AA†
MN ) and (I−A†

MNA)N−1

respectively.
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In the rest of this section, we always assume that (3.2) and (3.3) are satisfied,
and furthermore, the following inequalities hold:

r2∥δN∥ < 1, ∥M−1δM∥ ·
(
1 + r1∥M−1∥

)
< 1. (3.6)

In such case, from (3.3) we have

∥∥M̂−1 −M−1
∥∥ =

∥∥((I +M−1δM )−1 − I
)
M−1

∥∥ ≤ ∥M−1∥ · ∥M−1δM∥
1− ∥M−1δM∥

,

so ∥∥(M̂−1 −M−1)M(I −AA†
MN )

∥∥ ≤ r1 ∥M−1∥ · ∥M−1δM∥
1− ∥M−1δM∥

. (3.7)

Now, let RM ;N,N̂ and L
M,M̂ ;N

be defined by (2.3) and (2.4), respectively. Then

RM ;N,N̂ = A†
MNA+ (I −A†

MNA)N−1N̂

= I + (I −A†
MNA)N−1δN , (3.8)

L
M,M̂ ;N

= AA†
MN + M̂−1M(I −AA†

MN )

= I + (M̂−1 −M−1)M(I −AA†
MN ). (3.9)

We may combine (3.8), the second equation of (3.5) with the first inequality of (3.6)
to conclude that∥∥∥R−1

M ;N,N̂

∥∥∥ ≤ 1

1−
∥∥[(I −A†

MNA)N−1
]
δN

∥∥ ≤ 1

1− r2∥δN∥
, (3.10)

∥∥∥I −R−1

M ;N,N̂

∥∥∥ ≤
∥∥[(I −A†

MNA)N−1
]
δN

∥∥
1−

∥∥[(I −A†
MNA)N−1

]
δN

∥∥ ≤ r2∥δN∥
1− r2∥δN∥

. (3.11)

Similarly, we may apply (3.9), (3.7) and the second inequality of (3.6) to get∥∥∥L−1

M,M̂ ;N

∥∥∥ ≤ 1

1− r1 ∥M−1∥·∥M−1δM∥
1−∥M−1δM∥

=
1− ∥M−1δM∥

1− ∥M−1δM∥ ·
(
1 + r1∥M−1∥

) , (3.12)

∥∥∥I − L−1

M,M̂ ;N

∥∥∥ ≤ r1 ∥M−1∥ · ∥M−1δM∥
1− ∥M−1δM∥ ·

(
1 + r1∥M−1∥

) . (3.13)

Theorem 3.1. Under the conditions of (3.2), (3.3) and (3.6), we have

∥∥A†
M̂N̂

∥∥ ≤
(1− ∥M−1δM∥) · ∥A†

MN∥

(1− r2∥δN∥)
[
1− ∥M−1δM∥

(
1 + r1∥M−1∥)

] , (3.14)

∥∥A†
M̂N̂

−A†
MN

∥∥ ≤ Λ ·
∥∥A†

MN

∥∥, (3.15)∥∥A†
M̂N̂

A−A†
MNA

∥∥ ≤ r2∥δN∥
1− r2∥δN∥

·
∥∥A†

MNA
∥∥, (3.16)

∥∥AA†
M̂N̂

−AA†
MN

∥∥ ≤ r1∥M−1δM∥ · ∥M−1∥
1− ∥M−1δM∥

(
1 + r1∥M−1∥

)∥∥AA†
MN

∥∥, (3.17)
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where

Λ =
r2∥δN∥ · (1− ∥M−1δM∥) + r1(1− r2∥δN∥)∥M−1δM∥ · ∥M−1∥

(1− r2∥δN∥)
[
1− ∥M−1δM∥ ·

(
1 + r1∥M−1∥)

]
=
r1∥M−1δM∥ · ∥M−1∥+ r2∥δN∥

[
1− ∥M−1δM∥ ·

(
1 + r1∥M−1∥)

]
(1− r2∥δN∥)

[
1− ∥M−1δM∥ ·

(
1 + r1∥M−1∥)

] . (3.18)

Proof. By Theorem 2.1 we have

A†
M̂N̂

= R−1

M ;N,N̂
·A†

MN · L−1

M,M̂ ;N
, (3.19)

so

A†
M̂N̂

−A†
MN =

(
R−1

M ;N,N̂
− I

)
A†

MNL−1

M,M̂ ;N
+A†

MN

(
L−1

M,M̂ ;N
− I

)
.(3.20)

It is noticed by (3.8) and (3.9) that ARM ;N,N̂ = A = L
M,M̂ ;N

A, and thus

AR−1

M ;N,N̂
= A = L−1

M,M̂ ;N
A. (3.21)

It follows from (3.19) and (3.21) that

A†
M̂N̂

A−A†
MNA =

(
R−1

M ;N,N̂
− I

)
A†

MNA, (3.22)

AA†
M̂N̂

−AA†
MN = AA†

MN

(
L−1

M,M̂ ;N
− I

)
. (3.23)

Norm upper bounds (3.14)–(3.17) then follows from (3.19), (3.20), (3.22), (3.23)
and (3.10)–(3.13).

Remark 3.2. The upper bound for ∥A†
M̂N̂

− A†
MN∥ given by (3.15) and (3.18)

is somehow complicated, so it is meaningful to replace this upper bound with a
simpler one. To this end, we need an elementary result as follows:

Lemma 3.2. Suppose that a > 0 and r1 ≥ 0. Let I =
[
0, 1

1+ar1

)
, and

f(x, y) =
ar1x+ y − (1 + ar1)xy

(1− y)
(
1− (1 + ar1)x

) , for x ∈ I, y ∈ [0, 1). (3.24)

Then for any x1, x2 ∈ I and y1, y2 ∈ [0, 1), we have

f(x2, y2) ≥ f(x1, y1) whenever x1 ≤ x2 and y1 ≤ y2.

Proof. Let x ∈ I and y ∈ [0, 1). Direct computation yields

∂f

∂x
(x, y) =

ar1

(1− y)
(
1− (1 + ar1)x

)2 ≥ 0,

∂f

∂y
(x, y) =

1− x

(1− y)2
(
1− (1 + ar1)x

) > 0,

so the conclusion holds.
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Corollary 3.1. Suppose that (3.2) and (3.3) are satisfied, and furthermore

ε (1 + r1∥M−1∥) < 1, where ε = max{∥M−1δM∥, r2∥δN∥}. (3.25)

Then ∥∥A†
M̂N̂

−A†
MN

∥∥ ≤ (1 + r1∥M−1∥) ε
1− (1 + r1∥M−1∥) ε

∥∥A†
MN

∥∥. (3.26)

Proof. By assumption ε (1+ r1∥M−1∥) < 1, so (3.6) is satisfied. Let a = ∥M−1∥,
x0 = ∥M−1δM∥ and y0 = r2∥δN∥. Then we may combine (3.15), (3.18) and (3.24)
to get ∥∥A†

M̂N̂
−A†

MN

∥∥ ≤ f(x0, y0) · ∥A†
MN∥. (3.27)

By Lemma 3.2 we have

f(x0, y0) ≤ f(ε, ε) =
(1 + ar1) ε

1− (1 + ar1) ε
. (3.28)

The upper bound (3.26) then follows from (3.27) and (3.28).

4. The weighted linear least squares problem

We apply the obtained norm upper bounds to study the weighted linear least squares
problem [15]. Let A ∈ Cm×n be arbitrary, M ∈ Cm×m and N ∈ Cn×n be two

positive definite matrices. For any b ∈ Cm, let x0 = A†
MNb. It is known [15] that

for any x ∈ Cn \ {x0},

∥b−Ax0∥M ≤ ∥b−Ax∥M ,

and

∥b−Ax0∥M = ∥b−Ax∥M =⇒ ∥x0∥N < ∥x∥N ,

which means that x0 = A†
MNb is the unique minimum N -norm M -least squares

solution to the weighted linear squares problem

∥b−Ax∥M = min{∥b−Az∥M
∣∣ z ∈ Cn}.

When M,N and b admit some errors, it is meaningful to provide norm estimations
for x̂0−x0, where b̂ = b+ δb is a perturbation of b, and x̂0 = A†

M̂N̂
b̂ is the minimum

N̂ -norm M̂ -least squares solution to the associated perturbation problem. Since

∥x̂0 − x0∥ ≤ ∥
(
A†

M̂N̂
−A†

MN

)
b∥+ ∥A†

M̂N̂
δb∥ ≤ ∥A†

M̂N̂
−A†

MN∥ ∥b∥+ ∥A†
M̂N̂

∥ ∥δb∥,

an upper bound for ∥x̂0−x0∥ can be derived directly from (3.14), (3.15) and (3.18).
Another upper bound for ∥x̂0 − x0∥ can also be given as follows:

Theorem 4.1. Under the conditions of (3.2), (3.3) and (3.6), we have

∥x̂0 − x0∥ ≤

(
1− ∥M−1δM∥

) (
X∥δb∥+ Y ∥AA†

MN∥
)
∥A†

MN∥(
1− r2∥δN∥

)
X2

+
r2∥δN∥ ∥x0∥ ∥A†

MNA∥
1− r2∥δN∥

,

(4.1)
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where x0 = A†
MNb, x̂0 = A†

M̂N̂
(b+ δb), r = b−Ax0, r1, r2 are defined by (3.5), and

X = 1− ∥M−1δM∥
(
1 + r1∥M−1∥

)
, Y = r1 ∥r∥ ∥M−1δM∥ ∥M−1∥.

Proof. Direct computation yields

x̂0 − x0 = A†
M̂N̂

δb +A†
M̂N̂

(AA†
M̂N̂

−AA†
MN ) r − (A†

MNA−A†
M̂N̂

A )x0,

so

∥x̂0 − x0∥ ≤∥A†
M̂N̂

∥ ·
[
∥δb∥+ ∥r∥ ∥AA†

M̂N̂
−AA†

MN∥
]

+ ∥A†
MNA−A†

M̂N̂
A∥ ∥x0∥.

(4.2)

The upper bound (4.1) then follows from (4.2), (3.14), (3.17) and (3.16).

5. Numerical examples

In this section, we provide two numerical examples to illustrate the upper bounds
obtained in Sections 3 and 4.

Example 5.1. Let A =

(
1 2
0 0

)
, M̂ = M = diag (2, 1), N = diag (1, 4) and

N̂ = N + δN =

(
1− ε 0
0 4 + ε

)
for ε small enough, where δN = diag (−ε, ε). It

is easy to verify that

A†
M̂N̂

=

(
(4 + ε)/(8− 3ε) 0
2(1− ε)/(8− 3ε) 0

)
, A†

MN =

(
0.5 0
0.25 0

)
,

and since in this case δM = 0, the upper bounds given by (3.14)–(3.18), and (4.1)
are reduced respectively to

∥∥A†
M̂N̂

∥∥ ≤
∥A†

MN∥
1− r2∥δN∥

, (5.1)

∥∥A†
M̂N̂

−A†
MN

∥∥ ≤ r2∥δN∥
1− r2∥δN∥

∥A†
MN∥, (5.2)

∥∥A†
M̂N̂

A−A†
MNA

∥∥ ≤ r2∥δN∥
1− r2∥δN∥

∥∥A†
MNA

∥∥, (5.3)∥∥AA†
M̂N̂

−AA†
MN

∥∥ = 0, (5.4)

∥x̂0 − x0∥ ≤
∥δb∥ ∥A†

MN∥+ r2∥δN∥ ∥x0∥ ∥A†
MNA∥

1− r2∥δN∥
. (5.5)

Table 1. Numerical values of the upper bound (5.1)

ε ∥A†
M̂N̂

∥ upper bound (5.1) relative error

10−1 0.58152242018800 0.59628479399994 2.5386%
10−2 0.56112821284186 0.56253282452825 0.2503%
10−3 0.55922677429243 0.55936659849901 0.0250%
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Table 2. Numerical values of the upper bound (5.2)

ε
∥∥A†

M̂N̂
−A†

MN

∥∥ upper bound (5.2) relative error

10−1 0.03629980482954 0.03726779962500 2.6667%
10−2 0.00350700749294 0.00351583015330 0.2516%
10−3 3.4952× 10−4 3.4960× 10−4 0.0250%

Table 3. Numerical values of the upper bound (5.3)

ε
∥∥A†

M̂N̂
A−A†

MNA
∥∥ upper bound (5.3) relative error

10−1 0.08116883116883 0.08333333333333 2.6667%
10−2 0.00784190715182 0.00786163522013 0.2516%
10−3 7.8154× 10−4 7.8174× 10−4 0.0250%

Table 4. Numerical values of the upper bound (5.5) b = (1/25, 4)T , δb = (2ε, 0)T

ε ∥x̂0 − x0∥ upper bound (5.5) relative error
10−1 0.11723791748695 0.12112034878124 3.3116%
10−2 0.01130784521208 0.01142644799823 1.0489%
10−3 0.00112690300346 0.00113621340320 0.8262%

Example 5.2. Let A =

(
1 0
2 0

)
, a = b = 8, M = diag (a, b), N̂ = N =

diag (1, 4) and δM =

(
−ε 0
0 ε

)
for ε small enough. It is easy to verify that

A†
M̂N̂

=

(
a−ε

a+4b+3ε
2(b+ε)

a+4b+3ε

0 0

)
, A†

MN =

(
a

a+4b
2b

a+4b

0 0

)
,

and since in this case δN = 0, the upper bounds given by (3.14)–(3.18), and (4.1)
are reduced respectively to

∥∥A†
M̂N̂

∥∥ ≤
(1− ∥M−1δM∥) · ∥A†

MN∥
1− ∥M−1δM∥

(
1 + r1∥M−1∥)

, (5.6)

∥∥A†
M̂N̂

−A†
MN

∥∥ ≤ r1∥M−1δM∥ · ∥M−1∥
1− ∥M−1δM∥ ·

(
1 + r1∥M−1∥)

∥A†
MN∥, (5.7)∥∥A†

M̂N̂
A−A†

MNA
∥∥ = 0, (5.8)∥∥AA†

M̂N̂
−AA†

MN

∥∥ ≤ r1∥M−1δM∥ · ∥M−1∥
1− ∥M−1δM∥

(
1 + r1∥M−1∥

)∥∥AA†
MN

∥∥, (5.9)

∥x̂0 − x0∥ ≤

(
1− ∥M−1δM∥

) (
X∥δb∥+ Y ∥AA†

MN∥
)
∥A†

MN∥

X2
. (5.10)
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Table 5. Numerical values of the upper bound (5.6)

ε ∥A†
M̂N̂

∥ upper bound (5.6) relative error

10−1 0.44723562396299 0.45294710313457 1.2771%
10−2 0.44721381877167 0.44777401353943 0.1253%
10−3 0.44721359773569 0.44726951117832 0.0125%

Table 6. Numerical values of the upper bound (5.7)

ε
∥∥A†

M̂N̂
−A†

MN

∥∥ upper bound (5.7) relative error

10−1 0.00443884462035 0.00573350763461 29.1667%
10−2 4.4688× 10−4 5.6042× 10−4 25.4073%
10−3 4.4718× 10−4 5.5916× 10−4 25.0406%

Table 7. Numerical values of the upper bound (5.9)

ε
∥∥AA†

M̂N̂
−AA†

MN

∥∥ upper bound (5.9) relative error

10−1 0.00992555831266 0.01282051282051 29.1667%
10−2 9.9925× 10−4 0.00125313283208 25.4073%
10−3 9.9992× 10−4 1.2503× 10−4 25.0406%

Table 8. Numerical values of the upper bound (5.10)b = (1/25, 25)T , δb = (0.1ε, 0)T

ε ∥x̂0 − x0∥ upper bound (5.10) relative error
10−1 0.05142928039702 0.06924610482490 34.6433%
10−2 0.00517986510117 0.00670121463263 29.3704%
10−3 5.1836× 10−4 6.6796× 10−4 28.8607%
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