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Abstract

This article’s goal is to investigate the space-fractional telegraph equation using an
effective method called the Adomian natural decomposition method (ANDM), which is a
combination of the Adomian decomposition method (ADM) and the natural transform
method (NTM). Using the Banach fixed point theorem, we explore proofs for the existence
and uniqueness theorems applying it to a nonlinear differential equation. Using our
method, exact solutions of the space-fractional telegraph equation and time-fractional
diffusion problems have been obtained. To demonstrate the effectiveness of the suggested
scheme, four examples are provided.

Keywords Fractional Liouville-Caputo Derivative. Adomian Natural Decomposition
Method. Space-fractional Telegraph Equation. Diffusion Equations. Banach Fixed Point
Theorem.

AMS Classifications 34A08, 65P99, 49J15, 35R11, 26A33, 74G10.

1 Introduction

A general version of a partial differential equation is a fractional partial differential equa-
tion, where the fractional order derivatives are substituted for the integer order derivatives.
A number of researchers have focused on solving fractional differential equations because
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of their widespread use in numerous scientific and engineering disciplines. A fundamental
illustration of a fractional partial differential equation is the fractional telegraph equation.
Many approximate and analytical methods have been developed to find their solutions, see
[1, 2, 3].

The modeling of anomalous diffusion systems, the description of fractional random
walks, and the unification of the diffusion and wave propagation phenomena have all
benefited from the widespread application of anomalous diffusion equations in recent years,
see [4] and the references therein. One of these crucial anomalous diffusion equations that
may be derived from the classical diffusion-wave equation is the fractional diffusion-wave
equation. It is commonly recognized that a wave equation depicts a process where a
disturbance propagates at a constant pace, but a diffusion equation describes a process
where a disturbance spreads infinitely quickly. The fractional diffusion-wave equation
therefore, in a sense, interpolates between these two dissimilar behaviors in terms of their
reaction to a localized disturbance [5].

There are works accessible in the topic of fractional diffusion equation theoretical
analysis. The diffusion and wave equations were described by Schneider and Wyss [6] in
terms of integro-differential equations, and the appropriate Green’s functions in closed
form for any number of spatial dimensions were produced using fox functions. The Cauchy
problem was strictly interpreted by Fujita [7] as the intermediary phenomenon between
the heat equation and the wave equation:

Dα
z (χ(s, z)) = Dβ

z (χ(s, z)) , 1 ≤ α, β ≤ 2.

He subsequently looked into integro-differential equations [8] that have properties related
to heat diffusion and wave propagation. Additionally, he discovered certain crucial
characteristics of the fundamental solution, including one that is comparable to the wave
equation’s characteristic: the fundamental solution’s maximum points propagate at a
constant pace. In addition, M. Garg and P. Manohar, gave numerical solution of fractional
diffusion-wave equation with two space variables by matrix method, see [9]. Agrawal
[10] offered a generic solution for a fractional distortion-wave equation developed in a
bounded space domain utilizing the approach of finite sine transform and Laplace transform.

He then looked at the fractional distortion-wave system [11] when it was subject to
a nonhomogeneous field, which may be stochastic or deterministic. Luchko, et al. [12]
investigated the basic Cauchy problem solution for the fractional diffusion-wave equation
and discovered some significant properties of the solution, including its highest point, etc.
Such a fractional diffusion-wave equation, which has fractional derivatives of the same order
α, 1 ≤ α ≤ 2 both in space and time, was also taken into consideration by Luchko [4, 12, 13].

The space-fractional telegraph equations have recently been considered by Prakash
[14], Momani [15], Hashmi, M. S. etal. [16], Eltayeb, H. etal. [17], M. Garg and A. Sharma
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[18], Orsingher and Zhao [19], Liu, Z., & Sun, S. [20], Shen, L. B., & Han, B. S. [21] and
Al-Shara, S., see [22-23]. The NADM is based on the natural transform technique (NTM)
[24, 25] and the Adomian decomposition method (ADM) [26], and it offers solutions in
the form of infinite series that, if the exact solution exists, may converge to a closed form
solution. Rawashdeh was the first to use the fractional natural decomposition method, see
[27-29]. Moreover, Obeidat, use the tempered fractional natural transform method to solve
tempered fractional diffusion equations, see [30, 31].

In general, it is difficult to solve the fractional differential equation analytically,
hence it is crucial to find exact solutions to these problems. As a result, we examine
the space-fractional telegraph and fractional diffusion equations below in this research work.

We shall study in our research the following space-fractional telegraph equation of
the form [10]:

cDα
s (χ(s, z)) = χzz(s, z) + aχz(s, z) + b χn(s, z) + h(s, z), 1 < α ≤ 2, z ≥ 0,

accompanied with its initial and boundary conditions:

χ(0, z) = ϕ(z), χs(0, z) = φ(z), χ(s, 0) = g(s), 0 < s < 1.

where a, b, n are constant and h(s, z) is a given function.

Also, we shall study the following fractional Diffusion equation of the form [10]:

cDα
z (χ(s, z)) = χss(s, z) + h(s, z), 1 < α < 2, [0, T ]× [0, L], T > 0,

accompanied with its initial and boundary conditions:

χ(s, 0) = ϕ(s), χz(s, 0) = φ(s), s ∈ [0, L],

χ(0, z) = ψ1(z), χ(L, 0) = ψ1(z), z ∈ [0, T ].

It is the most widely known definition of the fractional derivative; it is usually called the
Riemann-Liouville definition. Here cDα

z (χ(s, z)) is a Caputo fractional derivative and
h(s, z) denotes the source term.

The structure of this paper’s content is as follows. In Section 2, we give a brief in-
troduction to some basic definitions of fractional calculus. Section 3 provides background
information on the natural transform, including definitions and important ANDM proper-
ties. Section 4 provides the uniqueness, existence theorems, and error estimate applied to
the nonlinear fractional-order differential equation. Section 5 is devoted to applying the
Adomian natural decomposition method (ANDM) to solve four applications, such as: the
the space-fractional order Telegraph equation and time-fractional diffusion equations. The
discussion and conclusion of this paper are found in Section 6.
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Four points can be used to summarize the contribution of the study discussed here:

� Introducing the adequate condition (see Theorem 4.1) that ensures that Eq. (4.1) has
a unique solution.

� The convergence of ANDM is explained based on the discussion below and formula
(4.8) (see Theorem 4.2).

� Using point two, the maximum absolute truncated error of the Adomian series solution
(4.8) is estimated (see Theorem 4.3).

� Mathematica 12 package is used to prepare an algorithm that generates the two types
of Adomian polynomials, performs a comparative analysis, and solves the associated
numerical examples.

2 Fractional Calculus Background Materials

The properties and definitions that are associated with fractional calculus will be presented
here; for further information, see [27-29].

Definition 2.1 Let χ(υ) ∈ R, where υ > 0. Then χ(υ) is in the space Cδ, δ ∈ R if
∃ p ∈ R such that p > δ and χ(υ) = υpg(υ), where g(υ) in C [0,∞), and χ(υ) ∈ Cj

δ if
χ(j) ∈ Cδ, j = 1, 2, ....

Definition 2.2 For a function χ ∈ Cδ, the Riemann-Liouville of order η ≥ 0 for the
fractional integral operator is presented in the form:

Jη (χ(υ)) =
1

Γ(η)

∫ υ

0
(υ − z)η−1χ(z) dz, η, υ > 0, and J0χ(υ) = χ(υ). (2.1)

Definition 2.3 The fractional derivative of f in the Liouville-Caputo sense can be defined
as

cDη (χ(υ)) = Jm−ηDm (χ(υ)) =
1

Γ(m− η)

∫ υ

0
(υ − z)m−η−1χ(m)(z)dz, (2.2)

for m− 1 < η ≤ m, m ∈ N, υ > 0, χ ∈ Cm
−1.

Definition 2.4 According to [32], the Mittag-Leffler two-parameter function is given in the
form:

Eν,β(ϑ) =

∞∑
m=0

ϑm

Γ(mν + β)
, ν > 0, β > 0, ϑ ∈ C, (2.3)

where the gamma function is defined by:

Γ(v) =

∫ ∞

0
e−r rv−1 dr, v > 0. (2.4)
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3 Adomian Polynomials and the Natural Transform Review

We advise readers to find out more about the general integral transform’s history, the
Laplace, Sumudu, and natural transform methods, as well as the features that are associated
with them, for any given function ζ(υ), υ ∈ R; see, for example [11].

Definition 3.1 Let ζ(υ) be a piece-wise continuous function on R. If D1, D2, c, d > 0
with c < d, define A =

{
ζ(υ) : |ζ(υ)| < D1e

cυχ(υ2,∞)(υ) +D2e
dυχ(−∞,υ1)(υ)

}
. So,

|ζ(υ)| ≤ D1e
cυ for υ −→ ∞ i.e. υ > υ2 and |ζ(υ)| ≤ D2e

dυ for υ −→ −∞ i.e. υ < υ1.

Note that for any ζ (υ) in the class A with r, w > 0 we have:∣∣∣∣∫ ∞

−∞
e−rυζ (υw) dυ

∣∣∣∣ ≤ D1

∫ ∞

0
e−rυec|υw|dυ +D2

∫ 0

−∞
e−rυed|υw|dυ

= D1

∫ ∞

υ2

e(cw−r)υdυ +D2

∫ υ1

−∞
e(dw−r)υdυ.

Which is convergent provided that cw − r < 0 and dw − r > 0, which implies that
cw < r < dw i.e. c < r

w < d. Loosely speaking, ζ (υ) is a function of exponential order.

Then, one can define the natural transformation (N-transformation) as:

ℵ (ζ (υ)) = L(r, w) =

∫ ∞

−∞
e−rυ ζ(wυ)dυ, r, w > 0, (3.1)

where ℵ is the N-transform of ζ (υ) and r and w are the N-transformation variables.

Note that one can write Eq. (3.1) as,

ℵ (ζ (υ)) = ℵ+ (ζ (υ)) + ℵ− (ζ (υ)) = L+(r, w) + L−(r, w),

where,
ℵ+ (ζ (υ)) = L+(r, w) =

∫∞
0 e−rυ ζ(wυ) dυ, r, w ∈ (0,∞),

ℵ− (ζ (υ)) = L−(r, w) =
∫ 0
−∞ e−rυ ζ(wυ) dυ, r, w ∈ (0,∞).

(3.2)

Moreover,

ℵ−1 [L (r, w)] = ζ (υ) =
1

2πi

∫ c+i∞

c−i∞
e

rυ
w L (r, w) dr. (3.3)

Thus, Eq. (3.2) is the natural transformation, and Eq. (3.3) is the inverse natural
transformation.
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Significant Properties

In this study, we will take advantage of the following valuable N-transform features
(see [20, 21]):

1. ℵ [zα] = Γ(η+1) vα

rη+1 , η > −1.

2. ℵ−1
[
vβ−1rη−β

rα+λvη

]
= zβ−1Eη,β(−λzη), where α, β > 0, λ ∈ R and |λ| < rα

vα .

3. Given k ∈ Z+, where k − 1 < η ≤ k, then the natural transform of the Liouville-Caputo
fractional derivative of the function h(z) of order η denoted by cDηh(z) is given by:

ℵ [cDηh(z)] =
rη

vη
L(r, v)−

k−1∑
j=0

rη−(j+1)

uη−j

(
Djh(z)

)
z=0

.

Adomian Polynomials Calculations

We now present the Adomian polynomials, which can be used to quickly divide a
complicated nonlinear component into more manageable elements that can be integrable in
the form of a Taylor series. As shown in [24], the unknown function ϕ can be expressed as:

ϕ =
∞∑
i=0

ϕi, (3.4)

where a recursive relation must be constructed to determine the components ϕi , i ≥ 0.
When dealing with nonlinear terms, F (ϕ), can be expressed as an infinite series known as
Adomian polynomials Ai, which are denoted by the following formula:

F (ϕ) =

∞∑
i=0

Ai(ϕ0, ϕ1, ...., ϕi), (3.5)

where the formula in [19] can be used to calculate the Ai of the nonlinear term F (ϕ):

Ai =
1

i!

di

dµi

[
F

(
i∑

k=0

µkϕk

)]
µ=0

, i = 0, 1, 2, ... (3.6)

Then one can express the generic formula for Eq. (3.5) as follows:

Let F (ϕ) represent the nonlinear function. Applying Eq. (3.6) and utilizing the
Adomian polynomial definition, one can produce:

A0 = F (ϕ0),

A1 = ϕ1F
′(ϕ0),

A2 = ϕ2F
′(ϕ0) +

1
2!ϕ

2
1F

′′(ϕ0).

(3.7)
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Finally, one can produce the remaining terms in a similar manner. The polynomials
mentioned previously in Eq. (3.7) provide two crucial observations. A0 depends exclusively
on ϕ0, A1 depends solely on ϕ0 and ϕ1, A2 depends solely on ϕ0,ϕ1 and ϕ2, and so forth.

Also, by inserting Eq. (3.7) into Eq. (3.5), we arrive at:

F (ϕ) = A0 +A1 +A2 + ...

= F (ϕ0) + (ϕ1 + ϕ2 + ϕ3 + ...)F ′(ϕ0)

+
1

2!
(ϕ21 + 2ϕ1ϕ2 + 2ϕ1ϕ3 + ϕ22 + ...)F ′′(ϕ0)

+
1

3!
(ϕ31 + 3ϕ21ϕ2 + 3ϕ21ϕ3 + 6ϕ1ϕ2ϕ3 + ...)F ′′′(ϕ0) + ...

= F (ϕ0) + (ϕ− ϕ0)F
′(ϕ0) +

1

2!
(ϕ− ϕ0)

2F ′′(ϕ0) + ....

4 Convergence Analysis of the ANDM

In this section, we shall present proofs for the uniqueness and convergence theorems, and
then we will provide an estimate error using the ANDM. Assume we have the following
initial value problem for the nonlinear fractional equation:

cDη
zχ(s, z) + F (χ(s, z)) + L(χ(s, z)) = ϕ(s, z), 0 < η ≤ 1. (4.1)

And its I.C:
χ(s, 0) = g(s). (4.2)

Note that the nonlinear term is F (χ(s, z)), the linear term is L(χ(s, z)), and ϕ(s, z) is the
source term.

Eq. (4.1) is then subjected to the N-transform and property 3, where ℵ(χ(s, z)) = X (s, r, v)
to produce:

X (s, r, v) = g(s)
r −

(
v
r

)η ℵ [L (χ(s, z)) + F (χ(s, z))− ϕ(s, z)] . (4.3)

Now we interpret Eq. (4.3) using the inverse N-transform to get:

χ(s, z) = Φ (s, z) + ℵ−1
[(v
r

)η
ℵ [L(χ(s, z)) + F (χ(s, z))]

]
. (4.4)

The nonhomogeneous component and the initial condition are represented by Φ (s, z). Sup-
pose that the unknown function χ(s, z) has an infinite series solution of the form:

χ(s, z) =

∞∑
j=0

χj(s, z). (4.5)
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The Adomian polynomials are the Ai’s in the nonlinear term F (χ(s, z)) =
∑∞

i=0Ai. We
rewrite Eq. (4.4) as follows using Eq. (4.5):

∞∑
j=0

χj(s, z) = Φ ((s, z)) + ℵ−1

(v
r

)η
ℵ

 ∞∑
j=0

Aj +
∞∑
j=0

χj(s, z)

 . (4.6)

Eq. (4.6)’s two sides are compared, and the result is χ0(s, z) = Φ(s, z). Then, one can
produce this general relation:

χj+1(s, z) = ℵ−1
[(v
r

)η
ℵ [Aj + χj(s, z)]

]
, j ≥ 0. (4.7)

The final expression of the anticipated exact solution is as follows:

χ(s, z) =
∞∑
j=0

χj(s, z). (4.8)

Theorem 4.1 (Uniqueness Theorem). Eq. (4.1) has a unique solution, provided that

0 < σ < 1 where σ = (C1+C2)zη

Γ(η+1) , for all z ∈ [0, T ].

Proof: Assume that B = (C[∆], ∥.∥) is the Banach space for all continuous functions on
∆ = [0, T ] and the norm ∥.∥, then define Π : B → B such that

χj+1(s, z) = Φ ((s, z)) + ℵ−1
[(v
r

)η
ℵ [M (χj ((s, z))) + L (χj ((s, z)))]

]
.

Suppose that L [χ(s, z)] = χ(s, z) and M [χ(s, z)] = F (χ ((s, z))). Further, let
|M(χ)−M(χ̃)| < C1 |χ− χ̃| and |L(θ)− L(χ̃)| < C2 |θ − χ̃|, where C1, C2 are the Lips-
chitz constants with 0 ≤ C1, C2 < 1 and χ, χ̃ are two different solutions of Eq. (4.1).
Then,

∥Π(χ)−Π(χ̃)∥ = max
z∈∆

∣∣∣ℵ−1
[(v
r

)η
ℵ [L(χ) +M(χ̃)]

]
− ℵ−1

[(v
r

)η
ℵ [L(χ̃) +M(χ̃)]

]∣∣∣
= max

z∈∆

∣∣∣ℵ−1
[(v
r

)η
ℵ [L(χ)− L(χ̃)]

]
+ ℵ−1

[(v
r

)η
ℵ [M(χ)−M(χ̃)]

]∣∣∣
≤ max

z∈∆

[
C1ℵ−1

[(v
r

)η
ℵ [|χ− χ̃|]

]
+ C2ℵ−1

[(v
r

)η
ℵ [|χ− χ̃|]

]]
≤ max

z∈∆
(C1 + C2)

[
ℵ−1

[(v
r

)η
ℵ [|χ− χ̃|]

]]
≤ (C1 + C2)

[
ℵ−1

[(v
r

)η
ℵ [∥χ(z)− χ̃(z)∥]

]]
= ∥χ− χ̃∥ (C1 + C2)

Γ (η + 1)
zη.

Hence, there exists a unique solution to Eq. (4.1) according to the theorem of Banach
fixed-point for contraction [11] since 0 < σ < 1, which implies that Π is a mapping for
contraction. Theorem 4.1 has been proved.
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Theorem 4.2 (Convergence Theorem). Provided both 0 < σ < 1 and |χ1| <∞ remain
true, the series solution in Eq. (4.8) of Eq. (4.1) converges.

Proof: Assume that the qm is the m-th partial sum, i.e., qm =
∑m

i=0 χi(s, z). It is our task to
demonstrate that {qm} is a Cauchy sequence in the Banach space B. Take into account the
revised formulation of the Adomian polynomial form (see [26]). M (qm) = Ãm +

∑m−1
i=0 Ãi.

The two partial sums qn and qm can be any two partial sums with m ≥ n. Then,

∥qm − qn∥ = max
z∈∆

|qm − qn|

= max
z∈∆

∣∣∣∣∣
m∑

i=n+1

χ̃i(s, z)

∣∣∣∣∣ , m = 1, 2, ...

≤ max
z∈∆

∣∣∣∣∣ℵ−1

[(v
r

)η
ℵ

[
K

(
m∑

i=n+1

χi−1(s, z)

)]]
+ ℵ−1

[(v
r

)η
ℵ

[
m∑

i=n+1

Ai−1(s, z)

]]∣∣∣∣∣
= max

z∈∆

∣∣∣∣∣ℵ−1

[(v
r

)η
ℵ

[
K

(
m−1∑
i=n

χi(s, z)

)]]
+ ℵ−1

[(v
r

)η
ℵ

[
m−1∑
i=n

Ai(s, z)

]]∣∣∣∣∣
≤ max

z∈∆

∣∣∣ℵ−1
[(v
r

)η
ℵ [K(qm−1)−K(qn−1)]

]
+ ℵ−1

[(v
r

)η
ℵ [M(qm−1)−M(qn−1)]

]∣∣∣
≤ C1max

z∈∆
ℵ−1

[(v
r

)η
ℵ [|qm−1 − qn−1|]

]
+ C2max

z∈∆
ℵ−1

[(v
r

)η
ℵ [|qm−1 − qn−1|]

]
=

(C1 + C2) z
η

Γ (η + 1)
∥qm−1 − qn−1∥ .

Thus, ∥qm − qn∥ ≤ σ ∥qm−1 − qn−1∥. Choose m = n+ 1, then

∥qn+1 − qn∥ ≤ σ ∥qn − qn−1∥ ≤ σ2 ∥qn−1 − qn−2∥ ≤ ... ≤ σn ∥q1 − q0∥.

Likewise, using the triangle inequality, one can arrive at:

∥qm − qn∥ ≤ ∥qn+1 − qn∥+ ∥qn+2 − qn+1∥+ ...+ ∥qm − qm−1∥

≤
[
σn + σn+1 + ...+ σm−1

]
∥q1 − q0∥

≤ σn
[
1− σm−n

1− σ

]
∥χ1∥ .

But, 0 < σ < 1, then 1− σm−n < 1. Thus,

∥qm − qn∥ ≤ σn

1− σ
max
z∈∆

|χ1| . (4.9)

Since χ(s, z) is bounded, then |χ1| < ∞. So, as n → ∞, then ∥qm − qn∥ → 0. Thus, the
sequence {qm} is a Cauchy in B. Hence, χ(s, z) =

∑∞
j=0 χj(s, z) converges. Theorem 4.2

has been established.
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Theorem 4.3 (Error Estimate). For the series solution in Eq. (4.8) to Eq. (4.1), the
maximum absolute cutoff error is anticipated to be:

max
z∈∆

∣∣∣∣∣χ(s, z)−
n∑

m=0

χm(s, z)

∣∣∣∣∣ ≤ σn

1− σ
max
z∈∆

|χ1| .

Proof: Eq. (4.9) in Theorem 2 leads us to the conclusion that:

∥qm − qn∥ ≤ σn

1−σmax
z∈∆

|χ1|. So as m → ∞, we have qm → χ(s, z). Then,

∥χ(s, z)− qn∥ ≤ σn

1−σmax
z∈∆

|χ1(s, z)|. Consequently, ∆’s maximum absolute truncation

error is:

max
z∈∆

∣∣∣∣∣χ(s, z)−
n∑

m=0

χm(s, z)

∣∣∣∣∣ ≤ max
t∈∆

σn

1− σ
|χ1(s, z)| =

σn

1− σ
∥χ1(s, z)∥ .

Theorem 4.3 has been established.

5 Numerical Simulation

This section compares the outcomes with the current solutions after applying the ANDM
to two models. The procedure for the ANDM is first presented. Given the generic form of
a nonlinear fractional differential equations (FODEs):

Dα
z (χ(s, z)) +R (χ(s, z)) + F (χ(s, z)) = g(s, z), (5.1)

where Dα
t (χ(s, z)) is the Caputo fractional derivative of the function χ(s, z), R is the linear

differential operator, F represent the general nonlinear differential operator and g(s, z) is
the source term.

Employing the N-transform to Eq. (5.1) to arrive at:

X(s, r,w) =
vα

rα

n−1∑
k=0

vk−α

r(k+1)−α

[
Dk χ(s, z)

]
t=0

+
vα

rα
ℵ [g(s, z)]− vα

rα
ℵ [Rχ(s, z) + Fχ(s, z)] .

(5.2)
The inverse natural transform of Eq. (5.2) is now used to produce:

χ(s, z) = G(s, z)− ℵ−1

[
vα

rα
N+ [R χ(s, z) + F χ(s, z)]

]
. (5.3)
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The nonhomogeneous term and the necessary conditions produced G(s, z). Now let’s sup-
pose that the solutions form an infinite series:

χ(s, z) =
∞∑
n=0

χn(s, z). (5.4)

We may now rewrite Eq. (5.3) using Eq. (5.4) to produce:

∞∑
n=0

χn(s, z) = G(s, z)− ℵ−1

[
vα

rα
ℵ

[
R

∞∑
n=0

χn(s, z)

]
+

∞∑
n=0

An

]
, (5.5)

where the polynomials An stand for the nonlinear terms F χ(s, z).

Eq. (5.5)’s two sides are compared, and the following result is reached:

χ0(s, z) = G(s, z),

χ1(s, z) = −ℵ−1
[
vα

rαℵ [Rχ0(s, z)] +A0

]
,

χ2(s, z) = −ℵ−1
[
vα

rαℵ [Rχ1(s, z)] +A1

]
.

As we proceed, one can obtain the general recursive relation given by:

χn+1(s, z) = −ℵ−1

[
vα

rα
ℵ [Rχn(s, z)] +An

]
, n ≥ 0. (5.6)

Lastly, the approximate values are provided by:

χ(s, z) =
∞∑
n=0

χn(s, z).

Example 5.1 Consider the nonhomogeneous space-fractional telegraph equation of the
form:

cDα
s (χ(s, z)) = χzz(s, z) + χz(s, z) + χ(s, z)− s2 − z + 1, s, z > 0, 1 < α ≤ 2. (5.7)

Accompanied by its conditions:

χ(0, z) = z, χs(0, z) = 0. (5.8)

Employing the N-transformation in Eq. (5.7), one can arrive at:

ℵ [cDα
s (χ(s, z))] = ℵ

[
χzz(s, z) + χz(s, z) + χ(s, z)− s2 − z + 1

]
. (5.9)

Substitute in Eq. (5.8) using Eq. (5.9) to produce:

ℵ [χ(s, z)] =

n−1∑
k=0

vk

rk+1

[
Dk

s (χ(s, z))
]
s=0

+
vα

rα
ℵ
[
χzz(s, z) + χz(s, z) + χ(s, z)− s2 − z + 1

]
.
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=
1

r
χ(0, z) +

v

r2
χz(0, z) +

vα

rα
ℵ
[
χzz(s, z) + χz(s, z) + χ(s, z)− s2 − z + 1

]
=

z

r
− 2

vα+2

rα+3
+ (1− z)

vα

rα+1
+
vα

rα
ℵ [χzz(s, z) + χz(s, z) + χ(s, z)] . (5.10)

For our purposes below, we use the N-inverse transformation of Eq. (5.10):

χ(s, z) = ℵ−1

[
vα

rα
ℵ [χzz(s, z) + χz(s, z) + χ(s, z)]

]
+ ℵ−1

[
z

r
− 2

vα+2

rα+3
+ (1− z)

vα

rα+1

]

= ℵ−1

[
vα

rα
ℵ [χzz(s, z) + χz(s, z) + χ(s, z)]

]
+ z − 2zα+2

Γ [α+ 3]
+

(1− z)zα

Γ [α+ 1]
. (5.11)

Suppose our intended solutions are of the form:

χ(s, z) =

∞∑
n=0

χn(s, z). (5.12)

Putting Eq. (5.12) in place of Eq. (5.11) results in:

∞∑
n=0

χn(s, z) = ℵ−1

[
vα

rα
ℵ

[ ∞∑
n=0

(χn)zz(s, z) +

∞∑
n=0

(χn)z(s, z) +

∞∑
n=0

χ(s, z)

]]

+ z − 2zα+2

Γ [α+ 3]
+

(1− z)zα

Γ [α+ 1]
. (5.13)

We continue in a similar manner to obtain:

χ0(s, z) = z − 2zα+2

Γ [α+ 3]
+

(1− z)zα

Γ [α+ 1]
,

χ1(s, z) = ℵ−1

[
vα

rα
ℵ [(χ0)zz(s, z) + (χ0)z(s, z) + χ0(s, z)]

]
,

χ2(s, z) = ℵ−1

[
vα

rα
ℵ [(χ1)zz(s, z) + (χ1)z(s, z) + χ1(s, z)]

]
,

χ3(s, z) = ℵ−1

[
vα

rα
ℵ [(χ2)zz(s, z) + (χ2)z(s, z) + χ2(s, z)]

]
.

Finally,

χn+1(s, z) = ℵ−1

[
vα

rα
ℵ

[ ∞∑
n=0

(χn)zz(s, z) +

∞∑
n=0

(χn)z(s, z) +

∞∑
n=0

χ(s, z)

]]
. (5.14)
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Then using Eq. (5.23) we can arrive at:

χ1(s, z) = ℵ−1

[
vα

rα
ℵ [(χ0)zz(s, z) + (χ0)z(s, z) + χ0(s, z)]

]

=

(
(1 + z)sα

Γ(α+ 1)
− zs2α

Γ(2α+ 1)
− 2s2α+2

Γ(2α+ 3)

)
.

Similarly,

χ2(s, z) = ℵ−1

[
vα

rα
ℵ [(χ1)zz(s, z) + (χ1)z(s, z) + χ1(s, z)]

]

=
(2 + z)s2α

Γ(2α+ 1)
− (1 + z)s3α

Γ(3α+ 1)
− 2s3α+2

Γ(3α+ 3)
.

χ3(s, z) = ℵ−1

[
vα

rα
ℵ [(χ2)zz(s, z) + (χ2)z(s, z) + χ2(s, z)]

]

=
(3 + z)s3α

Γ(3α+ 1)
− (2 + z)z4α

Γ(4α+ 1)
− 2s4α+2

Γ(4α+ 3)
.

Hence, the exact solution χ(s, z) is given by:

χ(s, z) =
∞∑
n=0

χn(s, z)

= χ0(s, z) + χ1(s, z) + χ2(s, z) + χ3(s, z) + ...

= z − 2zα+2

Γ(α+ 3)
+

(1− z)zα

Γ(α+ 1)
+

(1 + z)sα

Γ(α+ 1)
− zs2α

Γ(2α+ 1)
− 2s2α+2

Γ(2α+ 3)
+

(2 + z)s2α

Γ(2α+ 1)

− (1 + z)s3α

Γ(3α+ 1)
− 2s3α+2

Γ(3α+ 3)
+

(3 + z)s3α

Γ(3α+ 1)
− (2 + z)s4α

Γ(4α+ 1)
− 2s4α+2

Γ(4α+ 3)

= z − 2 + s2 + 2Eα,1(s
α)− s2Eα,3(s

α). (5.15)

Note that when α = 2, the exact solution is:

χ(s, z) = s2 + z. (5.16)

Hence, using the NADM, our exact solution is in excellent agreement with the one that
exists in the literature.
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Figure 1: Exact solution to χ(s, z) for α = 2 and α = 1.2, respectively.

Figure 2: Exact solution to χ(s, z) for α = 1.4 and α = 1.6, respectively.

Figure 3: Exact solution to χ(s, z) for α = 1.2, 1.4, 1.6, 1.8, 2 with z = 2 and z = 4, respectively.
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Table 1. Obtained results for χ(s, z) of example (5.1) for multiple values of α, s, z.

s z α = 1.1 α = 1.5 α = 1.8 α = 2
0.2 .02 0.36841 0.15664 0.08604 0.06

.05 0.39841 0.18664 0.11604 0.09

.08 0.42841 0.21664 0.14604 0.12
0.4 .02 0.82073 0.415443 0.25136 0.18

.05 0.85073 0.445443 0.28136 0.21

.08 0.88073 0.475443 0.31136 0.24
0.8 .02 1.97299 1.1975 0.8381 0.66

.05 2.00299 1.2275 0.8681 0.69

.08 2.03299 1.2575 0.8981 0.72

Example 5.2 Consider time-fractional diffusion equation of the form:

cDα
z (χ(s, z)) = χss(s, z) + es (Γ(α+ 1)− zα − z − 1) , 0 < z ≤ 1, 0 < s ≤ π, 1 < α ≤ 2.

(5.17)
Accompanied by its conditions:

χ(s, 0) = es, χz(s, 0) = es. (5.18)

Employing the N-transformation in Eq. (5.17), one can arrive at:

ℵ [cDα
z (χ(s, z))] = ℵ [χss(s, z) + es (Γ(α+ 1)− zα − z − 1)] . (5.19)

Substitute in Eq. (5.19) using Eq. (5.18) to produce:

ℵ [χ(s, z)] =
n−1∑
k=0

vk

rk+1

[
Dk

s (χ(s, z))
]
z=0

+
vα

rα
ℵ [χss(s, z) + es (Γ(α+ 1)− zα − z − 1)]

=
1

r
χ(s, 0) +

v

r2
χz(s, 0) +

vα

rα
ℵ [χss(s, z) + es (Γ(α+ 1)− zα − z − 1)]

= es
(
1

r
+

v

r2

)
+
vα

rα
ℵ [χss(s, z) + es (Γ(α+ 1)− zα − z − 1)] . (5.20)

For our purposes below, we use the N-inverse transformation of Eq. (5.20):

χ(s, z) = ℵ−1

[
vα

rα
ℵ [χss(s, z)]

]
+ es(1 + z)

+ es
(
zα − Γ(α+ 1)z2α

Γ(2α+ 1)
− zα+1

Γ(α+ 2)
− zα

Γ(α+ 1)

)
. (5.21)
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Suppose our intended solutions are of the form:

χ(s, z) =
∞∑
n=0

χn(s, z). (5.22)

Putting Eq. (5.22) in place of Eq. (5.21) results in:

∞∑
n=0

χn(s, z) = ℵ−1

[
vα

rα
ℵ [χss(s, z)]

]
+ es(1 + z)

+ es
(
zα − Γ(α+ 1)z2α

Γ(2α+ 1)
− zα+1

Γ(α+ 2)
− zα

Γ(α+ 1)

)
. (5.23)

We continue in a similar manner to obtain:

χ0(s, z) = es
(
1 + z + zα − Γ(α+ 1)z2α

Γ(2α+ 1)
− zα+1

Γ(α+ 2)
− zα

Γ(α+ 1)

)
,

χ1(s, z) = ℵ−1

[
vα

rα
ℵ [(χ0)ss(s, z)]

]
,

χ2(s, z) = ℵ−1

[
vα

rα
ℵ [(χ1)ss(s, z)]

]
,

χ3(s, z) = ℵ−1

[
vα

rα
ℵ [(χ2)ss(s, z)]

]
.

Finally,

χn+1(s, z) = ℵ−1

[
vα

rα
ℵ

[ ∞∑
n=0

(χn)ss(s, z)

]]
. (5.24)

Then using Eq. (5.24) we can arrive at:

χ1(s, z) = ℵ−1

[
vα

rα
ℵ [(χ0)ss(s, z)]

]

= ℵ−1

[
vα

rα
ℵ
[
es
(
1 + z + zα − Γ(α+ 1)z2α

Γ(2α+ 1)
− zα+1

Γ(α+ 2)
− zα

Γ(α+ 1)

)]]

= es
(

zα

Γ(α+ 1)
+

zα+1

Γ(α+ 2)
+

(Γ(α+ 1)− 1) z2α

Γ(2α+ 1)
− z2α+1

Γ(2α+ 2)
− Γ(α+ 1)z3α

Γ(3α+ 1)

)
.

Similarly,

χ2(s, z) = es
(

z2α

Γ(2α+ 1)
+

z2α+1

Γ(2α+ 2)
+

(Γ(α+ 1)− 1) z3α

Γ(3α+ 1)
− z3α+1

Γ(3α+ 2)
− Γ(α+ 1)z4α

Γ(4α+ 1)

)
.
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χ3(s, z) = es
(

z3α

Γ(3α+ 1)
+

z3α+1

Γ(3α+ 2)
+

(Γ(α+ 1)− 1) z4α

Γ(4α+ 1)
− z4α+1

Γ(4α+ 2)
− Γ(α+ 1)z5α

Γ(5α+ 1)

)
.

Hence, the exact solution χ(s, z) is given by:

χ(s, z) =
∞∑
n=0

χn(s, z)

= χ0(s, z) + χ1(s, z) + χ2(s, z) + χ3(s, z) + ...

= es
(
1 + z + zα − Γ(α+ 1)z2α

Γ(2α+ 1)
− zα+1

Γ(α+ 2)
− zα

Γ(α+ 1)

)

+ es
(

zα

Γ(α+ 1)
+

zα+1

Γ(α+ 2)
+

(Γ(α+ 1)− 1) z2α

Γ(2α+ 1)
− z2α+1

Γ(2α+ 2)
− Γ(α+ 1)z3α

Γ(3α+ 1)

)
+ ...

= es (1 + z + zα) . (5.25)

Note that when α = 2, the exact solution is:

χ(s, z) = es
(
1 + z + z2

)
. (5.26)

Hence, using the NADM, our exact solution is in excellent agreement with the one that
exists in the literature.

Figure 4: Exact solution to χ(s, z) for α = 2 and α = 1.2, respectively.
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Figure 5: Exact solution to χ(s, z) for α = 1.4 and α = 1.6, respectively.

Figure 6: Exact solution to χ(s, z) for α = 1.2, 1.4, 1.6, 1.8, 2 with z = 2 and z = 3, respectively.

Table 2. Obtained results for χ(s, z) of example (5.2) for multiple values α.

s z α = 1.1 α = 1.5 α = 1.8 α = 2
0.2 .02 -0.031956 -0.17819 -0.6403 -1.1967

.05 0.003831 -0.13976 -0.60166 -1.1588

.08 0.037442 -0.10174 -0.56206 -1.1198
0.4 .02 -0.039031 -0.21765 -0.78206 -1.4616

.05 0.004679 -0.1707 -0.73487 -1.4154

.08 0.045732 -0.12427 -0.6865 -1.3678
0.8 .02 -0.05822 -0.32469 -1.1667 -2.1805

.05 0.006981 -0.25466 -1.0963 -2.1115

.08 0.06822 -0.18539 -1.0241 -2.0405

Example 5.3 Consider the time-fractional diffusion equation below:

cDα
z (χ(s, z)) + χss(s, z) + s χs(s, z) = 2zα + 2(s2 + 1), 0 < z, s ≤ 1, 0 < α ≤ 1. (5.27)

Accompanied by its condition:
χ(s, 0) = s2. (5.28)
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Employing the N-transformation in Eq. (5.27), one can arrive at:

ℵ [cDα
z (χ(s, z))] = −ℵ

[
χss(s, z) + s χs(s, z)− 2zα − 2(s2 + 1)

]
. (5.29)

Substitute in Eq. (5.29) using Eq. (5.28) to produce:

ℵ [χ(s, z)] =
n−1∑
k=0

vk

rk+1

[
Dk

s (χ(s, z))
]
z=0

− vα

rα
ℵ
[
χss(s, z) + s χs(s, z)− 2zα − 2(s2 + 1)

]
=

1

r
χ(s, 0)− vα

rα
ℵ
[
χss(s, z) + s χs(s, z)− 2zα − 2(s2 + 1)

]
=

s2

r
− vα

rα
ℵ
[
χss(s, z) + s χs(s, z)− 2zα − 2(s2 + 1)

]
. (5.30)

For our purposes below, we use the N-inverse transformation of Eq. (5.30):

χ(s, z) = s2 − ℵ−1

[
vα

rα
ℵ [χss(s, z) + s χs(s, z)]

]
+

2Γ(α+ 1)z2α

Γ(2α+ 1)
+

2(s2 + 1)zα

Γ(α+ 1)
. (5.31)

Suppose our intended solutions are of the form:

χ(s, z) =

∞∑
n=0

χn(s, z). (5.32)

Putting Eq. (5.31) in place of Eq. (5.30) results in:

∞∑
n=0

χn(s, z) = s2 − ℵ−1

[
vα

rα
ℵ

[ ∞∑
n=0

(χn)ss(s, z) + s (χn)s(s, z)

]]

+
2Γ(α+ 1)z2α

Γ(2α+ 1)
+

2(s2 + 1)zα

Γ(α+ 1)
. (5.33)

We continue in a similar manner to obtain:

χ0(s, z) = s2 +
2Γ(α+ 1)z2α

Γ(2α+ 1)
+

2(s2 + 1)zα

Γ(α+ 1)
,

χ1(s, z) = −ℵ−1

[
vα

rα
ℵ [(χ0)ss(s, z) + s (χ0)s(s, z)]

]
,

χ2(s, z) = −ℵ−1

[
vα

rα
ℵ [(χ1)ss(s, z) + s (χ1)s(s, z)]

]
,

χ3(s, z) = −ℵ−1

[
vα

rα
ℵ [(χ2)ss(s, z) + s (χ2)s(s, z)]

]
.

19



Finally,

χn+1(s, z) = −ℵ−1

[
vα

rα
ℵ

[ ∞∑
n=0

(χn)ss(s, z) + s (χn)s(s, z)

]]
. (5.34)

Then using Eq. (5.34) we can arrive at:

χ1(s, z) = −ℵ−1

[
vα

rα
ℵ [(χ0)ss(s, z) + s (χ0)s(s, z)]

]

= −ℵ−1

[
vα

rα
ℵ
[
2(s2 + 1) +

2(s2 + 1)zα

Γ(α+ 1)

]]

= −ℵ−1

[
2(s2 + 1)vα

rα+1
+

2v2α(s2 + 1)

r2α+1

]

= −2(s2 + 1)zα

Γ(α+ 1)
− 4(s2 + 1)z2

α

Γ(2α+ 1)
.

Similarly,

χ2(s, z) = ℵ−1

[
vα

rα
ℵ [(χ1)ss(s, z) + s (χ1)s(s, z)]

]

=
4(s2 + 1)z2α

Γ(2α+ 1)
+

8(s2 + 1)z3α

Γ(3α+ 1)
,

χ3(s, z) = −8(s2 + 1)z3α

Γ(3α+ 1)
− 16(s2 + 1)z4α

Γ(4α+ 1)
,

χ4(s, z) =
16(s2 + 1)z4α

Γ(4α+ 1)
+

32(s2 + 1)z5α

Γ(5α+ 1)
.

Hence, the exact solution χ(s, z) is given by:

χ(s, z) =

∞∑
n=0

χn(s, z)

= χ0(s, z) + χ1(s, z) + χ2(s, z) + χ3(s, z) + ...

= s2 +
2Γ(α+ 1)z2α

Γ(2α+ 1)
+

2(s2 + 1)zα

Γ(α+ 1)

− 2(s2 + 1)zα

Γ(α+ 1)
− 4(s2 + 1)z2

α

Γ(2α+ 1)
+ ...
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= s2 +
2Γ(α+ 1)z2α

Γ(2α+ 1)
. (5.35)

Note that when α = 1, the exact solution is:

χ(s, z) = s2 + z2. (5.36)

Hence, using the NADM, our exact solution is in excellent agreement with the one that
exists in the literature.

Figure 7: Exact solution to χ(s, z) for α = 2 and α = 1.2, respectively.

Figure 8: Exact solution to χ(s, z) for α = 1.4 and α = 1.6, respectively.
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Figure 9: Exact solution to χ(s, z) for α = 0.2, 0.4, 0.6, 0.8, 1 with z = 0.3 and z = 0.5, respectively.

Table 3. Obtained results for χ(s, z) of example (5.3) for multiple values α.

s z α = 1.1 α = 1.4 α = 1.9 α = 2
0.2 0.02 0.9876 0.075449 0.042492 0.0404

0.04 1.1285 0.11089 0.04755 0.0416
0.06 1.2205 0.14634 0.054453 0.0436
0.08 1.2904 0.18179 0.062902 0.0464

0.4 0.02 1.1076 0.19544 0.16249 0.1604
0.04 1.2485 0.23089 0.16755 0.1616
0.06 1.3405 0.26634 0.17445 0.1636
0.08 1.4104 0.30179 0.1829 0.1664

0.8 0.02 1.5876 0.67544 0.64249 0.6404
0.04 1.7285 0.71089 0.64755 0.6416
0.06 1.8205 0.74634 0.65445 0.6436
0.08 1.8904 0.78179 0.6629 0.6464

Example 5.4 Consider time-fractional diffusion equation of the form:

cDα
z (χ(s, z)) = k χss(s, z), z > 0, s ∈ R, 1 < α ≤ 2. (5.37)

Accompanied by its conditions:

χ(s, 0) = s2, χz(s, 0) = 0. (5.38)

Employing the N-transformation in Eq. (5.37), one can arrive at:

ℵ [cDα
z (χ(s, z))] = ℵ [k χss(s, z)] . (5.39)

Substitute in Eq. (5.39) using Eq. (5.38) to produce:

ℵ [χ(s, z)] =
n−1∑
k=0

vk

rk+1

[
Dk

s (χ(s, z))
]
z=0

+ k
vα

rα
ℵ [χss(s, z)]
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=
1

r
χ(s, 0) +

v

r2
χz(s, 0) + k

vα

rα
ℵ [χss(s, z)]

=

(
s2

r

)
+ k

vα

rα
ℵ [χss(s, z)] . (5.40)

For our purposes below, we use the N-inverse transformation of Eq. (5.40):

χ(s, z) = s2 + k ℵ−1

[
vα

rα
ℵ [χss(s, z)]

]
. (5.41)

Suppose our intended solutions are of the form:

χ(s, z) =

∞∑
n=0

χn(s, z). (5.42)

Putting Eq. (5.42) in place of Eq. (5.41) results in:

∞∑
n=0

χn(s, z) = s2 + k ℵ−1

[
vα

rα
ℵ [χss(s, z)]

]
. (5.43)

We continue in a similar manner to obtain:

χ0(s, z) = s2,

χ1(s, z) = k ℵ−1

[
vα

rα
ℵ [(χ0)ss(s, z)]

]
,

χ2(s, z) = k ℵ−1

[
vα

rα
ℵ [(χ1)ss(s, z)]

]
,

χ3(s, z) = k ℵ−1

[
vα

rα
ℵ [(χ2)ss(s, z)]

]
.

Finally,

χn+1(s, z) = k ℵ−1

[
vα

rα
ℵ

[ ∞∑
n=0

(χn)ss(s, z)

]]
. (5.44)

Then using Eq. (5.44) we can arrive at:

χ1(s, z) = k ℵ−1

[
vα

rα
ℵ [(χ0)ss(s, z)]

]

= 2k ℵ−1

[
vα

rα+1

]
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=
2k zα

Γ(α+ 1)
.

Similarly,

χ2(s, z) = 0.

χ3(s, z) = 0.

Hence, the exact solution χ(s, z) is given by:

χ(s, z) =

∞∑
n=0

χn(s, z)

= χ0(s, z) + χ1(s, z) + χ2(s, z) + χ3(s, z) + ...

= s2 +
2k zα

Γ(α+ 1)
. (5.45)

Note that when α = 2, the exact solution is:

χ(s, z) = s2 + kz2. (5.46)

Hence, using the NADM, our exact solution is in excellent agreement with the one that
exists in the literature.

Figure 10: Exact solution to χ(s, z) for α = 2 and α = 1.2, k = 1.
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Figure 11: Exact solution to χ(s, z) for α = 1.4 and α = 1.6, k = 1.

Figure 12: Exact solution to χ(s, z) for α = 1.2, 1.4, 1.6, 1.8, 2 with z = 0.5 and z = 1, k = 1.

Table 4. Obtained results for χ(s, z) of example (5.4) for multiple values α and k = 1.

s z α = 1.1 α = 1.4 α = 1.9 α = 2
0.2 0.02 0.9876 0.075449 0.042492 0.0404

0.04 1.1285 0.11089 0.04755 0.0416
0.06 1.2205 0.14634 0.054453 0.0436
0.08 1.2904 0.18179 0.062902 0.0464

0.4 0.02 1.1076 0.19544 0.16249 0.1604
0.04 1.2485 0.23089 0.16755 0.1616
0.06 1.3405 0.26634 0.17445 0.1636
0.08 1.4104 0.30179 0.1829 0.1664

0.8 0.02 1.5876 0.67544 0.64249 0.6404
0.04 1.7285 0.71089 0.64755 0.6416
0.06 1.8205 0.74634 0.65445 0.6436
0.08 1.8904 0.78179 0.6629 0.6464
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6 Concluding Remarks

In the last thirty years, the subject of fractional calculus has seen the development of numer-
ous numerical techniques. In this article, we developed a new method called the fractional
natural Adomian method (ANDM) to handle applications that arise in engineering and sci-
ence. We successfully found exact solutions to the space fractional-order telegraph equation
and time fractional diffusion problems using an efficient scheme called the ANDM. Using the
Banach fixed point theorem, we provided proofs for the existence and uniqueness theorems
along with the error estimates and applied them to a nonlinear partial differential equation.
Using the current technique, new exact solutions for four applications have been obtained.
One can conclude that the NADM has shown a high level of improvement over the existing
methods because of their accuracy and simplicity. The applicability of the ANDM proved
its importance in the fields of applied science and engineering. Hence, the fractional natural
Adomian decomposition method is an alternative method to the existing methods.

7 Acknowledgment

We would like to send our thanks to the reviewers for finding the time to read and improve
our work in the current manuscript.

8 Declarations

Funding. No funding was received for the current research work.

Conflicts of interest. We all certify that we have no financial or other conflicts
of interest with regard to the publication of this paper.

Consent to participate. Participants are informed that if they have any ques-
tions or complaints about how the research is being performed, they can get in touch with
the University of Vermont Ethics Officer.

References

[1] Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a

fractional dynamics approach. Physics reports. 339(1), 1-77.

[2] Podlubny, I. (1999). Fractional Differential Equations. Academic Press, New York.

[3] Mabrouk, S. M., Wazwaz, A. M., & Rashed, A. S. (2024). Monitoring Dynamical Be-

havior and Optical Solutions of Space-Time Fractional Order Double-Chain Deoxyri-

bonucleic Acid Model Considering the Atangana’s Conformable Derivative. Journal of

Applied and Computational Mechanics. 1-9.

26



[4] Mainardi, F. (2022). Fractional calculus and waves in linear viscoelasticity: an intro-

duction to mathematical models. World Scientific.

[5] Luchko, Y., Mainardi, F., & Povstenko, Y. (2013). Propagation speed of the maximum

of the fundamental solution to the fractional diffusion–wave equation. Computers &

Mathematics with Applications. 66(5), 774-784.

[6] Schneider, W. R., & Wyss, W. (1989). Fractional diffusion and wave equations. Journal

of Mathematical Physics. 30(1), 134-144.

[7] Fujita, Y. (1990). Cauchy problems of fractional order and stable processes. Japan

journal of applied mathematics. 7, 459-476.

[8] Fujita, Y. (1990). Integrodifferential equation which interpolates the heat equation and

the wave equation. Osaka J. Math. 27:309–321.

[9] M. Garg and P. Manohar, Numerical solution of fractional diffusion-wave equation

with two space variables by matrix method, Fractional Calculus and Applied Analysis.

13(2), pp. 191-207, (2010).

[10] Agrawal, O. P. (2002). Solution for a fractional diffusion-wave equation defined in a

bounded domain. Nonlinear Dynamics. 29, 145-155.

[11] Agrawal, O. P. (2003). Response of a diffusion-wave system subjected to determin-

istic and stochastic fields. ZAMM-Journal of Applied Mathematics and Mechanic-

s/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and

Mechanics. 83(4), 265-274.

[12] Luchko, Y. (2013). Fractional wave equation and damped waves. Journal of Mathe-

matical Physics. 54(3).

[13] Luchko, Y. (2015). Wave–diffusion dualism of the neutral-fractional processes. Journal

of Computational Physics. 293, 40-52.

[14] Prakash, A. (2016). Analytical method for space-fractional telegraph equation by ho-

motopy perturbation transform method. Nonlinear Engineering. 5(2), 123-128.

[15] Momani, S. (2005). Analytic and approximate solutions of the space-and time-fractional

telegraph equations. Applied Mathematics and Computation. 170(2), 1126-1134.

[16] Hashmi, M. S., Aslam, U., Singh, J., & Nisar, K. S. (2022). An efficient numerical

scheme for fractional model of telegraph equation. Alexandria Engineering Journal.

61(8), 6383-6393.

[17] Eltayeb, H., Abdalla, Y. T., Bachar, I., & Khabir, M. H. (2019). Fractional tele-

graph equation and its solution by natural transform decomposition method. Symme-

try, 11(3), 334.

27



[18] M. Garg and A. Sharma, Solution of space-time fractional telegraph equation by Ado-

mian decomposition method, Journal of Inequalities and Special Functions. Volume (2)

Issue (1), Pages1-7, (2011).

[19] Orsingher, E., & Zhao, X. (2003). The space-fractional telegraph equation and the

related fractional telegraph process. Chinese Annals of Mathematics. 24(01), 45-56.

[20] Liu, Z., & Sun, S. (2024). SOLVABILITY AND STABILITY OF MULTI-TERM

FRACTIONAL DELAY Q-DIFFERENCE EQUATION. Journal of Applied Analysis

& Computation. 14(3), 1177-1197.

[21] Shen, L. B., & Han, B. S. (2024). PROPAGATING TERRACE IN A PERIODIC

REACTION-DIFFUSION EQUATION WITH CONVECTION. Journal of Applied

Analysis & Computation. 14(3), 1395-1413.

[22] Al-Shara, S. (2014). Fractional transformation method for constructing solitary wave

solutions to some nonlinear fractional partial differential equations. Applied Mathe-

matical Sciences. 8(116), 5751-5762.

[23] Alsayyed, O., Awawdeh, F., Al-Shara’, S., & Rawashdeh, E. (2022). High-Order

Schemes for Nonlinear Fractional Differential Equations. Fractal and Fractional, 6(12),

748.

[24] Belgacem, F. B. M., & Silambarasan, R. (2012). Maxwell’s equations solutions by

means of the natural transform. Math. Eng. Sci. Aerosp. 3(3), 313-323.

[25] Loonker, D., & Banerji, P. K. (2013). Solution of fractional ordinary differential equa-

tions by natural transform. Int. J. Math. Eng. Sci. 12(2), 1-7.

[26] El-Kalla, I.L.; Convergence of Adomian’s Method Applied to A Class of Volterra Type

Integro-Differential Equations. International Journal of Differential Equations and Ap-

plications, 10(2), 225-234, (2005).

[27] Rawashdeh, M. S. (2017). The fractional natural decomposition method: theories and

applications. Mathematical Methods in the Applied Sciences. 40(7), 2362-2376.

[28] Rawashdeh, M. S., & Al-Jammal, H. (2016). New approximate solutions to fractional

nonlinear systems of partial differential equations using the FNDM. Advances in Dif-

ference Equations. 2016(1), 1-19.

[29] Mahmoud S. Rawashdeh, Nazek A. Obeidat, Hala S. Abedalqader. New Class of Non-

linear Fractional Integro-Differential Equations with Theoretical Analysis via Fixed

Point Approach: Numerical and Exact Solutions. Journal of Applied Analysis and

Computation. 2023, Vol. 13, No. 5, 2767-2787.

28



[30] Obeidat, N. A., & Bentil, D. E. (2021). New theories and applications of tempered

fractional differential equations. Nonlinear Dynamics. 105(2), 1689-1702.

[31] Obeidat, N. A., & Bentil, D. E. (2023). Novel technique to investigate the convergence

analysis of the tempered fractional natural transform method applied to diffusion equa-

tions. Journal of Ocean Engineering and Science. 8(6), 636-646.

[32] Mittag-Leffler, G. M. (1903). Sur la nouvelle fonction Eα (x). CR Acad. Sci. Paris,

137(2), 554-558.

29


