Finite-time stability of discrete descriptor systems with time-varying delay and nonlinear uncertainties

Yusheng Jia ${ }^{\text {a }}$, Chong Lin ${ }^{\text {a,* }}$, Mingji Zhang ${ }^{\text {b }}$
${ }^{a}$ Institute of Complexity Science, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao 266071, China
${ }^{b}$ Department of Mathematics, New Mexico Institution of Mining and Technology, Socorro, NM 87801, USA

Abstract

The finite-time stability for discrete descriptor systems with time-varying delay and nonlinear uncertainties is studied. A new discrete inequality is obtained. On this basis, by combining exponential weighted Lyapunov-like functional (LLF) and convex combination techniques, the sufficient conditions for the system to be finite-time stable are obtained. Finally, we demonstrate the effectiveness of our method through three specific examples.

Keywords: Finite-time stability, descriptor systems, delay, discrete weighted inequality.

1. Introduction

Descriptor systems(also referring to singular systems), have special properties different from normal system, which used in many fields widely. For example, economic system, power system and robot system. In the past decades, correlated study on descriptor systems has become more and more in-depth and extensive, and many excellent results have emerged [1-12]. As everyone knows, in most actual production systems, delay may cause unstable, oscillatory or other poor system performance. Descriptor systems with time-delay have achieved rich research results with respect to Lyapunov asymptotic stability (LAS), the filtering problems, the controller design and the stability analysis [4-9]. We noticed that most of the relevant results are

[^0]about LAS. However, in some practical systems, such as systems related to chemical fields or missile launching process [13]. In these practical systems, what we need is for the system to remain stable within a certain time interval. This inspires us to study the finite-time stability of the system.

Finite-time stability (FTS) refers to that the state within a certain range for a given initial state within the specified time interval. By definition, FTS is different from LAS fundamentally. Indeed, in some cases, a system may be FTS but not LAS, and vice versa [14]. Recently, there have been rich achievements focusing on FTS [14-19]. Among them, relatively, there are few studies for discrete descriptor systems.

There are two important issues to be considered in the research of FTS for discrete descriptor systems.

Q-1: What kind of Lyapunov functional can effectively reduce conservatism?

Q-2:How to handle finite-sum term to get less conservative results when using Lyapunov functional method?

Regarding the first question, the LLF considering the influence of exponential weighting is established in [19]. On the second, unfortunately, at present, there is no suitable method for the FTS of discrete systems. Considering the specific research objectives of FTS, we believe the improvement is possible. This is also the motivation for us to conduct relevant research.

The contributions of the paper mainly include the following two points: firstly, we obtain a new inequality suitable for handle finite-sum term. Secondly, we introduce a new LLF, which allows us to achieve less conservative results. The new LLF makes the derivation process easier to implement.

Notations: R^{n} means the n dimensional Euclidean space, $R^{m \times n}$ denotes the set of matrices with $m \times n$ dimensions. $Q>0$ means Q is positive definite. $\lambda_{\max }(Q)$ and $\lambda_{\text {min }}(Q)$ are the maximum and minimum eigenvalues of Q respectively. N stands for the set of natural numbers. * denotes the symmetric block in symmetric matrix.

2. Problem Formulation

The discrete descriptor systems under consideration is as follows:

$$
\begin{equation*}
E x(k+1)=A x(k)+A_{d} x(k-d(k))+g_{1}(k, x(k))+g_{2}(k, x(k-d(k))) \tag{1}
\end{equation*}
$$

$x(k)=\psi(k), k \in\left[-d_{M},-d_{M}+1, \cdots, 0\right]$,
where $E \in R^{n \times n}$ is a singular matrix with $\operatorname{rank}(E)=r<n, A \in R^{n \times n}$ and $A_{d} \in R^{n \times n}$ are two known constant matrices, $x(k) \in R^{n}$ is state vector, $g_{1}(k, x(k))$ and $g_{2}(k, x(k-d(k)))$ are nonlinear uncertainties that satisfy the following assumptions,

$$
\begin{align*}
& \left\|g_{1}(k, x(k))\right\| \leq l_{1}\|x(k)\|, \tag{2}\\
& \left\|g_{2}(k, x(k-d(k)))\right\| \leq l_{2}\|x(k-d(k))\|, \tag{3}
\end{align*}
$$

where $l_{i}(i=1,2)$ are known contants. The initial condition $\psi(k)$ satisfies
$(\psi(k+1)-\psi(k))^{T}(\psi(k+1)-\psi(k)) \leqslant c_{0}, k \in\left[-d_{M},-d_{M}+1, \cdots, 0\right]$,
in which c_{0} is a known positive integer. The time-varying delay $d(k)$ satisfies $0<d_{m} \leqslant d(k) \leqslant d_{M}$, where d_{m} and d_{M} are two known positive integers. For simplicity, we denote $d=d_{M}-d_{m}$. Without loss of generality, we consider the case where $E=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$.

Based on the previously mentioned questions $Q-1$ and $Q-2$, our aim is to study the FTS of system (1), and we assume that the system (1) is regular and causal.

Firstly, let's introduce the following definition and lemmas.
Definition 1. (FTS) The descriptor system (1) is said to be finite-time stable with respect to $\left(c_{1}, c_{2}, N\right)$, in which $0<c_{1}<c_{2}, N \in \mathrm{~N}$, if it is regular, causal such that:

$$
\sup _{k \in\left[-d_{M},-d_{M}+1, \cdots, 0\right]} \psi^{T}(k) \psi(k) \leqslant c_{1} \Rightarrow x^{T}(k) E^{T} E x(k)<c_{2}, k=0,1, \cdots N .
$$

Lemma 1. [20] For a given matrix $R>0$ and integers $h_{j}(j=1,2)$ satisfying $0<h_{1} \leqslant h_{2} \leqslant i$, we denote $y(s)=x(s+1)-x(s)$,

$$
\chi\left(i, h_{1}, h_{2}\right)=\left\{\begin{array}{lr}
\frac{1}{h_{2}-h_{1}}\left[2 \sum_{s=i-h_{2}}^{i-h_{1}-1} x(s)+x\left(i-h_{1}\right)-x\left(i-h_{2}\right)\right], & h_{1}<h_{2} \\
2 x\left(t-h_{1}\right), & h_{1}=h_{2}
\end{array}\right.
$$

then we have

$$
-\left(h_{2}-h_{1}\right) \sum_{s=i-h_{2}}^{i-h_{1}-1} y^{T}(s) R y(s) \leqslant-\Omega_{0}^{T} R \Omega_{0}-3 \Omega_{1}^{T} R \Omega_{1},
$$

where

$$
\begin{aligned}
& \Omega_{0}=x\left(i-h_{1}\right)-x\left(i-h_{2}\right), \\
& \Omega_{1}=x\left(i-h_{1}\right)+x\left(i-h_{2}\right)-\chi\left(i, h_{1}, h_{2}\right) .
\end{aligned}
$$

Lemma 2. [21] For given matrices U and $P>0$, real scalars ν_{i}, vectors ζ_{i}, satisfying $\left(\begin{array}{cc}P & U \\ U^{T} & P\end{array}\right) \geqslant 0, \sum_{i=1}^{2} \nu_{i}=1$, we have

$$
-\sum_{i=1}^{2} \frac{1}{\nu_{i}} \zeta_{i}^{T} P \zeta_{i} \leqslant-\binom{\zeta_{1}}{\zeta_{2}}^{T}\left(\begin{array}{cc}
P & U \\
U^{T} & P
\end{array}\right)\binom{\zeta_{1}}{\zeta_{2}} .
$$

Lemma 3. (Cauchy matrix inequality) For any vectors x, y and scalar $\rho>0$, one has $2 x^{T} X y \leq \rho^{-1} x^{T} X^{T} X x+\rho y^{T} y$.

3. Main results

3.1. Discrete weighted inequality

First, we introduce the relevant knowledge about discrete orthogonal polynomials to be used in the subsequent proof.

For integers $h_{1}<h_{2}$ and vector function $f_{1}(i), f_{2}(i) \in\left\{Z\left[h_{1}, h_{2}-1\right] \rightarrow R^{n}\right\}$, we define $\left(f_{1}, f_{2}\right)_{\omega}=\sum_{i=h_{1}}^{h_{2}-1} \omega(i) f_{1}(i) f_{2}(i)$, where $\omega(i)$ is the weighted function. $f_{1}(i)$ and $f_{2}(i)$ are orthogonal with respect to $\omega(i)$ if $\left(f_{1}, f_{2}\right)_{\omega}=0$.

Lemma 4. For any matrix $R>0$ and integers $h_{1}<h_{2}$, vector-valued function $\chi(i) \in\left\{Z\left[h_{1}, h_{2}-1\right] \rightarrow R^{n}\right\}$, one has

$$
\begin{equation*}
\sum_{i=h_{1}}^{h_{2}-1} \chi^{T}(i) R \chi(i) w(i) \geqslant \sum_{k=0}^{\infty} \mu_{k} \Omega_{k}^{T}(\chi) R \Omega_{k}(\chi) \tag{4}
\end{equation*}
$$

in which $\Omega_{k}(\chi)=\sum_{i=h_{1}}^{h_{2}-1} l_{k}(i) \chi(i), \mu_{k}=\frac{1}{\lambda_{k}}$, where $\lambda_{k}=\left(l_{k}, l_{k}\right)_{\omega^{-1}}, l_{k}(i)$ is a discrete orthogonal monic polynomial sequence with respect to $\omega^{-1}(i)$, $k=0,1, \cdots$.

Proof. Upon introducing
$z(i)=\sum_{k=0}^{\infty} \mu_{k} \Omega_{k}(\chi) S_{k}(i)$,
where $S_{k}(i)=\omega^{-\frac{1}{2}}(i) l_{k}(i), k=0,1, \cdots$, one has

$$
\begin{aligned}
0 \leqslant & \sum_{i=h_{1}}^{h_{2}-1}(\sqrt{\omega(i)} \chi(i)-z(i))^{T} R(\sqrt{\omega(i)} \chi(i)-z(i)) \\
= & \sum_{i=h_{1}}^{h_{2}-1} \chi^{T}(i) R \chi(i) \omega(i)-2 \sum_{i=h_{1}}^{h_{2}-1} z(i)^{T} R \chi(i) \sqrt{\omega(i)}+\sum_{i=h_{1}}^{h_{2}-1} z^{T}(i) R z(i) \\
= & \sum_{i=h_{1}}^{h_{2}-1} \chi^{T}(i) R \chi(i) \omega(i)-2 \sum_{i=h_{1}}^{h_{2}-1}\left(\sum_{k=0}^{\infty} \mu_{k} \Omega_{k}(\chi) S_{k}(i)\right)^{T} R \chi(i) \sqrt{\omega(i)} \\
& +\sum_{i=h_{1}}^{h_{2}-1}\left(\sum_{k=0}^{\infty} \mu_{k} \Omega_{k}(\chi) S_{k}(i)\right)^{T} R\left(\sum_{k=0}^{\infty} \mu_{k} \Omega_{k}(\chi) S_{k}(i)\right) \\
= & \sum_{i=h_{1}}^{h_{2}-1} \chi^{T}(i) R \chi(i) \omega(i)-2 \sum_{k=0}^{\infty} \mu_{k} \Omega_{k}^{T}(\chi) R \sum_{i=h_{1}}^{h_{2}-1} S_{k}(i) \chi(i) \sqrt{\omega(i)} \\
& +\sum_{i=h_{1}}^{h_{2}-1}\left(\sum_{k=0}^{\infty} \mu_{k} \Omega_{k}(\chi) S_{k}(i)\right)^{T} R\left(\sum_{k=0}^{\infty} \mu_{k} \Omega_{k}(\chi) S_{k}(i)\right) \\
= & \sum_{i=h_{1}}^{h_{2}-1} \chi^{T}(i) R \chi(i) \omega(i)-2 \sum_{k=0}^{\infty} \mu_{k} \Omega_{k}^{T}(\chi) R \Omega_{k}(\chi)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=h_{1}}^{h_{2}-1}\left(\sum_{k=0}^{\infty} \mu_{k}^{2} S_{k}^{2}(i) \Omega_{k}(\chi)\right)^{T} R \Omega_{k}(\chi) \\
& \sum_{i=h_{1}}^{h_{2}-1} \chi^{T}(i) R \chi(i) w(i)-\sum_{k=0}^{\infty} \mu_{k} \Omega_{k}^{T}(\chi) R \Omega_{k}(\chi)
\end{aligned}
$$

which means (4). The proof is completed.
Remark 1. For the weighting function $\omega(i)$, according to the properties and operating rules of orthogonal polynomials, we obtain the calculation formula of $l_{k}(i)$ in Lemma 4.
$l_{k}(i)=i^{k}+\sum_{j=0}^{k-1} \kappa_{k j} l_{j}(i), k=1,2, \cdots, n, \cdots$,
where $\kappa_{k j}=-\frac{\left(i^{k}, l_{j}\right)_{\omega^{-1}}}{\left(l_{j}, l_{j}\right)_{\omega^{-1}}}, l_{0}(i)=1$,
As mentioned in Q-1 above, for introducing an appropriate LLF, the weighting function should be appropriately selected. Then, one has

Corollary 1. For integers $h_{1}<h_{2}-1$ and matrix $R>0$, vector function $\chi(i) \in\left\{Z\left[h_{1}, h_{2}-1\right] \rightarrow R^{n}\right\}$, by choosing the weighted function $\omega(i)=\sigma^{h_{2}-i}$ with scalar σ, one has

$$
\begin{equation*}
\sum_{i=h_{1}}^{h_{2}-1} \chi^{T}(i) R \chi(i) \sigma^{h_{2}-i} \geqslant \sum_{k=0}^{\infty} \mu_{k} \Omega_{k}^{T}(\chi) R \Omega_{k}(\chi) \tag{6}
\end{equation*}
$$

where μ_{k} is the same as that defined in Lemma 4.
Remark 2. According to actual needs, we can increase the number of terms in (6). It should be noted that μ_{k} could be obtained easily according to (5). Here for $k=0,1,2$, the following results can be obtained by careful calculation,
$\lambda_{0}=\frac{\sigma^{h}-1}{\sigma^{h}(\sigma-1)}$,

$$
\begin{aligned}
\lambda_{1}= & \frac{\sigma+\sigma^{2 h+1}-\sigma^{h} h^{2}-2 \sigma^{h+1}-\sigma^{h+2} h^{2}+2 \sigma^{h+1} h^{2}}{\sigma^{h}\left(\sigma^{h}-1\right)(\sigma-1)^{3}}, \\
\lambda_{2}= & \frac{6 \sigma^{3} h^{4}-4 \sigma^{4} h^{3}+\sigma^{5} h^{2}-4 \sigma^{4} h^{4}+2 \sigma^{5} h^{3}}{(\sigma-1)^{5}\left(\sigma+\sigma^{1+2 h}-\sigma^{h} h^{2}-2 \sigma^{1+h}-\sigma^{2+h} h^{2}+2 \sigma^{1+h} h^{2}\right)} \\
& +\frac{18 \sigma^{3+h} h^{2}-8 \sigma^{4}+2 h h^{2}-6 \sigma^{3+h} h^{4}-4 \sigma^{4}+h h^{3}}{(\sigma-1)^{5}\left(\sigma+\sigma^{1+2 h}-\sigma^{h} h^{2}-2 \sigma^{1+h}-\sigma^{2+h} h^{2}+2 \sigma^{1+h} h^{2}\right)} \\
& +\frac{4 \sigma^{4}+h h^{4}+2 \sigma^{5+h} h^{3}-\sigma^{5+h} h^{4}+8 \sigma^{2} h^{2}+4 \sigma^{2} h^{3}}{(\sigma-1)^{5}\left(\sigma+\sigma^{1+2 h}-\sigma^{h} h^{2}-2 \sigma^{1+h}-\sigma^{2+h} h^{2}+2 \sigma^{1+h} h^{2}\right)} \\
& -\frac{\left(2 \sigma h^{3}-\sigma h^{2}-12 \sigma^{3}-\sigma h^{4}+12 \sigma^{h+1}-4 \sigma^{2 h+3}\right)}{(\sigma-1)^{5}\left(\sigma+\sigma^{1+2 h}-\sigma^{h} h^{2}-2 \sigma^{1+h}-\sigma^{h+2} h^{2}+2 \sigma^{1+h} h^{2}\right)} \\
& -\frac{\sigma^{1-h}\left(\sigma^{2 h} h^{4}+4 \sigma^{2}-8 \sigma^{5} h^{2}+8 \sigma^{1+2 h} h^{2}-4 \sigma^{1+2 h} h^{3}-4 \sigma^{1+2 h} h^{4}\right)}{(\sigma-1)^{5}\left(\sigma+\sigma^{1+2 h}-\sigma^{h} h^{2}-2 \sigma^{1+h}-\sigma^{h+2} h^{2}+2 \sigma^{1+h} h^{2}\right)} \\
& +\frac{\left(\sigma^{5} h^{4}-\sigma^{5+h} h^{2}-4 \sigma^{2} h^{4}-\sigma^{1+h} h^{2}-2 \sigma^{1+h} h^{3}-18 \sigma^{3} h^{2}\right)}{(\sigma-1)^{5}\left(\sigma+\sigma^{1+2 h}-\sigma^{h} h^{2}-2 \sigma^{1+h}-\sigma^{h+2} h^{2}+2 \sigma^{1+h} h^{2}\right)},
\end{aligned}
$$

where $h=h_{2}-h_{1}$. According to Lemma $4, \mu_{k}=\frac{1}{\lambda_{k}}$, naturally, we have

$$
\begin{equation*}
\sum_{i=h_{1}}^{h_{2}-1} \chi^{T}(i) R \chi(i) \gamma^{h_{2}-1} \geqslant \sum_{k=0}^{2} \mu_{k} \Omega_{k}^{T}(\chi) R \Omega_{k}(\chi) \tag{7}
\end{equation*}
$$

Remark 3. By setting μ_{k} and Ω_{k} as defined in Lemma 4, we can get $\lim _{\sigma \rightarrow 1} \mu_{0}=\frac{1}{h}$. Then, for $k=0,(7)$ reduces to the discrete Jensen-type inequality in [22].

Especially for $y(i)=x(i+1)-x(i)$ and $k=0,1$, we have
Corollary 2. As μ_{k} and Ω_{k} are defined in Lemma 4. Then, the following
inequality holds

$$
\sum_{i=h_{1}}^{h_{2}-1} \sigma^{h_{2}-i} y^{T}(i) R y(i) \geqslant \sum_{i=0}^{1} \mu_{k} \Omega_{i}^{T}(\chi) R \Omega_{i}(y)
$$

where
$\Omega_{0}(y)=x\left(h_{2}\right)-x\left(h_{1}\right)$,
$\Omega_{1}(y)=\left(h_{2}+c_{10}-1\right) x\left(h_{2}\right)-\left(h_{1}+c_{10}-1\right) x\left(h_{1}\right)-\sum_{i=h_{1}}^{h_{2}-1} x(i)$,
in which κ_{10} is defined in Remark 1.

3.2. FTS analysis

By constructing a new LLK, applying convex combination technique and the weighted inequality obtained previously, sufficient conditions guaranteeing FTS of the system are obtained. For the sake of conciseness in the following Theorem 1 , there are the following notations.

$$
\begin{aligned}
e_{i}= & {\left[0_{n \times(i-1) n} I_{n} 0_{n \times(7-i) n}\right], i=1,2, \ldots, 7, } \\
\Psi_{1}= & \left(A e_{1}+A_{d} e_{3}\right)^{T} P_{1}\left(A e_{1}+A_{d} e_{3}\right)+e_{1}^{T}\left(-\sigma E^{T} P_{1} E+M S A+A^{T} S^{T} M^{T}\right) e_{1} \\
& +e_{3}^{T}\left(M S A+A^{T} S^{T} M^{T}\right) e_{1}, \\
S= & \left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right), \\
\Psi_{2}= & e_{1}^{T}\left(Q_{1}+Q_{2}\right) e_{1}-\sigma^{d_{m}} e_{2}^{T} Q_{1} e_{2}-\sigma^{d_{M}} e_{4}^{T} Q_{2} e_{4}, \\
\Psi_{3}= & \left(A e_{1}+A_{d} e_{3}-E e_{1}\right)^{T}\left(d_{m}-1\right) P_{2}\left(A e_{1}+A_{d} e_{3}-E e_{1}\right) \\
& -\left(e_{1}-e_{2}\right)^{T} \mu_{1} E^{T} P_{2} E\left(e_{1}-e_{2}\right) \\
& -\left[E *\left(\left(\mu+d_{m}\right) e_{1}-\mu e_{2}\right)-e_{5}\right]^{T} \mu_{2} P_{2}\left[E *\left(\left(\mu+d_{m}\right) e_{1}-\mu e_{2}\right)-e_{5}\right],
\end{aligned}
$$

in which

$$
\begin{aligned}
& \mu=\frac{\sigma^{d_{m}}\left(1+d_{m}+\sigma d_{m}\right)-1}{\left(\sigma^{d_{m}}-1\right)(\sigma-1)}, \\
& \mu_{1}=\frac{\sigma^{d}(\sigma-1)}{\sigma^{d}-1},
\end{aligned}
$$

$$
\begin{align*}
\mu_{2}= & \frac{\sigma^{d}\left(\sigma^{d}-1\right)(\sigma-1)^{3}}{\sigma-d^{2} \sigma^{d}-2 \sigma^{d+1}+2 d^{2} \sigma^{d+1}-d^{2} \sigma^{d+2}+\sigma^{2 d+1}}, \\
\Psi_{4}= & \left(A e_{1}+A_{d} e_{3}-E e_{1}\right)^{T}\left(d^{2}-1\right) P_{3}\left(A e_{1}+A_{d} e_{3}-E e_{1}\right) \\
& -\sigma^{d_{m}+1} \Omega^{T}\left[\begin{array}{cc}
\overline{P_{3}} & U \\
* & \overline{P_{3}}
\end{array}\right] \Omega, \\
\Omega= & {\left.\left[E *\left(e_{2}-e_{3}\right) ; E *\left(e_{2}+e_{3}\right)-e_{6} ; E *\left(e_{3}-e_{4}\right) ; E *\left(e_{3}+e_{4}\right)-e_{7}\right)\right], } \\
\bar{P}_{3}= & \left(\begin{array}{cc}
P_{3} & 0 \\
0 & 3 P_{3}
\end{array}\right), \\
t_{1}= & \frac{\sigma^{d_{m}}-1}{\sigma-1}, \\
t_{2}= & \frac{\sigma^{d_{M}}-1}{\sigma-1}, \\
t_{3}= & \frac{d_{m}-\sigma+\sigma \sigma^{d_{m}}-d_{m} \sigma}{(\sigma-1)^{2}}, \\
t_{4}= & \frac{\sigma^{d_{M}+1}}{(\sigma-1)^{2}}-\frac{\sigma^{d_{m}}\left(d_{m}-d_{M}+\sigma+d_{M} \sigma-d_{m} \sigma\right)}{(\sigma-1)^{2}}, \\
\Psi_{5}= & e_{1}^{T}\left[l_{1}^{2}\left(\rho_{1}+\rho_{3}+\rho_{5}\right) I+l_{1}^{2} P_{1}\right] e_{1}+e_{3}^{T}\left[l_{2}^{2}\left(\rho_{2}+\rho_{4}\right) I+P_{1}\right] e_{3} . \tag{8}
\end{align*}
$$

Theorem 1. For given c_{1}, c_{2} and N, the system (1) is finite-time stable, if there exist scalar $\sigma>1$ and $v_{i}>0(i=1,2, \ldots, 6), \rho_{i}>0(i=1,2,3,4,5)$, matrices $Q_{i} \in R^{n \times n}(i=1,2), U \in R^{2 n \times 2 n}, M=\left(\begin{array}{cc}* & * \\ * & M_{4}\end{array}\right)\left(M_{4} \in R^{(n-r) \times(n-r)}\right)$, and $P_{i}=\left(\begin{array}{cc}P_{i 1} & * \\ * & *\end{array}\right)\left(P_{i 1} \in R_{r \times r}, i=1,2,3\right)$ satisfying the following inequalities

$$
\left(\begin{array}{cc}
\overline{P_{3}} & \frac{U}{*} \tag{9}\\
* & \overline{P_{3}}
\end{array}\right)>0
$$

$$
\begin{align*}
& \Psi=\sum_{i=1}^{5} \Psi_{i}<0, \tag{10}\\
& \left(\begin{array}{cccccc}
\Psi & e_{1}^{T} P A & e_{1}^{T} P A & e_{3}^{T} P A_{d} & e_{3}^{T} P A_{d} & l_{2} e_{3}^{T} P \\
* & -\rho_{1} I & 0 & 0 & 0 & 0 \\
* & * & -\rho_{2} I & 0 & 0 & 0 \\
* & * & * & -\rho_{3} I & 0 & 0 \\
* & * & * & * & -\rho_{4} I & 0 \\
* & * & * & * & * & -\rho_{5} I
\end{array}\right)<0, \tag{11}\\
& \tag{12}\\
& v_{1} I_{r}<P_{11}<v_{2} I_{r}, \tag{13}\\
& 0<Q_{1}<v_{3} I_{n}, \tag{14}\\
& 0<Q_{2}<v_{4} I_{n}, \tag{15}\\
& 0<P_{21}<v_{5} I_{r}, \tag{16}\\
& 0<P_{31}<v_{6} I_{r}, \tag{17}\\
& \sigma^{N}\left(v_{2}+v_{3} t_{1}+v_{4} t_{2}\right) c_{1}+c_{0}\left(v_{5} t_{3}+d v_{6} t_{4}\right)<v_{1} c_{2},
\end{align*}
$$

where Φ_{i} and t_{i} are defined in (8).

Proof. Consider the following LLK
$V(k)=\sum_{i=1}^{3} V_{i}(k)$,
in which
$V_{1}(k)=x^{T}(k) E^{T} P_{1} E x(k)$,
$V_{2}(k)=\sum_{i=k-d_{m}}^{k-1} \sigma^{k-1-i} x^{T}(i) Q_{1} x(i)+\sum_{i=k-d_{M}}^{k-1} \sigma^{k-1-i} x^{T}(i) Q_{2} x(i)$,

$$
\begin{aligned}
V_{3}(k)= & \sum_{i=k-1-d_{m}}^{k-1} \sigma^{k-1-i}\left(d_{m}-k+1+i\right) y^{T}(i) E^{T} P_{2} E y(i) \\
& +d \sum_{i=k-1-d_{M}}^{k-d_{m}-1} \sigma^{k-1-i}\left(d_{M}-k+1+i\right) y^{T}(i) E^{T} P_{3} E y(i) .
\end{aligned}
$$

Taking the difference of (18), one has

$$
\begin{aligned}
& \Delta V_{1}=V_{1}(k+1)-V_{1}(k) \\
& =x^{T}(k+1) E^{T} P_{1} E x(k+1)-x^{T}(k) E^{T} P_{1} E x(k) \\
= & x^{T}(k)\left(A^{T} P_{1} A-\sigma E^{T} P_{1} E\right) x(k)+2 x^{T}(k) A^{T} P_{1} A_{d} x(k-d(k)) \\
+ & x^{T}(k-d(k)) A_{d}^{T} P_{1} A_{d} x(k-d(k))+(\sigma-1) V_{1}(k) \\
+ & 2 x^{T}(k) M S A x(k)+2 x^{T}(k) M S A_{d} x(k-d(k)) \\
+ & 2 x^{T}(k) A^{T} P_{1} g_{1}(k, x(k))+2 x^{T}(k) A^{T} P_{1} g_{2}(k, x(k-d(k))) \\
+ & 2 x^{T}(k-d(k)) A_{d}^{T} P_{1} g_{1}(k, x(k)) \\
+ & 2 x^{T}(k-d(k)) A_{d}^{T} P_{1} g_{2}(k, x(k-d(k))) \\
+ & g_{1}^{T}(k, x(k)) P_{1} g_{1}(k, x(k))+2 g_{1}^{T}(k, x(k)) P_{1} g_{2}(k, x(k-d(k))) \\
+ & g_{2}^{T}(k, x(k-d(k))) P_{1} g_{2}(k, x(k-d(k)))
\end{aligned}
$$

According to Lemma 3, combined with (2) and (3), there exists $\rho_{i}(i=1,2,3,4,5)$, such that

$$
\begin{aligned}
& 2 x^{T}(k) A^{T} P_{1} g_{1}(k, x(k))+2 x^{T}(k) A^{T} P_{1} g_{2}(k, x(k-d(k))) \\
& +2 x^{T}(k-d(k)) A_{d}^{T} P_{1} g_{1}(k, x(k)) \\
& +2 x^{T}(k-d(k)) A_{d}^{T} P_{1} g_{2}(k, x(k-d(k))) \\
& +g_{1}^{T}(k, x(k)) P_{1} g_{1}(k, x(k))+2 g_{1}^{T}(k, x(k)) P_{1} g_{2}(k, x(k-d(k))) \\
& +g_{2}^{T}(k, x(k-d(k))) P_{1} g_{2}(k, x(k-d(k)))
\end{aligned}
$$

$$
\begin{align*}
\leq & l_{1}^{2} x^{T}(k)\left[\left(\rho_{1}+\rho_{3}+\rho_{5}\right) I+P_{1}\right] x(k) \\
& +l_{2}^{2} x^{T}(k-d(k))\left[\left(\rho_{2}+\rho_{4}\right) I+P_{1}\right] x(k-d(k)) \\
& +\left(\rho_{1}^{-1}+\rho_{3}^{-1}\right) x^{T}(k) P_{1} A A^{T} P_{1}^{T} x(k) \tag{20}\\
& +\left(\rho_{2}^{-1}+\rho_{4}^{-1}\right) x^{T}(k-d(k)) P_{1} A_{d} A_{d}^{T} P_{1}^{T} x(k-d(k)) \\
& +\rho_{5}^{-1} l_{2}^{2} x^{T}(k-d(k)) P_{1} P_{1}^{T} x(k-d(k))
\end{align*}
$$

$$
\begin{align*}
\Delta V_{2}(k)= & V_{2}(k+1)-V_{2}(k) \\
= & \sum_{i=k-d_{m}+1}^{k} \sigma^{k-i} x^{T}(i) Q_{1} x^{T}(i)-\sum_{i=k-d_{m}}^{k-1} \sigma^{k-i-1} x^{T}(i) Q_{1} x(i) \\
& +\sum_{i=k-d_{M}+1}^{k} \sigma^{k-i} x^{T}(i) Q_{2} x(i)-\sum_{i=k-d_{M}}^{k-1} \sigma^{k-i-1} x^{T}(i) Q_{2} x(i) \tag{21}\\
= & x^{T}(k) Q_{1} x(k)-\sigma^{d_{m}} x^{T}\left(k-d_{m}\right) Q_{1} x\left(k-d_{m}\right)+x^{T}(k) Q_{2} x(k) \\
& -\sigma^{d_{M}} x^{T}\left(k-d_{M}\right) Q_{2} x\left(k-d_{M}\right)+(\sigma-1) V_{2}(k),
\end{align*}
$$

$$
\begin{align*}
& \Delta V_{3}(k)=V_{3}(k+1)-V_{3}(k) \\
& =\left(d_{m}-1\right) y^{T}(k) E^{T} P_{2} E y(k)+\left(d^{2}-1\right) y^{T}(k) E^{T} P_{3} E y(k) \tag{22}\\
& \quad-\sum_{i=k-d_{m}}^{k-1} \sigma^{k-i} y^{T}(i) E^{T} P_{2} E y(i)-d \sum_{i=k-d_{M}}^{k-d_{m}-1} \sigma^{k-i} y^{T}(i) E^{T} P_{3} E y(i) \\
& \quad+(\sigma-1) V_{3}(k) \\
& \leqslant \\
& \quad\left(d_{m}-1\right) y^{T}(k) E^{T} P_{2} E y(k)+\left(d^{2}-1\right) y^{T}(k) E^{T} P_{3} E y(k)+(\sigma-1) V_{3}(k) \\
& \quad-\sum_{i=k-d_{m}}^{k-1} \sigma^{k-i} y^{T}(i) E^{T} P_{2} E y(k)-d \sigma^{d_{m}+1} \sum_{i=k-d_{M}}^{k-d_{m}-1} y^{T}(i) E^{T} P_{3} E y(i),
\end{align*}
$$

then, by Corollary 2 we obtain:

$$
\begin{equation*}
-\sum_{i=k-d_{m}}^{k-1} \sigma^{k-i} y^{T}(i) E^{T} P_{2} E y(i) \leqslant-\sum_{i=1}^{2} \mu_{i} U_{i}^{T}(k) E^{T} P_{2} E U_{i}(k) \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
& U_{1}(k)=x(k)-x\left(k-d_{m}\right), \\
& U_{2}(k)=\left(\mu+d_{m}\right) x(k)-\mu x\left(k-d_{m}\right)-G_{1}(k), \\
& G_{1}(k)= \begin{cases}\sum_{i=k-d_{m}}^{k-1} E x(i), & d_{m}>0, \\
E x(k), & d_{m}=0 .\end{cases}
\end{aligned}
$$

Based on Lemma 1, when $d_{m}<d(k)<d_{M}$ we have

$$
\begin{align*}
& -d\left[\sum_{i=k-d(k)}^{k-d_{m}-1} y^{T}(i) E^{T} P_{3} E y(i)+\sum_{i=k-d_{m}}^{k-d(k)-1} y^{T}(i) E^{T} P_{3} E y(i)\right] \\
& \leqslant-\frac{d}{d(k)-d_{m}}\left(W_{1}^{T}(k) E^{T} P_{3} E W_{1}(k)+3 W_{2}^{T}(k) E^{T} P_{3} E W_{2}(k)\right) \tag{24}\\
& -\frac{d}{d_{M}-d(k)}\left(W_{3}^{T}(k) E^{T} P_{3} E W_{3}(k)+3 W_{4}^{T}(k) E^{T} P_{3} E W_{4}(k)\right),
\end{align*}
$$

where

$$
\begin{aligned}
& W_{1}(k)=x\left(k-d_{m}\right)-x(k-d(k)), \\
& W_{2}(k)=x\left(k-d_{m}\right)+x(k-d(k))-G_{2}(k), \\
& G_{2}(k) \\
& =\left\{\begin{array}{lr}
\frac{1}{\beta_{1}}\left(2 \sum_{i=k-d(k)}^{k-d_{m}-1} E x(i)+E x\left(k-d_{m}\right)-E x(k-d(k))\right), & d_{m}<d(k), \\
2 E x\left(d_{m}\right), & d_{m}=d(k),
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& W_{3}(k)=x(k-d(k))-x\left(k-d_{M}\right), \\
& W_{4}(k)=x(k-d(k))+x\left(k-d_{M}\right)-G_{3}(k), \\
& G_{3}(k) \\
& = \begin{cases}\frac{1}{\beta_{2}}\left(2 \sum_{i=k-d_{M}}^{k-d(k)-1} E x(i)+E x(k-d(k))-E x\left(k-d_{M}\right)\right), & d(k)<d_{M}, \\
2 E x\left(d_{M}\right), & d_{M}=d(k),\end{cases}
\end{aligned}
$$

where $\beta_{1}=d(k)-d_{m}, \beta_{2}=d_{M}-d(k)$.
Obviously, $\frac{\beta_{1}}{d}+\frac{\beta_{2}}{d}=1$, then, by Lemma 2, one has

$$
-d \sum_{i=k-d_{M}}^{k-d_{m}-1} y^{T}(i) E^{T} P_{3} E y(i) \leqslant W^{T}(k)\left[\begin{array}{cc}
\overline{P_{3}} & U \tag{25}\\
* & \frac{U}{P_{3}}
\end{array}\right] W(k),
$$

where
$W^{T}(k)=\left[\begin{array}{lll}W_{1}^{T}(k), & W_{2}^{T}(k), & W_{3}^{T}(k), \\ W_{4}^{T}(k)\end{array}\right]$,
$\overline{P_{3}}=\left[\begin{array}{cc}P_{3} & 0 \\ 0 & 3 P_{3}\end{array}\right]$.
Especially when $d(k)=d_{m}$ or $d(k)=d_{M}$, one has $W_{i}(k)=0(i=1,2)$ or $W_{i}(k)=0(i=3,4)$ respectively. Therefore, we can obtain that (25) still holds.

Then, from (18) to (25), we can obtain

$$
\begin{align*}
& \Delta V(k)-(\sigma-1) V(k) \leqslant \xi^{T}(k) \Psi \xi(k) \\
+ & l_{1}^{2} x^{T}(k)\left[\left(\rho_{1}+\rho_{3}+\rho_{5}\right) I+P_{1}\right] x(k) \\
+ & l_{2}^{2} x^{T}(k-d(k))\left[\left(\rho_{2}+\rho_{4}\right) I+P_{1}\right] x(k-d(k)) \\
+ & \left(\rho_{1}^{-1}+\rho_{3}^{-1}\right) x^{T}(k) P_{1} A A^{T} P_{1}^{T} x(k) \tag{26}\\
+ & \left(\rho_{2}^{-1}+\rho_{4}^{-1}\right) x^{T}(k-d(k)) P_{1} A_{d} A_{d}^{T} P_{1}^{T} x(k-d(k)) \\
+ & \rho_{5}^{-1} l_{2}^{2} x^{T}(k-d(k)) P_{1} P_{1}^{T} x(k-d(k))
\end{align*}
$$

where
$\xi^{T}(k)=$
$\left[x^{T}(k), x^{T}\left(k-d_{m}\right), x^{T}(k-d(k)), x^{T}\left(k-d_{M}\right), G_{1}^{T}(k), G_{2}^{T}(k), G_{3}^{T}(k)\right]$.
Combining (10) and (26) one has
$\Delta V(k)-(\sigma-1) V(k)<0$,
then we get
$V(k)<\sigma V(k-1)$,
further obtaining
$V(k)<\sigma V(k-1)<\sigma^{2} V(k-2)<\cdots<\sigma^{k} V(0)$.
According to (18), we have
$\lambda_{\text {min }}\left(P_{11}\right) x^{T}(k) E^{T} E x(k) \leqslant V(k)$,
and

$$
\begin{align*}
& V(0)=x^{T}(0) E^{T} P_{1} E x(0)+\sum_{i=-d_{m}}^{-1} \sigma^{-1-i} x^{T}(i) Q_{1} x(i) \\
& \quad+\sum_{i=-d_{m}}^{-1} \sigma^{-1-i} x^{T}(i) Q_{2} x(i)+\sum_{i=-d_{m}-1}^{-1} \sigma^{-1-i}\left(d_{m}+i+1\right) y_{i}^{T} E^{T} P_{2} E y(i) \tag{31}\\
& \quad+d \sum_{i=-d_{M}-1}^{-d_{m}-1} \sigma^{-1-i}\left(d_{M}+i+1\right) y_{i}^{T}(k) E^{T} P_{3} E y(i),
\end{align*}
$$

after careful calculation, we have

$$
\begin{align*}
V(0) \leqslant & \lambda_{\max }\left(P_{11}\right) c_{1}+\lambda_{\max }\left(Q_{1}\right) c_{1} t_{1}+\lambda_{\max }\left(Q_{2}\right) c_{1} t_{2} \tag{32}\\
& +\delta\left[\lambda_{\max }\left(P_{21}\right) t_{3}+d \lambda_{\max }\left(P_{31}\right) t_{3}\right] .
\end{align*}
$$

From (30) to (32) it can be deduced that
$x^{T}(k) E^{T} E x(k) \leqslant \frac{\sigma^{N}\left(\gamma_{1}+\gamma_{2}\right)}{\lambda_{\min }\left(P_{11}\right)}$,
in which
$\gamma_{1}=\left[\lambda_{\text {max }}\left(P_{11}\right)+\lambda_{\text {max }}\left(Q_{1}\right) t_{1}+\lambda_{\text {max }}\left(Q_{2}\right) t_{2}\right] c_{1}$,
$\gamma_{2}=\left[\lambda_{\max }\left(P_{21}\right) t_{3}+d \lambda_{\max }\left(P_{31}\right) t_{4}\right] c_{0}$
By (11) to (17), it can be obtained that
$x^{T}(k) E^{T} E x(k)<c_{2}$,
then, the system (1) is finite-time stable from Definition 1, which completes the proof.
Remark 4. In Theorem 1, different from [18], a new LLK (18) for FTS of discrete system is established. Less conservative results can be obtained. Because in this way $V(k)<\sigma V(k-1)$ could be obtained without enlarging the inequality, unlike simple scaling $V(k)-\sigma V(k-1)<V(k)-V(k-1)$ used in [18].
Remark 5. Compared with the LLF used in [19], we added the term

$$
\begin{aligned}
V_{3}(k)= & \sum_{i=k-d_{m}-1}^{k-1} \sigma^{k-1-i}\left(d_{m}-k+1+i\right) y^{T}(i) E^{T} P_{2} E y(i) \\
& +d \sum_{i=k-d_{m}-1}^{k-d_{m}-1} \sigma^{k-1-i}\left(d_{M}-k+1+i\right) y^{T}(i) E^{T} P_{3} E^{T} E y(i),
\end{aligned}
$$

in this way, more information from the system (1) is used. Moreover, about the handling of the term $\sum_{i=k-d_{m}}^{k-1} \sigma^{k-i} y^{T}(i) E^{T} P_{2} E y(i)$, we have fully considered the influence of weighting functions instead of directly reducing it to $\sigma \sum_{i=k-d_{m}}^{k-1} y^{T}(i) E^{T} P_{2} E y(i)$. The inequality therefore has theoretical improvements in analysis.
Remark 6. In Theorem 1, the parameters c_{1}, c_{2}, σ, N are involved. It is
necessary for us to explain the relationship between the relevant parameters. Firstly, (10) and (17) are not in the form of LMIs respect to σ. But we note that (10) and (17) are LMIs for fixed σ, then, the LMIs (9) to (17) can be solved for the given σ. Moreover, based on the actual background of FTS, minimizing c_{2} for given c_{1} and N is a meaningful optimization problem.

Especially when $E=I_{n}$, system (1) reduces to a normal time-delay system. Based on Theorem 1, one has
Corollary 3. When $E=I_{n}$, the system (1) is finite-time stable respect to $\left(c_{1}, c_{2}, N\right), 0<c_{1}<c_{2}$, if there exist positive scalar $\sigma>1$ and $v_{i}>$ $0(i=1,2, \ldots, 6), \rho_{i}>0(i=1,2,3,4,5)$ matrices $P_{1}, P_{2}, P_{3}, Q_{1}, Q_{2}, M$ and U, such that

$$
\begin{align*}
& \left(\begin{array}{cc}
\overline{P_{3}} & \frac{U}{P_{3}}
\end{array}\right)>0, \tag{33}\\
& \Psi=\sum_{i=1}^{5} \Psi_{i}<0, \tag{34}
\end{align*}
$$

$$
\left(\begin{array}{cccccc}
\Psi & e_{1}^{T} P A & e_{1}^{T} P A & e_{3}^{T} P A_{d} & e_{3}^{T} P A_{d} & l_{2} e_{3}^{T} P \tag{36}\\
* & -\rho_{1} I & 0 & 0 & 0 & 0 \\
* & * & -\rho_{2} I & 0 & 0 & 0 \\
* & * & * & -\rho_{3} I & 0 & 0 \\
* & * & * & * & -\rho_{4} I & 0 \\
* & * & * & * & * & -\rho_{5} I
\end{array}\right)<0,
$$

$v_{1} I_{r}<P_{11}<v_{2} I_{r}$,
$0<Q_{1}<v_{3} I_{n}$,
in which the definition of Ψ is the same as in Theorem 1.
Remark 7. When studying the FTS of linear normal time-delay systems,
less conservative results can be obtained by Corollary 3. Because unlike [23], a new LLK (18) for FTS of discrete system is established. In this way $\Delta V(k)<(\sigma-1) V(k)$ could be obtained without enlarging the inequality, unlike simple scaling $\Delta V(k)<(\sigma-1) V_{1}(k)<(\sigma-1) V(k)$ used in [23].

4. Numerical examples

Example 1. Considering the system (1) with
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right], A=\left[\begin{array}{ccc}0.3 & 0.2 & 0.1 \\ 0.2 & 0.3 & 0.4 \\ 0.2 & 1 & 0.2\end{array}\right], A_{d}=\left[\begin{array}{ccc}0.1 & 0.03 & 0.1 \\ 0.1 & 0 & 0.02 \\ 1 & 0 & 0\end{array}\right]$,
$d_{m}=2, d_{M}=5, c_{1}=3, c_{0}=2,\left(l_{1}, l_{2}\right)=(0.01,0.01)$.
According to Theorem 1, the system is finite-time stable. In addition, in order to observe the impact of nonlinear uncertainties on the finite-time stability of the system, we validated different parameters. In Table 1 we obtained the minimum allowable value of c_{2} for different $\left(l_{1}, l_{2}\right)$.

Table 1: Minimum allowable c_{2} different l_{1} and l_{2}

$\left(l_{1}, l_{2}\right)$	$(0.01,0.01)$	$(0.03,0.03)$	$(0.05,0.05)$
c_{2}	79.67	86.34	92.53

We can see that the minimum allowable value of c_{2} increases as the degree of nonlinear uncertainties increases.
Example 2. Considering the system (1) with
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right], A=\left[\begin{array}{ccc}1 & 1 & 0.5 \\ -1.5 & 0.5 & 3.75 \\ 1 & 2 & 3\end{array}\right], A_{d}=\left[\begin{array}{ccc}0.5 & 0.2 & -0.2 \\ -0.15 & -0.6 & 0.05 \\ 1 & 0 & 0\end{array}\right]$,
$d_{m}=1, d_{M}=3, c_{1}=1, c_{0}=2$.
Based on the actual background of FTS, we hope that c_{2} is as small as possible for a given initial state and time interval. About the problem, [18] achieved good results. In Table 2, we compare the result with [18].

We can see that c_{2} obtained from Theorem 1 is smaller than that in [18],

Table 2: Minimum allowable c_{2} compared with [18]

$[18]$	$c_{1}=1$	$N=4$	$c_{2}=372.49$
Theorem 1	$c_{1}=1$	$N=4$	$c_{2}=109.08$

verifying that our result is less conservative than [18].
Example 3. Considering the system (1) with
$A=\left[\begin{array}{ccc}0.2 & 0.1 & 0.1 \\ 0.2 & 0.1 & 0.4 \\ 0.2 & 1 & 0.2\end{array}\right], A_{d}=\left[\begin{array}{ccc}0.1 & 0.01 & 0.1 \\ 0.1 & 0.01 & 0.1 \\ 0.1 & 0.1 & 0.01\end{array}\right]$,
$d_{m}=2, d_{M}=5, c_{1}=3, c_{0}=1.1$.
In Table 3, we compare the result with [23].
Table 3: Minimum allowable c_{2} compared with [23]

$[23]$	$c_{1}=3$	$N=5$	$c_{2}=56$
Corollary 3	$c_{1}=3$	$N=5$	$c_{2}=22$

We can see that c_{2} obtained from Corollary 3 is smaller than that in [23], which illustrates that our result is less conservative than [23].

5. Conclusion

In this paper, we have studied the finite-time stability for singular timedelay systems. Upon constructing a new Lyapunov-like functional (LLF) and a new weighted integral inequality, we are able to establish some sufficient conditions such that the underlying system is finite-time stable. Two numerical examples have been presented to illustrate the efficiency of the proposed method. Based on the results of this paper, we can study the synthesis problem of finite-time stability for singular time-delay systems, which is also our future work

6. Statements and Declarations

6.1. Funding

This work is supported in part by the National Natural Science Foundation of China under Grant 61873137 and the Shandong Taishan Scholar Project (No. ts20190930).

6.2. Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

References

[1] L. Dai. Singular control systems. Springer Berlin, 1989.
[2] S. Xu and J. Lam. Robust control and filtering of singular systems. Springer Berlin, 2006.
[3] M. Hou and P. C. Muller. Observer design for descriptor systems. IEEE Transactions on Automatic Control, 44(1):164-169, 1999.
[4] S. H Chen, W. H Ho, and J. H Chou. Design of robust quadratic finitehorizon optimal static output feedback controllers for linear uncertain singular systems. IEEE Systems Journal, 3(4):544-550, 2009.
[5] J.M Wang and S.P Ma. Resilient dynamic output feedback control for discrete-time descriptor switching markov jump systems and its applications. Nonlinear dynamics, 93(4):2233-2247, 2018.
[6] K. A. Barbosa, Ce De Souza, and D. Coutinho. Admissibility analysis of discrete linear time-varying descriptor systems. Automatica, 91:136-143, 2018.
[7] S. Guo, F. Zhu, and B. Jiang. Reduced-order switched UIO design for switched discrete-time descriptor systems. Nonlinear Analysis: Hybrid Systems, 30:240-255, 2018.
[8] C. Lin, J. Chen, B. Chen, L. Guo, Qing Guo Wang, and Z. Zhang. Stabilization for a class of rectangular descriptor systems via time delayed dynamic compensator. Journal of the Franklin Institute, 356(4):19441954, 2019.
[9] Z. Du, S. Hu, and J. Li. Event-triggered H_{∞} stabilization for singular systems with state delay. Asian Journal of Control, 23(2):835-846, 2020.
[10] G. Zhuang, J. Xia, Q. Ma, W. Sun, and Y. Wang. Event-triggered H_{∞} feedback control for delayed singular jump systems based on sampled observer and exponential detector. International Journal of Robust and Nonlinear Control, 31(15):7298-7316, 2021.
[11] Y. Shu and B. Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 18(3):1583-1602, 2022.
[12] S. Terasaki and K. Sato. Minimal controllability problems on linear structural descriptor systems. IEEE Transactions on Automatic Control, 67(5):2522-2528, 2022.
[13] D. Y. Rew, M. J. Tahk, and H. Cho. Short-time stability of proportional navigation guidance loop. IEEE Transactions on Aerospace and Electronic Systems, 32(3):1107-1115, 1996.
[14] Ali Abooee and Mohammad Mehdi Arefi. Robust finite-time stabilizers for a connected chain of nonlinear double-integrator systems. IEEE Systems Journal, 13(1):833-841, 2019.
[15] F. Amato, R. Ambrosino, M. Ariola, G. Ariola, De., and Tommasi. Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties. International Journal of Robust \& Nonlinear Control, 21(10):1080-1092, 2011.
[16] Sreten B. Stojanovic, Dragutin L. J. Debeljkovic, and N. Dimitrijevic. Finite-time stability of discrete-time systems with time-varying delay. Chemical Industry and Chemical Engineering Quarterly, 18(4-1):525533, 2012.
[17] Z. Zuo, Y. Liu, Y. Wang, and H. Li. Finite-time stochastic stability and stabilisation of linear discrete-time markovian jump systems with partly unknown transition probabilities. Control Theory \& Applications Iet, 6(10):1522-1526, 2012.
[18] W. Xue and W. Mao. Admissible finite-time stability and stabilization of discrete-time singular systems with time-varying delays. In American Control Conference, 2013.
[19] N.H. Muoi, G. Rajchakit, and V.N. Phat. Lmi approach to finite-time stability and stabilization of singular linear discrete delay systems. Acta Applicandae Mathematicae: An International Journal on Applying Mathematics and Mathematical Applications, 146(1):81-93, 2016.
[20] P. T. Nam, P. N. Pathirana, and H Trinh. Discrete wirtingerbased inequality and its application. Journal of the Franklin Institute, 352(5):1893-1905, 2015.
[21] P. G. Park, J. W. Ko, and C. Jeong. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 47(1):235238, 2011.
[22] X. Jiang, Q. L. Han, and X. Yu. Stability criteria for linear discretetime systems with interval-like time-varying delay. In American Control Conference, 2005.
[23] Z. Zhuo, Z. Zhang, Z. Hui, Z. Bo, and H. R. Karimi. Finite-time stability analysis and stabilization for linear discrete-time system with timevarying delay. Journal of the Franklin Institute, 351(6):3457-3476, 2014.

[^0]: *Corresponding author
 Email address: linchong_2004@hotmail.com (Chong Lin)

