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Abstract

The finite-time stability for discrete descriptor systems with time-varying
delay and nonlinear uncertainties is studied. A new discrete inequality is
obtained. On this basis, by combining exponential weighted Lyapunov-like
functional (LLF) and convex combination techniques, the sufficient condi-
tions for the system to be finite-time stable are obtained. Finally, we demon-
strate the effectiveness of our method through three specific examples.
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1. Introduction

Descriptor systems(also referring to singular systems), have special prop-
erties different from normal system, which used in many fields widely. For
example, economic system, power system and robot system. In the past
decades, correlated study on descriptor systems has become more and more
in-depth and extensive, and many excellent results have emerged [1–12]. As
everyone knows, in most actual production systems, delay may cause un-
stable, oscillatory or other poor system performance. Descriptor systems
with time-delay have achieved rich research results with respect to Lyapunov
asymptotic stability (LAS), the filtering problems, the controller design and
the stability analysis [4–9]. We noticed that most of the relevant results are

∗Corresponding author
Email address: linchong_2004@hotmail.com (Chong Lin )

Preprint submitted to Journal of Applied Analysis and Computation March 19, 2024



about LAS. However, in some practical systems, such as systems related to
chemical fields or missile launching process [13]. In these practical systems,
what we need is for the system to remain stable within a certain time interval.
This inspires us to study the finite-time stability of the system.

Finite-time stability (FTS) refers to that the state within a certain range
for a given initial state within the specified time interval. By definition, FTS
is different from LAS fundamentally. Indeed, in some cases, a system may
be FTS but not LAS, and vice versa [14]. Recently, there have been rich
achievements focusing on FTS [14–19]. Among them, relatively, there are
few studies for discrete descriptor systems.

There are two important issues to be considered in the research of FTS
for discrete descriptor systems.

Q-1: What kind of Lyapunov functional can effectively reduce conser-
vatism?

Q-2:How to handle finite-sum term to get less conservative results when
using Lyapunov functional method?

Regarding the first question, the LLF considering the influence of expo-
nential weighting is established in [19]. On the second, unfortunately, at
present, there is no suitable method for the FTS of discrete systems. Con-
sidering the specific research objectives of FTS, we believe the improvement
is possible. This is also the motivation for us to conduct relevant research.

The contributions of the paper mainly include the following two points:
firstly, we obtain a new inequality suitable for handle finite-sum term. Sec-
ondly, we introduce a new LLF, which allows us to achieve less conservative
results. The new LLF makes the derivation process easier to implement.

Notations: Rn means the n dimensional Euclidean space, Rm×n denotes
the set of matrices with m × n dimensions. Q > 0 means Q is positive
definite. λmax (Q) and λmin (Q) are the maximum and minimum eigenvalues
of Q respectively. N stands for the set of natural numbers. ∗ denotes the
symmetric block in symmetric matrix.

2. Problem Formulation

The discrete descriptor systems under consideration is as follows:

Ex (k + 1) = Ax (k) + Adx (k − d(k))+g1 (k, x (k)) + g2 (k, x (k − d(k))) (1)
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x (k) = ψ (k) , k ∈ [−dM , − dM + 1, · · · , 0] ,

where E ∈ Rn×n is a singular matrix with rank(E) = r < n, A ∈ Rn×n

and Ad ∈ Rn×n are two known constant matrices, x (k) ∈ Rn is state vector,
g1 (k, x (k)) and g2 (k, x (k − d(k))) are nonlinear uncertainties that satisfy
the following assumptions,

∥g1 (k, x (k))∥ ≤ l1 ∥x (k)∥ , (2)

∥g2 (k, x (k − d (k)))∥ ≤ l2 ∥x (k − d (k))∥ , (3)

where li (i = 1, 2) are known contants. The initial condition ψ (k) satisfies

(ψ (k + 1)− ψ (k))T (ψ (k + 1)− ψ (k)) 6 c0, k ∈ [−dM , − dM + 1, · · · , 0] ,

in which c0 is a known positive integer. The time-varying delay d (k) satisfies
0 < dm 6 d (k) 6 dM , where dm and dM are two known positive integers. For
simplicity, we denote d = dM − dm. Without loss of generality, we consider

the case where E =

[
Ir 0
0 0

]
.

Based on the previously mentioned questions Q−1 and Q−2, our aim is
to study the FTS of system (1), and we assume that the system (1) is regular
and causal.

Firstly, let’s introduce the following definition and lemmas.

Definition 1. (FTS) The descriptor system (1) is said to be finite-time
stable with respect to (c1, c2, N), in which 0 < c1 < c2, N ∈ N, if it is
regular, causal such that:

sup
k∈[−dM ,−dM+1,··· ,0]

ψT (k)ψ (k) 6 c1 ⇒ xT (k)ETEx (k) < c2, k = 0, 1, · · ·N.

Lemma 1. [20] For a given matrix R > 0 and integers hj (j = 1, 2) satisfying
0 < h1 6 h2 6 i, we denote y (s) = x(s+ 1)− x(s),

χ(i, h1, h2) =


1

h2 − h1

[
2

i−h1−1∑
s=i−h2

x (s) + x (i− h1)− x (i− h2)

]
, h1 < h2,

2x (t− h1) , h1 = h2,
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then we have

− (h2 − h1)

i−h1−1∑
s=i−h2

yT (s)Ry (s) 6 −ΩT
0RΩ0 − 3ΩT

1RΩ1,

where

Ω0 = x (i− h1)− x (i− h2) ,

Ω1 = x (i− h1) + x (i− h2)− χ (i, h1, h2) .

Lemma 2. [21] For given matrices U and P > 0, real scalars νi, vectors ζi,

satisfying

(
P U
UT P

)
> 0,

2∑
i=1

νi = 1, we have

−
2∑

i=1

1

νi
ζTi Pζi 6 −

(
ζ1

ζ2

)T (
P U
UT P

)(
ζ1

ζ2

)
.

Lemma 3. (Cauchy matrix inequality) For any vectors x,y and scalar ρ > 0,
one has
2xTXy ≤ ρ−1xTXTXx+ ρyTy.

3. Main results

3.1. Discrete weighted inequality

First, we introduce the relevant knowledge about discrete orthogonal
polynomials to be used in the subsequent proof.

For integers h1 < h2 and vector function f1 (i) , f2 (i)∈ {Z [h1, h2 − 1] → Rn},

we define (f1, f2)ω =
h2−1∑
i=h1

ω (i) f1 (i) f2 (i), where ω (i) is the weighted func-

tion. f1 (i) and f2 (i) are orthogonal with respect to ω (i) if (f1, f2)ω = 0.

Lemma 4. For any matrix R > 0 and integers h1 < h2, vector-valued
function χ (i) ∈ {Z [h1, h2 − 1] → Rn}, one has

h2−1∑
i=h1

χT (i)Rχ (i)w (i) >
∞∑
k=0

µkΩ
T
k (χ)RΩk (χ), (4)

4



in which Ωk (χ) =
h2−1∑
i=h1

lk (i)χ (i), µk =
1

λk
, where λk = (lk, lk)ω−1 , lk (i)

is a discrete orthogonal monic polynomial sequence with respect to ω−1 (i),
k = 0, 1, · · · .

Proof. Upon introducing

z (i) =
∞∑
k=0

µkΩk (χ)Sk (i),

where Sk (i) = ω− 1
2 (i) lk (i), k = 0, 1, · · · , one has

0 6
h2−1∑
i=h1

(√
ω (i)χ (i)− z (i)

)T
R
(√

ω (i)χ (i)− z (i)
)

=

h2−1∑
i=h1

χT (i)Rχ (i)ω (i)− 2

h2−1∑
i=h1

z(i)TRχ (i)
√
ω (i) +

h2−1∑
i=h1

zT (i)Rz (i)

=

h2−1∑
i=h1

χT (i)Rχ (i)ω (i)− 2

h2−1∑
i=h1

(
∞∑
k=0

µkΩk (χ)Sk (i)

)T

Rχ (i)
√
ω (i)

+

h2−1∑
i=h1

(
∞∑
k=0

µkΩk (χ)Sk (i)

)T

R

(
∞∑
k=0

µkΩk (χ)Sk (i)

)

=

h2−1∑
i=h1

χT (i)Rχ (i)ω (i)− 2
∞∑
k=0

µkΩk
T (χ)R

h2−1∑
i=h1

Sk (i)χ (i)
√
ω (i)

+

h2−1∑
i=h1

(
∞∑
k=0

µkΩk (χ)Sk (i)

)T

R

(
∞∑
k=0

µkΩk (χ)Sk (i)

)

=

h2−1∑
i=h1

χT (i)Rχ (i)ω (i)− 2
∞∑
k=0

µkΩ
T
k (χ)RΩk (χ)
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+

h2−1∑
i=h1

(
∞∑
k=0

µ2
kS

2
k (i) Ωk (χ)

)T

RΩk (χ)

h2−1∑
i=h1

χT (i)Rχ (i)w (i)−
∞∑
k=0

µkΩ
T
k (χ)RΩk (χ)

which means (4). The proof is completed.

Remark 1. For the weighting function ω (i), according to the properties and
operating rules of orthogonal polynomials, we obtain the calculation formula
of lk (i) in Lemma 4.

lk (i) = ik +
k−1∑
j=0

κkjlj (i) , k = 1, 2, · · · , n, · · · , (5)

where κkj = −
(
ik, lj

)
ω−1

(lj, lj)ω−1

, l0 (i) = 1,

As mentioned in Q-1 above, for introducing an appropriate LLF, the
weighting function should be appropriately selected. Then, one has

Corollary 1. For integers h1 < h2 − 1 and matrix R > 0, vector function
χ (i)∈ {Z [h1, h2 − 1] → Rn}, by choosing the weighted function ω (i) = σh2−i

with scalar σ, one has

h2−1∑
i=h1

χT (i)Rχ (i)σh2−i >
∞∑
k=0

µkΩ
T
k (χ)RΩk (χ), (6)

where µk is the same as that defined in Lemma 4.

Remark 2. According to actual needs, we can increase the number of terms
in (6). It should be noted that µk could be obtained easily according to
(5). Here for k = 0, 1, 2, the following results can be obtained by careful
calculation,

λ0 =
σh − 1

σh (σ − 1)
,
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λ1 =
σ + σ2h+1 − σhh2 − 2σh+1 − σh+2

h2 + 2σh+1h2

σh (σh − 1) (σ − 1)3
,

λ2 =
6σ3h4 − 4σ4h3 + σ5h2 − 4σ4h4 + 2σ5h3

(σ − 1)5 (σ + σ1+2h − σhh2 − 2σ1+h − σ2 + hh2 + 2σ1+hh2)

+
18σ3 + hh2 − 8σ4 + 2hh2 − 6σ3 + hh4 − 4σ4 + hh3

(σ − 1)5 (σ + σ1+2h − σhh2 − 2σ1+h − σ2 + hh2 + 2σ1+hh2)

+
4σ4 + hh4 + 2σ5 + hh3 − σ5 + hh4 + 8σ2h2 + 4σ2h3

(σ − 1)5 (σ + σ1+2h − σhh2 − 2σ1+h − σ2 + hh2 + 2σ1+hh2)

−

(
2σh3 − σh2 − 12σ3 − σh4 + 12σh+1 − 4σ2h+3

)
(σ − 1)5

(
σ + σ1+2h − σhh2 − 2σ1+h − σh+2h2 + 2σ1+hh2

)
−
σ1−h

(
σ2hh4 + 4σ2 − 8σ5h2 + 8σ1+2hh2 − 4σ1+2hh3 − 4σ1+2hh4

)
(σ − 1)5

(
σ + σ1+2h − σhh2 − 2σ1+h − σh+2h2 + 2σ1+hh2

)
+

(
σ5h4 − σ5 + hh2 − 4σ2h4 − σ1+hh2 − 2σ1+hh3 − 18σ3h2

)
(σ − 1)5

(
σ + σ1+2h − σhh2 − 2σ1+h − σh+2h2 + 2σ1+hh2

) ,
where h = h2 − h1. According to Lemma 4, µk =

1

λk
, naturally, we have

h2−1∑
i=h1

χT (i)Rχ (i)γh2−1 >
2∑

k=0

µkΩ
T
k (χ)RΩk (χ) (7)

Remark 3. By setting µk and Ωk as defined in Lemma 4, we can get

lim
σ→1

µ0 =
1

h
. Then, for k = 0, (7) reduces to the discrete Jensen-type in-

equality in [22].

Especially for y (i) = x(i+ 1)− x(i) and k = 0, 1, we have
Corollary 2. As µk and Ωk are defined in Lemma 4. Then, the following
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inequality holds

h2−1∑
i=h1

σh2−iyT (i)Ry (i) >
1∑

i=0

µkΩ
T
i (χ)RΩi (y),

where

Ω0 (y) = x (h2)− x (h1),

Ω1 (y) = (h2 + c10 − 1)x (h2)− (h1 + c10 − 1)x (h1)−
h2−1∑
i=h1

x (i),

in which κ10 is defined in Remark 1.

3.2. FTS analysis
By constructing a new LLK, applying convex combination technique and

the weighted inequality obtained previously, sufficient conditions guarantee-
ing FTS of the system are obtained. For the sake of conciseness in the
following Theorem 1, there are the following notations.

ei =
[
0n×(i−1)n In 0n×(7−i)n

]
, i = 1, 2, ..., 7,

Ψ1 = (Ae1 + Ade3)
TP1 (Ae1 + Ade3) + eT1

(
−σETP1E +MSA+ ATSTMT

)
e1

+eT3
(
MSA+ ATSTMT

)
e1,

S =

(
0 0
0 In−r

)
,

Ψ2 = eT1 (Q1 +Q2) e1 − σdmeT2Q1e2 − σdM eT4Q2e4,

Ψ3 = (Ae1 + Ade3 − Ee1)
T (dm − 1)P2(Ae1 + Ade3 − Ee1)

−(e1 − e2)
Tµ1E

TP2E(e1 − e2)

−[E ∗ ((µ+ dm) e1 − µe2)− e5]
Tµ2P2 [E ∗ ((µ+ dm) e1 − µe2)− e5] ,

in which

µ =
σdm (1 + dm + σdm)− 1

(σdm − 1) (σ − 1)
,

µ1 =
σd (σ − 1)

σd − 1
,
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µ2 =
σd
(
σd − 1

)
(σ − 1)3

σ − d2 σd − 2 σd+1 + 2 d2 σd+1 − d2 σd+2 + σ2 d+1
,

Ψ4 = (Ae1 + Ade3 − Ee1)
T (d2 − 1)P3(Ae1 + Ade3 − Ee1)

−σdm+1ΩT

 P3 U

∗ P3

Ω,

Ω = [E ∗ (e2 − e3);E ∗ (e2 + e3)− e6;E ∗ (e3 − e4);E ∗ (e3 + e4)− e7)],

P 3 =

 P3 0

0 3P3

,

t1 =
σdm − 1

σ − 1
,

t2 =
σdM − 1

σ − 1
,

t3 =
dm − σ + σ σdm − dm σ

(σ − 1)2
,

t4 =
σdM+1

(σ − 1)2
− σdm (dm − dM + σ + dM σ − dm σ)

(σ − 1)2
,

Ψ5 = e1
T
[
l21 (ρ1 + ρ3 + ρ5) I + l21P1

]
e1 + e3

T
[
l22 (ρ2 + ρ4) I + P1

]
e3. (8)

Theorem 1. For given c1, c2 and N , the system (1) is finite-time stable, if
there exist scalar σ > 1 and υi > 0 (i = 1, 2, ..., 6), ρi > 0 (i = 1, 2, 3, 4, 5),

matricesQi ∈ Rn×n(i = 1, 2), U ∈ R2n×2n,M =

(
∗ ∗
∗ M4

)(
M4 ∈ R(n−r)×(n−r)

)
,

and Pi =

(
Pi1 ∗
∗ ∗

)
(Pi1 ∈ Rr×r , i = 1, 2, 3) satisfying the following inequal-

ities(
P3 U
∗ P3

)
> 0, (9)
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Ψ =
5∑

i=1

Ψi < 0, (10)


Ψ eT1 PA eT1 PA eT3 PAd eT3 PAd l2e

T
3 P

∗ −ρ1I 0 0 0 0
∗ ∗ −ρ2I 0 0 0
∗ ∗ ∗ −ρ3I 0 0
∗ ∗ ∗ ∗ −ρ4I 0
∗ ∗ ∗ ∗ ∗ −ρ5I

 < 0, (11)

υ1Ir < P11 < υ2Ir, (12)

0 < Q1 < υ3In, (13)

0 < Q2 < υ4In, (14)

0 < P21 < υ5Ir, (15)

0 < P31 < υ6Ir, (16)

σN (υ2 + υ3t1 + υ4t2) c1 + c0 (υ5t3 + dυ6t4) < υ1c2, (17)

where Φi and ti are defined in (8).

Proof. Consider the following LLK

V (k) =
3∑

i=1

Vi(k), (18)

in which

V1(k) = xT (k)ETP1Ex(k),

V2(k) =
k−1∑

i=k−dm

σk−1−ixT (i)Q1x(i) +
k−1∑

i=k−dM

σk−1−ixT (i)Q2x(i),
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V3(k) =
k−1∑

i=k−1−dm

σk−1−i(dm − k + 1 + i)yT (i)ETP2Ey(i)

+ d

k−dm−1∑
i=k−1−dM

σk−1−i(dM − k + 1 + i)yT (i)ETP3Ey(i).

Taking the difference of (18), one has

∆V1 = V1(k + 1)− V1(k)

= xT (k + 1)ETP1Ex(k + 1)− xT (k)ETP1Ex(k)
(19)

= xT (k)(ATP1A− σETP1E)x(k) + 2xT (k)ATP1Adx(k − d(k))

+ xT (k − d(k))AT
dP1Adx(k − d(k)) + (σ − 1)V1 (k)

+ 2xT (k)MSAx (k) + 2xT (k)MSAdx (k − d (k))

+ 2xT (k)ATP1g1 (k, x (k)) + 2xT (k)ATP1g2 (k, x (k − d (k)))

+ 2xT (k − d (k))Ad
TP1g1 (k, x (k))

+ 2xT (k − d (k))Ad
TP1g2 (k, x (k − d (k)))

+ g1
T (k, x (k))P1g1 (k, x (k)) + 2g1

T (k, x (k))P1g2 (k, x (k − d (k)))

+ g2
T (k, x (k − d (k)))P1g2 (k, x (k − d (k)))

According to Lemma 3, combined with (2) and (3), there exists ρi (i = 1, 2, 3, 4, 5),
such that

2xT (k)ATP1g1 (k, x (k)) + 2xT (k)ATP1g2 (k, x (k − d (k)))

+ 2xT (k − d (k))Ad
TP1g1 (k, x (k))

+ 2xT (k − d (k))Ad
TP1g2 (k, x (k − d (k)))

+ g1
T (k, x (k))P1g1 (k, x (k)) + 2g1

T (k, x (k))P1g2 (k, x (k − d (k)))

+ g2
T (k, x (k − d (k)))P1g2 (k, x (k − d (k)))
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≤ l21x
T (k) [(ρ1 + ρ3 + ρ5) I + P1]x (k)

+ l22x
T (k − d (k)) [(ρ2 + ρ4) I + P1]x (k − d (k))

+
(
ρ−1
1 + ρ−1

3

)
xT (k)P1AA

TP T
1 x (k)

+
(
ρ−1
2 + ρ−1

4

)
xT (k − d (k))P1AdA

T
dP

T
1 x (k − d (k))

+ ρ−1
5 l22x

T (k − d (k))P1P
T
1 x (k − d (k))

(20)

∆V2 (k) = V2(k + 1)− V2(k)

=
k∑

i=k−dm+1

σk−ixT (i)Q1x
T (i)−

k−1∑
i=k−dm

σk−i−1xT (i)Q1x(i)

+
k∑

i=k−dM+1

σk−ixT (i)Q2x(i)−
k−1∑

i=k−dM

σk−i−1xT (i)Q2x(i)

= xT (k)Q1x(k)− σdmxT (k − dm)Q1x(k − dm) + xT (k)Q2x(k)

− σdMxT (k − dM)Q2x(k − dM) + (σ − 1)V2 (k) ,

(21)

∆V3 (k) = V3(k + 1)− V3(k)

= (dm − 1)yT (k)ETP2Ey (k) + (d2 − 1)yT (k)ETP3Ey(k) (22)

−
k−1∑

i=k−dm

σk−iyT (i)ETP2Ey(i)− d

k−dm−1∑
i=k−dM

σk−iyT (i)ETP3Ey(i)

+ (σ − 1)V3 (k)

6 (dm − 1)yT (k)ETP2Ey(k) + (d2 − 1)yT (k)ETP3Ey (k) + (σ − 1)V3 (k)

−
k−1∑

i=k−dm

σk−iyT (i)ETP2Ey(k)− dσdm+1

k−dm−1∑
i=k−dM

yT (i)ETP3Ey(i),

then, by Corollary 2 we obtain:

−
k−1∑

i=k−dm

σk−iyT (i)ETP2Ey(i) 6 −
2∑

i=1

µiU
T
i (k)ETP2EUi (k), (23)
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where

U1 (k) = x(k)− x (k − dm) ,

U2 (k) = (µ+ dm)x(k)− µx (k − dm)−G1 (k) ,

G1(k) =


k−1∑

i=k−dm

Ex (i), dm > 0,

Ex (k) , dm = 0.

Based on Lemma 1, when dm < d(k) < dM we have

− d

 k−dm−1∑
i=k−d(k)

yT (i)ETP3Ey (i) +

k−d(k)−1∑
i=k−dm

yT (i)ETP3Ey (i)



6 − d

d(k)− dm

(
W T

1 (k)ETP3EW1(k) + 3W T
2 (k)ETP3EW2 (k)

)
(24)

− d

dM − d (k)

(
W T

3 (k)ETP3EW3(k) + 3W T
4 (k)ETP3EW4 (k)

)
,

where

W1(k) = x(k − dm)− x (k − d(k)) ,

W2 (k) = x(k − dm) + x (k − d (k))−G2(k),

G2 (k)

=


1

β1

2
k−dm−1∑
i=k−d(k)

Ex (i) + Ex (k − dm)− Ex (k − d (k))

 , dm < d (k) ,

2Ex (dm) , dm = d (k) ,
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W3(k) = x(k − d(k))− x(k − dM),

W4(k) = x (k − d(k)) + x (k − dM)−G3(k),

G3(k)

=


1

β2

2

k−d(k)−1∑
i=k−dM

Ex (i) + Ex (k − d (k))− Ex(k − dM)

 , d (k) < dM ,

2Ex (dM) , dM = d (k) ,

where β1 = d (k)− dm, β2 = dM − d (k).

Obviously,
β1
d

+
β2
d

= 1, then, by Lemma 2, one has

− d

k−dm−1∑
i=k−dM

yT (i)ETP3Ey (i) 6 W T (k)

[
P3 U
∗ P3

]
W (k) , (25)

where

W T (k) =
[
W T

1 (k) , W T
2 (k) , W T

3 (k) , W T
4 (k)

]
,

P3 =

[
P3 0
0 3P3

]
.

Especially when d (k) = dm or d (k) = dM , one has Wi (k) = 0 (i = 1, 2) or
Wi (k) = 0 (i = 3, 4) respectively. Therefore, we can obtain that (25) still
holds.

Then, from (18) to (25), we can obtain

∆V (k)− (σ − 1)V (k) 6 ξT (k)Ψξ (k)

+ l21x
T (k) [(ρ1 + ρ3 + ρ5) I + P1] x (k)

+ l22x
T (k − d (k)) [(ρ2 + ρ4) I + P1]x (k − d (k))

+
(
ρ−1
1 + ρ−1

3

)
xT (k)P1AA

TP T
1 x (k)

+
(
ρ−1
2 + ρ−1

4

)
xT (k − d (k))P1AdA

T
dP

T
1 x (k − d (k))

+ ρ−1
5 l22x

T (k − d (k))P1P
T
1 x (k − d (k))

(26)
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where

ξT (k)=[
xT (k) , xT (k−dm) , xT (k−d (k)) , xT (k−dM) , GT

1 (k) , GT
2 (k) , GT

3 (k)
]
.

Combining (10) and (26) one has

∆V (k)− (σ − 1)V (k) < 0, (27)

then we get

V (k) < σV (k − 1), (28)

further obtaining

V (k) < σV (k − 1) < σ2V (k − 2) < · · · < σkV (0) . (29)

According to (18), we have

λmin (P11) x
T (k)ETEx (k) 6 V (k) , (30)

and

V (0) = xT (0)ETP1Ex(0) +
−1∑

i=−dm

σ−1−ixT (i)Q1x (i)

+
−1∑

i=−dm

σ−1−ixT (i)Q2x (i) +
−1∑

i=−dm−1

σ−1−i (dm + i+ 1) yTi E
TP2Ey (i)

(31)

+ d

−dm−1∑
i=−dM−1

σ−1−i (dM + i+ 1) yTi (k)ETP3Ey (i) ,

after careful calculation, we have

V (0) 6 λmax (P11) c1 + λmax (Q1) c1t1 + λmax (Q2) c1t2

+ δ [λmax (P21) t3 + dλmax (P31) t3] .
(32)
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From (30) to (32) it can be deduced that

xT (k)ETEx (k) 6 σN (γ1 + γ2)

λmin (P11)
,

in which

γ1 = [λmax (P11) + λmax (Q1) t1 + λmax (Q2) t2] c1,

γ2 = [λmax (P21) t3 + dλmax (P31) t4] c0 .

By (11) to (17), it can be obtained that

xT (k)ETEx (k) < c2,

then, the system (1) is finite-time stable from Definition 1, which completes
the proof.

Remark 4. In Theorem 1, different from [18], a new LLK (18) for FTS
of discrete system is established. Less conservative results can be obtained.
Because in this way V (k) < σV (k − 1) could be obtained without enlarging
the inequality, unlike simple scaling V (k) − σV (k − 1) < V (k) − V (k − 1)
used in [18].

Remark 5. Compared with the LLF used in [19], we added the term

V3(k) =
k−1∑

i=k−dm−1

σk−1−i(dm − k + 1 + i)yT (i)ETP2Ey(i)

+ d
k−dm−1∑

i=k−dm−1

σk−1−i(dM − k + 1 + i)yT (i)ETP3E
TEy(i),

in this way, more information from the system (1) is used. Moreover, about

the handling of the term
k−1∑

i=k−dm

σk−iyT (i)ETP2Ey(i), we have fully consid-

ered the influence of weighting functions instead of directly reducing it to

σ
k−1∑

i=k−dm

yT (i)ETP2Ey(i). The inequality therefore has theoretical improve-

ments in analysis.

Remark 6. In Theorem 1, the parameters c1, c2, σ,N are involved. It is
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necessary for us to explain the relationship between the relevant parameters.
Firstly, (10) and (17) are not in the form of LMIs respect to σ. But we note
that (10) and (17) are LMIs for fixed σ, then, the LMIs (9) to (17) can be
solved for the given σ. Moreover, based on the actual background of FTS,
minimizing c2 for given c1 and N is a meaningful optimization problem.

Especially when E = In, system (1) reduces to a normal time-delay sys-
tem. Based on Theorem 1, one has

Corollary 3. When E = In, the system (1) is finite-time stable respec-
t to (c1, c2, N) , 0 < c1 < c2, if there exist positive scalarσ > 1 and υi >
0 (i = 1, 2, ..., 6), ρi > 0 (i = 1, 2, 3, 4, 5) matrices P1, P2, P3, Q1, Q2, M and
U , such that(

P3 U
∗ P3

)
> 0, (33)

Ψ =
5∑

i=1

Ψi < 0, (34)


Ψ eT1 PA eT1 PA eT3 PAd eT3 PAd l2e

T
3 P

∗ −ρ1I 0 0 0 0
∗ ∗ −ρ2I 0 0 0
∗ ∗ ∗ −ρ3I 0 0
∗ ∗ ∗ ∗ −ρ4I 0
∗ ∗ ∗ ∗ ∗ −ρ5I

 < 0, (35)

υ1Ir < P11 < υ2Ir, (36)

0 < Q1 < υ3In, (37)

0 < Q2 < υ4In, (38)

0 < P2 < υ5Ir, (39)

0 < P3 < υ6Ir, (40)

σN (υ2 + υ3t1 + υ4t2) c1 + c0 (υ5t3 + dυ6t4) < υ1c2, (41)

in which the definition of Ψ is the same as in Theorem 1.

Remark 7. When studying the FTS of linear normal time-delay systems,
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less conservative results can be obtained by Corollary 3. Because unlike
[23], a new LLK (18) for FTS of discrete system is established. In this way
∆V (k) < (σ − 1)V (k) could be obtained without enlarging the inequality,
unlike simple scaling ∆V (k) < (σ − 1)V1(k) < (σ − 1)V (k) used in [23].

4. Numerical examples

Example 1. Considering the system (1) with

E=

 1 0 0
0 1 0
0 0 0

, A=

 0.3 0.2 0.1
0.2 0.3 0.4
0.2 1 0.2

, Ad=

 0.1 0.03 0.1
0.1 0 0.02
1 0 0

,
dm = 2, dM = 5, c1 = 3, c0 = 2, (l1, l2)=(0.01, 0.01).

According to Theorem 1, the system is finite-time stable. In addition,
in order to observe the impact of nonlinear uncertainties on the finite-time
stability of the system, we validated different parameters. In Table 1 we
obtained the minimum allowable value of c2 for different (l1, l2).

Table 1: Minimum allowable c2 different l1 and l2

(l1, l2) (0.01, 0.01) (0.03, 0.03) (0.05, 0.05)
c2 79.67 86.34 92.53

We can see that the minimum allowable value of c2 increases as the degree
of nonlinear uncertainties increases.

Example 2. Considering the system (1) with

E=

 1 0 0
0 1 0
0 0 0

, A=

 1 1 0.5
−1.5 0.5 3.75
1 2 3

, Ad=

 0.5 0.2 −0.2
−0.15 −0.6 0.05

1 0 0

,
dm = 1, dM = 3, c1 = 1, c0 = 2.

Based on the actual background of FTS, we hope that c2 is as small as
possible for a given initial state and time interval. About the problem, [18]
achieved good results. In Table 2, we compare the result with [18].

We can see that c2 obtained from Theorem 1 is smaller than that in [18],
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Table 2: Minimum allowable c2 compared with [18]

[18] c1 = 1 N = 4 c2 = 372.49
Theorem 1 c1 = 1 N = 4 c2 = 109.08

verifying that our result is less conservative than [18].

Example 3. Considering the system (1) with

A=

 0.2 0.1 0.1
0.2 0.1 0.4
0.2 1 0.2

, Ad=

 0.1 0.01 0.1
0.1 0.01 0.1
0.1 0.1 0.01

,
dm = 2, dM = 5, c1 = 3, c0 = 1.1.

In Table 3, we compare the result with [23].

Table 3: Minimum allowable c2 compared with [23]

[23] c1 = 3 N = 5 c2 = 56
Corollary 3 c1 = 3 N = 5 c2 = 22

We can see that c2 obtained from Corollary 3 is smaller than that in [23],
which illustrates that our result is less conservative than [23].

5. Conclusion

In this paper, we have studied the finite-time stability for singular time-
delay systems. Upon constructing a new Lyapunov-like functional (LLF) and
a new weighted integral inequality, we are able to establish some sufficient
conditions such that the underlying system is finite-time stable. Two numer-
ical examples have been presented to illustrate the efficiency of the proposed
method. Based on the results of this paper, we can study the synthesis prob-
lem of finite-time stability for singular time-delay systems, which is also our
future work
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