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BIFURCATION AND CHAOS IN A DISCRETE
TIME PREDATOR-PREY SYSTEM OF LESLIE
TYPE WITH GENERALIZED HOLLING TYPE

III FUNCTIONAL RESPONSE

Ali Atabaigi

Abstract This paper is devoted to study a discrete time predator-prey sys-
tem of Leslie type with generalized Holling type III functional response ob-
tained using the forward Euler scheme. Taking the integration step size as the
bifurcation parameter and using the center manifold theory and bifurcation
theory, it is shown that by varying the parameter the system undergoes flip
bifurcation and Neimark-Sacker bifurcation in the interior of R2

+. Numerical
simulations are implemented not only to illustrate our results with the theo-
retical analysis, but also to exhibit the complex dynamical behaviors, such as
cascade of period-doubling bifurcation in period-2, 4, 8, quasi-periodic orbits
and the chaotic sets. These results shows much richer dynamics of the dis-
crete model compared with the continuous model. The maximum Lyapunov
exponent is numerically computed to confirm the complexity of the dynamical
behaviors. Moreover, we have stabilized the chaotic orbits at an unstable fixed
point using the feedback control method.

Keywords Predator-prey system, discrete time dynamical system, period
doubling bifurcation, Neimark-Sacker bifurcation, chaotic dynamic, chaos Con-
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1. Introduction

In this paper, we consider the following Lotka-Volterra predator-prey system

ẋ = x

[
r(1− x

K
)− αxy

ax2 + bx+ 1

]
,

ẏ = sy

(
1− hy

x

)
,

(1.1)

where x and y stand for population density of prey and predator, respectively,
r, α, a, s, h are positive constants and b is a constant. The prey grows logistically
with the carrying capacity K and intrinsic growth rate r. The predator consumes

prey according to the generalized Holling type III functional response αx2

ax2+bx+1 and
grows logistically with intrinsic growth rate s and carrying capacity proportional to
the population density of the prey.

In [8], the detailed bifurcation analysis of system (1.1) has been discussed. It is
shown that the model has very rich and complicated dynamics such as the existence
of a stable limit cycle enclosing two non-hyperbolic positive equilibria, a stable limit
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cycle enclosing an unstable homoclinic loop, two limit cycles enclosing a hyperbolic
positive equilibrium, or one stable limit cycle enclosing three hyperbolic positive
equilibria. In particular, it is shown that the model undergoes degenerate focus
type Bogdanov-Takens bifurcation of codimension 3.

Applying the forward Euler scheme to system (1.1), we obtain the following
discrete time predator-prey dynamical systemx

y

 7→
x+ δx

[
r(1− x

K )− αxy
ax2+bx+1

]
y + δsy

(
1− hy

x

)
 , (1.2)

where δ is the integration step size. We mainly focus on flip bifurcation, Neimark-
Sacker bifurcation and possible chaos in the closed first quadrant R2

+ using center
manifold theorem and bifurcation theory [5, 9, 13].

The paper is organized as follows. In section 2, we study the existence and
stability of the fixed points of the system (1.2). In section 3, we show that there exist
some parameter values for which the system (1.2) exhibits flip and Neimark-Sacker
bifurcation. In section 4, we use numerical simulations to support the theoretical
analysis given in section 3. The numerical simulation also shows that the system
(1.2) exhibits the complex dynamics such as cascades of period-doubling, quasi-
periodic orbits and chaotic sets. The Lyapunov exponents are calculated to confirm
the existence of chaos. In section 5, we have stabilized the chaotic orbits at an
unstable fixed point using the feedback control method.

2. Fixed points and their local stability

In this section, we will study the existence and property of fixed points of system
(1.2) in the region R2

+. It is clear that system (1.2) always has a boundary fixed
point (K, 0) for all parameters. Next, we consider the existence of positive fixed
point of system (1.2).

Suppose that (x0, y0) is a positive fixed point of system (1.2). Then, x0 and y0

are positive solutions of the following equations r(1− x0

K
) =

αx0y0

ax2
0 + bx0 + 1

,

x0 = hy0.
(2.1)

From (2.1), we can see that x0 is the root in the interval (0,K) of the following
cubic equation

p0w
3 + 3p1w

2 + 3p2w + p3 = 0, (p0 6= 0), (2.2)

with coefficients

p0 =
a

K
, 3p1 =

αr

h
+

b

K
− a, 3p2 =

1

K
− b, p3 = −1.

Using the substitution z = p0w+p1, the equation (2.2) is converted to z3+3Hz+G =
0, where G = p2

0p3 − 3p0p1p2 + 2p3
1, H = p0p2 − p2

1. Using Cardano’s method, we
have the following result.
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Lemma 2.1. Let G2 + 4H3 > 0, then the system (1.2) has a unique positive fixed
point (x0, y0), where

x0 =
1

p0
(q − H

q
− p1), y0 =

x0

h
,

and q denotes one of the three values of
[
−G+

√
G2+4H3

2

] 1
3

.

Next, we study the local stability of the above mentioned fixed points. As
we know, the local stability of the fixed points is determined by the modules of
eigenvalues of the characteristic equation of the Jacobian matrix of system (1.2) at
the fixed points.

The Jacobian matrix of system (1.2) at any point is given as follows

J(x, y) =

a11 a12

a21 a22

 , (2.3)

where

a11 = 1 + rδ − 2rδx

K
− αδxy(2 + bx)

(ax2 + bx+ 1)2
, a12 = − αδx2

ax2 + bx+ 1
,

a21 =
δhsy2

x2
, a22 = 1 + δs− 2δhsy

x
.

The characteristic equation of the Jacobian matrix can be written as

λ2 + p(x, y)λ+ q(x, y) = 0, (2.4)

where p(x, y) = −(a11 + a22) and q(x, y) = a11a22 − a12a21.
Before we discuss the local stability of the fixed points, we present the following

lemma which discusses the relation between roots of the quadratic equation and its
coefficients [7, 11].

Lemma 2.2. Let F (λ) = λ2 +Bλ+C. Suppose that F (1) > 0, λ1 and λ2 are two
roots of F (λ) = 0. Then

(i) |λ1| < 1 and |λ2| < 1 iff F (−1) > 0 and C < 1;

(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1 ) iff F (−1) < 0 ;

(iii) |λ1| > 1 and |λ2| > 1 iff F (−1) > 0 and C > 1;

(iv) λ1 = −1 and |λ2| 6= 1 iff F (−1) = 0 and B 6= 0, 2;

(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 iff B2 − 4C < 0 and C = 1.

Suppose λ1 and λ2 are the roots of (2.4). We recall some definition concerning
the topological types of a fixed point (x, y). A fixed point (x, y) is called a sink if
|λ1| < 1 and |λ2| < 1. A sink is locally asymptotically stable. (x, y) is called a
source if |λ1| > 1 and |λ2| > 1. A source is locally unstable. A fixed point (x, y) is
called a a saddle if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1 ). And (x, y) is
called non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

By substituting the coordinates of the fixed point (K, 0) for (x, y) of (2.3) and
computing the eigenvalues of J we can obtain the following proposition.
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Proposition 2.1. The fixed point (K, 0) is a saddle if 0 < δ < 2
r , it is a source if

δ > 2
r , and it is non-hyperbolic if δ = 2

r .

When δ = 2
r , one of the eigenvalues of the fixed point (K, 0) is −1 and the

other is 1 + 2s
r . Thus, the flip (or period-doubling) bifurcation may occur when

parameters vary in the neighborhood of δ = 2
r . In this case, (1.2) restricted to

the center manifold y = 0 is the logistic model xn+1 = rxn(1 − xn

K ), therefore the
predator becomes extinct and the prey undergoes the period-doubling bifurcation
which is a route to chaos in the sense of Li and Yorke [10] by choosing the r as the
bifurcation parameter.

In the following we investigate the local dynamics of fixed point (x0, y0). The
characteristic equation of the Jacobian matrix (2.3) evaluated at (x0, y0) can be
written in the following form

F (λ) := λ2 − (2 + ∆δ)λ+ (1 + ∆δ + Ωsδ2) = 0,

where

∆ = r − s− 2rx0

K
− αx0y0(2 + bx0)

(ax2
0 + bx0 + 1)2

, Ω =
rx0

K
+

αx0y0(2 + bx0)

(ax2
0 + bx0 + 1)2

.

Then F (1) = Ωsδ2 > 0 and F (−1) = 4 + 2∆δ + Ωsδ2. From Lemma 2.2 we have

Proposition 2.2. Let (x0, y0) be the positive fixed point of (1.2).

(i) It is a sink if one of the following conditions holds

(i.1) −2
√

Ωs ≤ ∆ < 0 and 0 < δ < − ∆
Ωs ;

(i.2) ∆ < −2
√

Ωs and 0 < δ < −∆−
√

∆2−4Ωs
Ωs .

(ii) It is a source if one of the following conditions holds

(ii.1) −2
√

Ωs ≤ ∆ < 0 and δ > − ∆
Ωs ;

(ii.2) ∆ < −2
√

Ωs and δ > −∆−
√

∆2−4Ωs
Ωs ;

(ii.2) ∆ ≥ 0.

(iii) It is a saddle if the following conditions hold

∆ < −2
√

Ωs and
−∆−

√
∆2 − 4Ωs

Ωs
< δ <

−∆ +
√

∆2 − 4Ωs

Ωs
.

(iv) It is non-hyperbolic if one of the following conditions holds

(iv.1) ∆ < −2
√

Ωs and δ = −∆±
√

∆2−4Ωs
Ωs and δ 6= − 2

∆ ,−
4
∆ ;

(iv.2) −2
√

Ωs < ∆ < 0 and δ = − ∆
Ωs .

From Lemma 2.2, we can see that if (iv.1) of (2.2) holds one of the eigenvalues
of the positive fixed point (x0, y0) is −1 and the other is neither 1 nor −1. Also,
we can see that the eigenvalues of the fixed point (x0, y0) are complex conjugate
numbers if the condition (iv.2) of (2.2) holds. We rewrite the condition (iv.1) of
Proposition 2.2 as the following sets

FB1
=

{
(r,K, α, a, b, s, h, δ) : δ =

−∆−
√

∆2 − 4Ωs

Ωs
,∆ < −2

√
Ωs

}
,
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or

FB2
=

{
(r,K, α, a, b, s, h, δ) : δ =

−∆ +
√

∆2 − 4Ωs

Ωs
,∆ < −2

√
Ωs

}
.

When the condition (iv.2) of Proposition 2.2 holds, we deduce that the eigenvalues
of the fixed point (x0, y0) are a pair of conjugate complex numbers with module
one. The conditions in (iv.2) of Proposition 2.2 can be written as the following set

HB =

{
(r,K, α, a, b, s, h, δ) : δ = − ∆

Ωs
,−2
√

Ωs < ∆ < 0

}
.

In the following section, we will study the flip bifurcation of the positive fixed
point (x0, y0) when parameters of the system vary in the small neighborhood of
FB1

(or FB2
), and the Neimark-Sacker bifurcation if parameters vary in the small

neighborhood of HB .

3. Flip bifurcation and Neimark-Sacker bifurcation

In the sequel, based on the argument given in the previous section and choosing
the step size δ as the bifurcation parameter, we consider the Flip and the Neimark-
Sacker bifurcation of the positive fixed point (x0, y0).

First, we study the Flip bifurcation of the positive fixed point (x0, y0) when the
parameters of the system vary in a small neighborhood of FB1

. The case of FB2

can be handled similarly.
Take parameters (r,K, α, a, b, s, h, δ0) arbitrarily from FB1

. Using u = x −
x0, v = y − y0 and δ∗ = δ − δ0, we transform the fixed point (x0, y0) to the origin
and consider the parameter δ∗ as the new bifurcation parameter. After Taylor
expansion, system (1.2) is equivalent to the following system

u

v

 7→



a11u+ a12v + a13u
2 + a14uv + b1uδ∗ + b2vδ∗ + e1u

3

+e2u
2v + b3u

2δ∗ + b4uvδ∗ +O((|u|+ |v|+ |δ∗|)4)

a21u+ a22v + a23u
2 + a24uv + a25v

2 + c1uδ∗ + c2vδ∗

+d1u
3 + d2u

2v + d3uv
2 + c3u

2δ∗ + c4uvδ∗ + c5v
2δ∗

+O((|u|+ |v|+ |δ∗|)4)


, (3.1)

where

a11 = 1 + rδ0 − 2
rδ0 x0

K
− αx0y0δ0 (2 + bx0)

(1 + bx0 + ax0
2)

2 , a12 = − αx0
2δ0

1 + bx0 + ax0
2
,

a13 = −rδ0
K

+
α y0δ0

(
−1 + 3 ax0

2 + bx0
3a
)

(1 + bx0 + ax0
2)

3 , a14 = − αx0δ0 (bx0 + 2)

(1 + bx0 + ax0
2)

2 ,

b1 = r − 2
rx0

K
− αx0y0 (2 + bx0)

(1 + bx0 + ax0
2)

2 , b2 = − αx0
2

1 + bx0 + ax0
2
,

e1 = −
α y0δ0

(
−1 + ax0

2
) (
abx0

2 + 4 ax0 + b
)

(1 + bx0 + ax0
2)

4 , e2 =
α δ0

(
−1 + 3 ax0

2 + bx0
3a
)

(1 + bx0 + ax0
2)

3 ,
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b3 = − r

K
+
α y0

(
−1 + 3 ax0

2 + bx0
3a
)

(1 + bx0 + ax0
2)

3 , b4 = − αx0 (2 + bx0)

(1 + bx0 + ax0
2)

2 ,

a21 =
sδ0y0

x0
, a22 = 1− sδ0, a23 = −sδ0y0

x2
0

, a24 =
2sδ0
x0

, a25 = −δ0hs
x0

,

d1 =
δ0sy0

x3
0

, d2 = −2δ0s

x2
0

, d3 =
δ0hs

x2
0

, c1 =
sy0

x0
,

c2 = −s, c3 = −sy0

x2
0

, c4 =
2s

x0
, c5 = −hs

x0
.

We construct an invertible matrix

T =

 a12 a12

−1− a11 λ2 − a11

 .

Under the transformation u

v

 = T

 x̃

ỹ

 ,

and again using x and y instead of x̃ and ỹ respectively, the map (3.1) becomesx

y

 7→
−1 0

0 λ2

x

y

+

 f(x, y, δ∗)

g(x, y, δ∗)

 , (3.2)

where

f(x, y, δ∗) =
(a13 (λ2 − a11)− a23a12)

a12 (λ2 + 1)
u2 +

(a14 (λ2 − a11)− a24a12)

a12 (λ2 + 1)
uv − a25

λ2 + 1
v2

+
(b1 (λ2 − a11)− c1a12)

a12 (λ2 + 1)
uδ∗ +

(b2 (λ2 − a11)− c2a12)

a12 (λ2 + 1)
vδ∗

+
(e1 (λ2 − a11)− d1a12)

a12 (λ2 + 1)
u3 +

(e2 (λ2 − a11)− d2a12)

a12 (λ2 + 1)
u2v − d3

λ2 + 1
uv2

+
(b3 (λ2 − a11)− c3a12)

a12 (λ2 + 1)
u2δ∗ +

(b4 (λ2 − a11)− c4a12)

a12 (λ2 + 1)
uvδ∗

− c5
λ2 + 1

v2δ∗ +O((|u|+ |v|+ |δ∗|)4),

g(x, y, δ∗) =
(a13 (1 + a11) + a23a12)

a12 (λ2 + 1)
u2 +

(a14 (1 + a11) + a24a12)

a12 (λ2 + 1)
uv +

a25

λ2 + 1
v2

+
(b1 (1 + a11) + c1a12)

a12 (λ2 + 1)
uδ∗ +

(b2 (1 + a11) + c2a12)

a12 (λ2 + 1)
vδ∗

+
(e1 (1 + a11) + d1a12)

a12 (λ2 + 1)
u3 +

(e2 (1 + a11) + d2a12)

a12 (λ2 + 1)
u2v

+
d3

λ2 + 1
uv2 +

(b3 (1 + a11) + c3a12)

a12 (λ2 + 1)
u2δ∗

+
(b4 (1 + a11) + c4a12)uvδ

a12 (λ2 + 1)
+

c5v
2δ

λ2 + 1
+O((|u|+ |v|+ |δ∗|)4),
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and
u = a12(x+ y), v = −(1 + a11)x+ (λ2 − a11)y.

According to the center manifold theorem [9], the dynamic of the map (3.7) around
the fixed point (0, 0) for parameter values near δ∗ = 0 can be analyzed using the
behavior of a one parameter family of maps on the center manifold, which can be
written as:

W c(0) = {(x, y, δ∗) ∈ R3 : y = h2(x, δ∗), h2(0, 0) = 0, Dh2(0, 0) = 0}.

Assume that h2(x, δ∗) has the following form

h2(x, δ∗) = a1x
2 + a2xδ∗ + a3δ

2
∗ +O((|x|+ |δ∗|)3). (3.3)

Then, the center manifold (3.3) must satisfy

N(h(x, δ∗)) = h(−x+ f(x, h(x, δ∗)), δ∗)− λ2h(x, δ∗)− g(x, h(x, δ∗), δ∗) = 0. (3.4)

Substituting (3.7) and (3.3) into (3.4), we obtain

a1 = − 1

λ2
2 − 1

{
a25 + 2 a25a11 + a25a11

2 + a12a13 (1 + a11) + a23a12
2

−a14 − 2 a14a11 − a14a11
2 − a24a12 − a24a12a11

}
,

a2 = −a12b1 (1 + a11) + c1a12
2 − b2 − 2 b2a11 − b2a11

2 − c2a12 − c2a12a11

a12 (λ2 + 1)
2 ,

a3 = 0.

Thus, the map restricted to the center manifold is given by

F1 : x 7→ −x+ h1x
2 + h2xδ∗ + h3x

2δ∗ + h4xδ
2
∗ + h5x

3 +O((|x|+ |δ∗|)4), (3.5)

where

h1 =
1

λ2 + 1

{
a12a13 (λ2 − a11)− a23a12

2 − a25 − 2 a25a11 − a25a11
2

−a14λ2 − a14λ2a11 + a14a11 + a14a11
2 + a24a12 + a24a12a11

}
,

h2 =
1

a12 (λ2 + 1)

{
a12b1 (λ2 − a11)− c1a12

2 − b2λ2 − b2λ2a11 + b2a11

+b2a11
2 + c2a12 + c2a12a11

}
,

h3 =
1

a12 (λ2 + 1)

{
a2a12a14λ2

2 − a12b4λ2a11 + a12
2b3 (λ2 − a11) + c4a12

2a11

+a12b4a11 − a12b4λ2 + 2 a12
2a2a13 (λ2 − a11) + a2a12

2a24 + a2a12a14a11

−a2a12a14λ2 − a2a12
2a24λ2 + a1c2a12a11 − a1a12

2c1 − a1c2a12λ2 − a12
3c3

+c4a12
2 − c5a12 − 2 a12

3a2a23 + a1a12b1 (λ2 − a11) + a1b2a11
2 + a1b2λ2

2

−2 a25a2a12a11 + 2 a25a2a12λ2 + 2 a2a12
2a24a11 + 2 a2a12a14a11

2

−2 a25a2a12a11
2 + 2 a25a2a12a11λ2 − 3 a2a12a14λ2a11 − 2 c5a12a11

−2 a1b2λ2a11 − c5a12a11
2 + a12b4a11

2
}
,

h4 =
a2

a12 (λ2 + 1)

{
a12b1 (λ2 − a11)− c1a12

2 + b2λ2
2 − 2 b2λ2a11
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+b2a11
2 − c2a12λ2 + c2a12a11

}
,

h5 =
1

λ2 + 1

{
−a12e2λ2 − 2 a25a1a11 − a1a14λ2 + a1a24a12 − 2 a25a1a11

2 + a12e2a11

−2 a12
2a1a23 − d3a12a11

2 + 2 a25a1λ2 − a12
3d1 + a12

2e1 (λ2 − a11) + a12e2a11
2

+a1a14a11 + a1a14λ2
2 − 2 d3a12a11 + 2 a1a14a11

2 + 2 a12a1a13 (λ2 − a11)

+d2a12
2a11 − 3 a1a14λ2a11 − a1a24a12λ2 + 2 a1a24a12a11 + 2 a25a1a11λ2

+d2a12
2 − d3a12 − a12e2λ2a11

}
.

If the map (3.5) undergoes a flip bifurcation, then it must satisfy the following
conditions

α1 =

[
∂F1

∂δ∗
.
∂2F1

∂u2
+ 2

∂2F1

∂u∂δ∗

]
|(0,0) 6= 0,

and

α2 =

[
1

2

(
∂2F1

∂u2

)2

+
1

3

∂3F1

∂u3

]
|(0,0) 6= 0.

It is noted that

α1 = h2, α2 = h5 + h2
1.

We summarize the above analysis into the following theorem.

Theorem 3.1. The map (1.2) undergoes a flip bifurcation at the positive fixed point
(x0, y0) if the following conditions are satisfied

α1 6= 0 and α2 6= 0.

Moreover, if α2 > 0 (< 0), the 2-period points that bifurcate from this point are
stable (resp. unstable).

Next, we give the condition of existence of Neimark-Sacker bifurcation using
the Neimark-Sacker bifurcation theorem [9], where δ is chosen as a bifurcation
parameter. We recall that the bifurcation corresponding to the presence of λ1,2 =
e±iθ0 , (0 < θ0 < π) is called a Neimark-Sacker (or torus) bifurcation [9]. Taking
parameters (r,K, α, a, b, s, h, δ2) arbitrarily from HB , we consider the map (1.2)
at the positive fixed point (x0, y0). Since δ2 = − ∆

Ωs , choosing γ as a bifurcation
parameter, we consider a perturbation of (1.2) as followsx

y

 7→
x+ (δ2 + γ)x

[
r(1− x

K )− αxy
ax2+bx+1

]
y + (δ2 + γ)sy

(
1− hy

x

)
 . (3.6)

Let u = x− x0, v = y − y0. Then we transform the fixed point (x0, y0) of (3.6) to
the origin. We get

u

v

 7→

a11u+ a12v + a13u

2 + a14uv + e1u
3 + e2u

2v

+O((|u|+ |v|)4)

a21u+ a22v + a23u
2 + a24uv + a25v

2 + d1u
3

+d2u
2v + d3uv

2 +O((|u|+ |v|)4)

 , (3.7)
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where the coefficients are those that are given in (3.1) by substituting δ by δ2 + γ.
The eigenvalues of the characteristic equation (2.4) are

λ1,2 =
−p(γ)±

√
p2(γ)− 4q(γ)

2
,

where

p(γ) = −2−∆(δ2 + γ), q(γ) = 1 + ∆(δ2 + γ) + Ωs(δ2 + γ).

Hence, since parameters belong to HB we have

λ1,2 = 1 +
∆(δ2 + γ)

2
± i δ2 + γ

2

√
4Ωs−∆, (3.8)

and we have

|λ1,2| =
√
q(γ), l =

d|λ|
dγ
|γ=0 = −∆

2
6= 0.

In addition, p(0) 6= 0, 1 leads to

−∆δ2 6= 2, 3, (3.9)

then we obtain λn1,2 6= 1, n = 1, 2, 3, 4.

Next we study the normal form of (3.6) when γ = 0. Let µ = 1 + ∆δ2
2 , ω =

δ2
2

√
4Ωs−∆2 T =

 a12 0

µ− a11 −ω

 and use the translation

u

v

 = T

X

Y

 .

Again, for the sake of simplicity, we use x and y instead of X and Y , respectively.
Under the translation, the map (3.7) becomesx

y

 7→
 µ −ω

ω µ

x

y

+

 f̃(x, y)

g̃(x, y)

 , (3.10)

where

f̃(x, y) =
1

a12
{a13u

2 + a14uv + e1u
3 + e2u

2v}+O((|u|+ |v|)4),

g̃(x, y) =

(
(µ− a12) a13

a12ω
− a23

ω

)
u2 +

(
(µ− a12) a14

a12ω
− a24

ω

)
uv

−a25

ω
v2 +

(
(µ− a12) e1

a12ω
− d1

ω

)
u3 +

(
(µ− a12) e2

a12ω
− d2

ω

)
u2v

−d3uv
2

ω
+O((|u|+ |v|)4),

and u = a12x, v = (µ− a11)x− ωy.
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Next, we compute the stability coefficient of the Neimark-Sacker bifurcation of
the map (3.10) using the method given in [5]. The stability coefficient is given as
follows

ā = −Re
(

(1− 2λ)λ̄2

1− λ
ξ20ξ11

)
− 1

2
|ξ11|2 − |ξ02|2 +Re(λ̄ξ21), (3.11)

where

ξ20 =
1

8
[(f̃xx − f̃yy + 2g̃xy) + i(g̃xx − g̃yy − 2f̃xy)],

ξ11 =
1

4
[(f̃xx + f̃yy) + i(g̃xx + g̃yy)],

ξ02 =
1

8
[(f̃xx − f̃yy − 2g̃xy) + i(g̃xx − g̃yy + 2f̃xy)],

ξ21 =
1

16
[(f̃xxx + f̃xyy + g̃xxy + g̃yyy) + i(g̃xxx + g̃xyy − f̃xxy − f̃yyy)].

After some calculation we get

f̃xx = (2µ− 2 a11) a14 + 2 a13a12, f̃xy = −a14ω, f̃yy = 0,

f̃xxx = 6 a12 (e1a12 + e2(µ− a11)) , f̃xxy = −2 a12e2ω, f̃xyy = f̃yyy = 0,

g̃xx =2

(
(µ− a12) a13

a12ω
− a23

ω

)
a12

2 + 2

(
(µ− a12) a14

a12ω
− a24

ω

)
a12 (µ− a11)

− 2
a25 (µ− a11)

2

ω
,

g̃xy = −a14µ+ a14a12 + a24a12 + 2 a25µ− 2 a25a11, g̃yy = −2 a25ω,

g̃xxx =6

(
(µ− a12) e1

a12ω
− d1

ω

)
a12

3 + 6

(
(µ− a12) e2

a12ω
− d2

ω

)
a12

2 (µ− a11)

− 6
d3a12 (µ− a11)

2

ω
,

g̃xxy = 2 a12 (−e2µ+ a12e2 + d2a12 + 2 d3µ− 2 d3a11) ,

g̃xyy = −2 d3a12ω, g̃yyy = 0.

From above calculations and the theorem in [5, 9, 13], we get the following result.

Theorem 3.2. If the condition (3.9) holds and ā 6= 0, then the map (3.6) undergoes
Neimark-Sacker bifurcation at the positive fixed point (x0, y0) when the parameter
γ varies in the small neighborhood of the origin. Moreover, if ā < 0 (resp., ā > 0),
then an attracting (resp., repelling) invariant closed curve bifurcates from the fixed
point for γ > 0 (resp., γ < 0).

4. Numerical Simulations

In this section, we will present bifurcation diagrams, maximum Lyapunov exponen-
t, and phase portraits of system (1.2) to illustrate the above theoretical analysis
and find new interesting complex dynamics using numerical tools. The bifurcation
parameters are considered in the following two cases.
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Case (i) Varying δ in the range 0.35 ≤ δ ≤ 0.6, and fixing K = 2, r = 5, s =
1, h = 1, α = 1, a = 3, b = 3.

Case (ii) Varying δ in the range 1 ≤ δ ≤ 1.35, and fixing K = 5
2 , r = 3, s =

0.5, h = 1, α = 9, a = 2, b = 2.
For case (i). K = 2, r = 5, s = 1, h = 1, α = 1, a = 3, b = 3;

based on Lemma 2.2, we know that the system (1.2) has a unique positive fixed
point (1.917299545, 1.917299545). The flip bifurcation emerges from this positive
fixed point at δ = 0.433 with α1 = −2.899433016 and α2 = 0.02983774197 and
(r,K, α, a, b, s, h, δ) ∈ FB1

. This confirms the results of Theorem 3.1.
According to the bifurcation diagrams shown in Figs. 1(a) and 1(b), the positive

fixed point is stable for δ < 0.433, then it loses its stability at the flip bifurcation
parameter δ = 0.433. We observe that there is a cascade of period doubling for
0.433 < δ < 0.6.

(a) in (δ, x) plane (b) in (δ, y) plane

Figure 1. Bifurcation diagram of the system (1.2) for K = 2, r = 5, s = 1, h = 1, α = 1, a = 3, b = 3
with initial value (1, 1).

(a) δ ∈ [0.35, 0.6] (b) local magnification for δ ∈ [0.52, 0.56]

Figure 2. Maximum Lyapunov exponent corresponding to bifurcation diagrams in Fig.1.

The maximum Lyapunov exponent corresponding to bifurcation diagram Figs.
1(a) and 1(b) is computed in Fig. 2(a). The local magnification of Fig. 2(a)
for δ ∈ [0.52, 0.56] is presented in Fig. 2(b). The maximum Lyapunov exponent
corresponding to δ = 0.57 is h1 = 0.3637726139 > 0, which confirms the existence
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of the chaotic sets. In general the positive Lyapunov exponent is considered to be
one of the characteristics implying the existence of chaos [1, 3, 4].

The phase portrait of system (1.2) corresponding to bifurcation diagram Fig. 1
is shown in Fig. 3. We observe that there are period-1, period-2, period-4, period-8
orbits, quasi-periodic and when δ = 0.57 we can see an attracting chaotic sets.

(a) δ = 0.4 (b) δ = 0.435 (c) δ = 0.52

(d) δ = 0.533 (e) δ = 0.54 (f) δ = 0.57

Figure 3. Phase portrait for various values of δ corresponding to Fig. 1.

For case (ii). K = 5
2 , r = 3, s = 0.5, h = 1, α = 9, a = 2, b = 2; by Lemma

2.2 we know that the system (1.2) has a unique positive fixed point at (1, 1). The
Neimark-Sacker bifurcation appears from the fixed point (1, 1) at δ = 1.0151, its
eigenvalues are λ1,2 = 0.31995±0.947327291647401i and |λ1,2| = 1, l = 0.680872 >
0, ā = −5.483464001 and (r,K, α, a, b, s, h, δ) ∈ HB . This confirms the result of
Theorem 3.2.

(a) in (δ, x) plane (b) in (δ, y) plane
(c) Maximum Lyapunov expo-
nent corresponding to bifurcation
diagrams (a) and (b)

Figure 4. Bifurcation diagram of the system (1.2) for K = 5
2 , r = 3, s = 0.5, h = 1, α = 9, a =

2, b = 2 with initial value (0.7, 0.8).

Figs. 4(a) and 4(b) show that the positive fixed point (1, 1) is stable for δ <
1.0151, then it looses its stability at δ = 1.0151. For δ > 1.0151 an invariant
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attracting cycle appears.
The maximum Lyapunov exponents corresponding to Figs. 4(a) and 4(b) are

calculated and plotted in Fig. 4(c), that shows the existence of chaotic region and
periodic orbits (non-chaotic region) as the parameter δ varying.

From Fig. 4(c) we can easily see that that the maximum Lyapunov exponents
are negative for the parameter δ ∈ (1, 1.07), that is to say, the non-chaotic region
is smaller than the chaotic region (1.07, 1.3).

The phase portraits corresponding to Fig. 4 are plotted in Fig. 5, which demon-
strates the process of how an invariant periodic orbit bifurcates from the stable
fixed point. When δ exceeds 1.0152 a closed curve enclosing the fixed point is born.
When δ increases at certain values, for instance, at δ = 1.201, the periodic orbit
disappears and a period-9 orbit emerges, and some cascades of period doubling
bifurcations lead to chaos.

(a) δ = 1.012 (b) δ = 1.014 (c) δ = 1.015

(d) δ = 1.01512 (e) δ = 1.0152 (f) δ = 1.016

(g) δ = 1.198 (h) δ = 1.2004 (i) δ = 1.201

Figure 5. Phase portrait for various values of δ corresponding to Fig. 4.

5. Controlling and suppressing chaos

It is known that chaotic maps are characterized by an exponential separation of
nearby orbits in forward iterations (positive Lyapunov exponent). This feature of
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(p) δ = 1.2165 (q) δ = 1.2168 (r) δ = 1.22

(s) δ = 1.25 (t) δ = 1.253 (u) δ = 1.254

(v) δ = 1.274 (w) δ = 1.298 (x) δ = 1.31

Figure 5. Phase portrait for various values of δ corresponding to Fig. 4(continued).

chaos has been traditionally seen as a troublesome property, especially in practical
settings, because even the tiniest perturbation might modify the system’s behavior
in an unpredictable way and lead the system to a catastrophic situation. Chaotic
behavior is therefore undesirable in many practical settings, and one is interested
in controlling the system to obtain regular behavior. This can be done by taking
advantage of the infinite number of unstable periodic orbits coexisting with the
chaotic attractor. The idea of controlling chaos consists of stabilizing some of these
unstable orbits, thus leading to regular and predictable behavior [2, 6].

Feedback control is an algorithm that has been recognized as one of the methods
to be useful for stabilizing unstable periodic orbits [12]. In this section, we shall
apply the state feedback control method to stabilize chaotic orbits near an unstable
fixed point of (1.2).

Consider the positive fixed point of the map (1.2) at (x0, y0). Using the notation
introduced in [12], for values of δ close to δ2 in a small neighborhood of (x0, y0),
the map (1.2) can be approximated by the linear map given byun+1

vn+1

 =

a11un + a12vn

a21un + a22vn

 ,
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where un = xn − x0, vn = yn − y0 and a11, a12, a21 and a22 are given in (3.1).
Consider the following controlled form of the above systemun+1

vn+1

 =

a11un + a12vn + pn

a21un + a22vn

 , (5.1)

with the following feedback control law as the control force

pn = −k1un − k2vn,

where k1 and k2 are the feedback gain. The Jacobian matrix of the controlled
system (5.1) at (0, 0) is given by

J =

a11 − k1 a12 − k2

a21 a22

 .

The characteristic equation of J is

λ2 − (a11 + a22 − k1)λ+ a22(a11 − k1)− a21(a12 − k2) = 0.

Suppose that the eigenvalues (regulator poles) are given by λ1 and λ2, then

λ1 + λ2 = a11 + a22 − k1 and λ1λ2 = a22(a11 − k1)− a21(a12 − k2). (5.2)

The lines of marginal stability are determined by solving the equations λ1 = ±1
and λ1λ2 = 1. These conditions guarantee that the eigenvalues λ1 and λ2 have
modulus less than unity. Suppose that λ1λ2 = 1. Then

l1 : k1a22 − k2a21 = a11a22 − a12a21 − 1.

Now, first assume that λ1 = 1 then from (5.2) we have

l2 : k1(1− a22)− k2a21 = a11 + a22 − 1− a11a22 + a12a21.

Next, assume that λ1 = −1, then by (5.2) we have

l3 : k1(1 + a22)− k2a21 = a11 + a22 + 1 + a11a22 − a12a21.

The stable eigenvalues (regulator poles) lie within a triangular region as depicted
in Fig. 6. Select k1 = −1 and k2 = −2. This point lies inside the triangular region
as depicted in Fig. 6. The perturbed system (1.2) becomesxn+1

yn+1

 =

xn + δxn

[
r(1− xn

K )− αxnyn
ax2

n+bxn+1

]
− k1(xn − x0)− k2(yn − y0)

yn + δsyn

(
1− hyn

xn

)
 .

(5.3)
We have applied a numerical simulations to see how the state feedback control
method controls the unstable positive fixed point (1, 1). Parameter values are fixed
as r = 3, h = 1, s = 0.5, K = 2.5, α = 9, a = b = 2, δ = 1.253. The initial value
is (0.8, 0.8) and the feedback gain k1 = −1 and k2 = −2. By Fig. 6 we see that a
chaotic trajectory is stabilized at the fixed point (1, 1).
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Figure 6. Left: The bounded region for the eigenvalues of the perturbed system (5.3) for h = 1, s =
0.5, r = 3, α = 9, K = 2.5, a = b = 2 and δ = 1.253. Right: Time series data for the map (5.3) with
and without control, r2 = x2 + y2. The control is activated after the 198th iterate.
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