
A parameter shift-splitting iterative method for complex
symmetric linear systems ∗

Li-Tao Zhanga,b,c†

aSchool of Mathematics, Zhengzhou University of

Aeronautics, Zhengzhou, Henan, 450046, P. R. China

bCollaborative Innovation Center for Aviation Economy

Development of Henan Province, Zhengzhou, Henan, 450046, P. R. China

cCollege of Mathematics and Information Science,

Henan Normal University, Xinxiang, Henan, 453007, P. R. China

Abstract
Recently, Chen and Ma [Journal of Computational and Applied Mathematics, 344(2018):

691-700] constructed the generalized shift-splitting (GSS) preconditioner, and gave the cor-
responding theoretical analysis and numerical experiments. In this paper, based on the
generalized shift-splitting (GSS) preconditioner, we generalize their algorithms and further
study the parameter shift-splitting (PSS) preconditioner for complex symmetric linear sys-
tems. Moreover, by similar theoretical analysis, we obtain that the parameter shift-splitting
iterative method is unconditionally convergent. In finally, one example is provided to con-
firm the effectiveness.
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1 Introduction

Consider the linear equations of the form

Au = b, (1)
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where u, b ∈ Cn and A ∈ Cn×n is a complex symmetric matrix, whose form is

A = W + iT, (2)

and W,T ∈ Rn×n are real symmetric matrices, with W being positive definite and T being
positive semidefinite. Here and in the sequel we use i =

√
−1 to denote the imaginary unit.

We assume T ̸= 0, which implies that A is non-Hermitian. Such kind of linear systems arise
in many problems in scientific computing and engineering applications. For more detailed
descriptions, we refer to [2, 9, 16, 24] and the references therein.

The Hermitian and skew-Hermitian parts of the complex symmetric matrix A ∈ Cn×n

are given by

H =
1

2
(A+ A∗) = W and S =

1

2
(A− A∗) = iT

respectively, hence, A ∈ Cn×n is non-Hermitian, but positive definite matrix. Here A∗ is
used to denote the conjugate transpose of the matrix A. Based on the Hermitian and skew-
Hermitian splitting (HSS)

A = H + S

of the matrix A ∈ Cn×n, Bai et al. [3] gave HSS iteration method, which is as follows:

The HSS Iteration Method [3]. Let x(0) ∈ Cn be arbitrary initial guess. For k = 0, 1, 2, ... until
the sequence of iterates {x(k)}∞k=0 ⊂ Cn converges, compute the next iterate x(k+1) according
to the following procedure:{

(αI +W )x(k+
1
2
) = (αI − iT )x(k) + b,

(αI + iT )x(k+1) = (αI −W )x(k+
1
2
) + b.

(3)

where α is a given positive constant and I is the identity matrix.

However, a potential difficulty with the HSS iteration method is the need to solve the
shifted skew-Hermitian sub-system of linear equations at each iteration step, which is as
difficult as that of the original problem; see [1,3,4,8,11,13-15,17,20,26-43] for more detailed
descriptions about the HSS iteration method and its variants. Recently, by making use
of the special structure of the coefficient matrix A ∈ Cn×n, Bai et al. established the
following modified HSS iteration (MHSS) method and a preconditioned MHSS (PMHSS)
method for solving the complex symmetric linear system (1-2) in an analogous fashion to
the HSS iteration scheme in [9] and [7], respectively. Concerning the convergence of the
stationary MHSS iteration method and PMHSS iteration method, Bai et al. [7,9] analyzed
the convergence. In 2013, Based on the ideas of [7] and [27], Li et al. presented a new
approach named as the lopsided PMHSS (LPMHSS) iteration method to solve the complex
symmetric linear system of linear equation (1-2). In 2015, Wu concerned with several variants
of the HSS iterative method in [30]. In 2015, Cao et al. studied two variants of the PMHSS
iterative method for a class of complex symmetric indefinite linear systems in [24]. In 2018,
Chen and Ma constructed the generalized shift-splitting (GSS) preconditioner, and gave the
corresponding theoretical analysis and numerical experiments in [23].
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Let u = x+ iy and b = p+ iq where x, y, p, q ∈ Rn. Then from [2,33] we know that the
complex linear system (1) can be recast as the following two-by-two block real equivalent
formulation

A
(
x
y

)
=

(
W −T
T W

)(
x
y

)
=

(
p
q

)
, (4)

The system of linear equations (4) can be seen as a special case of the generalized saddle
point problems [21].

To further generalize the GSS iteration method and accelerate its convergence rate,
based on the generalized shift-splitting (GSS) preconditioner, we generalize their algorithms
and further study the parameter shift-splitting (PSS) preconditioner for complex symmetric
linear systems.

The organization of the paper is as follows. In Section 2 we provide the parameter
shift-splitting (PSS) preconditioner for complex symmetric linear system (1-2). In Section
3, we establish the convergence of the parameter shift-splitting iteration method. Finally,
in section 4, one example is provided to demonstrate the feasibility and effectiveness of PSS
preconditioner.

2 The parameter shift-splitting preconditioner

In 2018, based on the iterative methods studied in [22,24,31], Chen and Ma [23] constructed
the generalized shift-splitting of the matrix A, which is as follows:

A =
1

2

(
αI +W −T

T βI +W

)
− 1

2

(
αI −W T
−T βI −W

)
, (5)

where α > 0 and β > 0 are two real constants and I is the identity matrix (with appropri-
ate dimension). By this special splitting, the following generalized shift-splitting iterative
method can be defined for solving the generalized saddle point problems (3):

Algorithm 1: The generalized shift-splitting iterative method [23] Given an initial
guess u0, for k = 0, 1, 2, ..., until {uk} converges, compute

1

2

(
αI +W −T

T βI +W

)
uk+1 =

1

2

(
αI −W T
−T βI −W

)
uk +

(
p
q

)
, (6)

where α > 0 and β > 0 are two given positive constants.

In this paper, to further generalize the GSS iteration method and accelerate its conver-
gence rate, we propose the parameter shift-splitting iterative method, which is as follows:

Algorithm 2: The parameter shift-splitting iterative (PSS) method Given an initial
guess u0, for k = 0, 1, 2, ..., until {uk} converges,

1

2ξ

(
αI + ξW −ξT

ξT βI + ξW

)
uk+1 =

1

2ξ

(
αI − ξW ξT
−ξT βI − ξW

)
uk +

(
p
q

)
, (7)

where α > 0, β > 0 and ξ > 0 are three given constants.
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Remark 2.1. We may remove the previous factor 1
2ξ

because of making no difference
on the preconditioned system. For large, sparse or structure matrices, iterative methods
are an attractive option. In particular, Krylov subspace methods apply preconditioner PPS
techniques that involve orthogonal projections onto subspaces of the form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.

Remark 2.2. Obviously, when ξ = 1, the parameter shift-splitting iterative (PSS) method
reduces to the generalized shift-splitting iterative (GSS) method. So, PSS method is the
extension of GSS method. When choosing appropriate parameter ξ, PSS method will have
fast convergence speed.

By simple calculation, the iteration format of the two-sweep shift-splitting iteration is

uk+1 = T uk + 2ξ

(
αI + ξW −ξT

ξT βI + ξW

)−1 (
p
q

)
(8)

where

T =

(
αI + ξW −ξT

ξT βI + ξW

)−1 (
αI − ξW ξT
−ξT βI − ξW

)
(9)

Since the parameter ξ do not affect the splitting preconditioner, the corresponds to the
two-sweep shift-splitting iteration (9) is given by

PPSS =

(
αI + ξW −ξT

ξT βI + ξW

)
which is called the two-sweep shift-splitting preconditioner for the generalized saddle point
matrix A.

Algorithm 3: For a given vector r = [rT1 , r
T
2 ]

T , the vector z = [zT1 , z
T
2 ]

T can be computed
similar to the analysis in [21] by the following steps:

Step 1: Solve (βI + ξW )ω = r2 for ω;
Step 2: Compute ω1 = r1 + Tω;
Step 3: Solve (αI + ξW + T (βI + ξW )−1)z1 = ω1 for z1;
Step 4: Solve (βI + ξW )ν = Tz1 for ν;
Step 5: z2 = ω − ν.

Remark 2.3. Through similar analysis about Algorithm 2.1 in [23], the authors can find
we need to solve a linear system with the coefficient matrix αI + ξW +T (βI + ξW )−1T and
two linear systems with the coefficient matrix βI + ξW . Moreover, these linear systems are
symmetric positive definite for α > 0, β > 0 and ξ > 0. So, we use CG method, Cholesky or
LU factorization to solve the sub-systems through selecting appropriate parameters.

3 Convergence of PSS method

In this section, we will study the convergence of the parameter shift-splitting iteration
method, which is motivated by the corresponding results in [31]. Let ρ(T ) denote the
spectral radius of the matrix T . Then the two-sweep shift-splitting iteration converges if
and only if ρ(T ) < 1. Let λ be an eigenvalue of T and [ϕ∗, ψ∗]T be the corresponding
eigenvector. Then we have
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{
(αI − ξW )ϕ+ ξTψ = λ(αI + ξW )ϕ− λξTψ,
−ξTϕ+ (βI − ξW )ψ = λξTϕ+ λ(βI + ξW )ψ.

(10)

To study the convergence of the two-sweep shift-splitting iteration method, two lemmas are
given.

Lemma 3.1. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈ Rn×n be
a symmetric positive semidefinite matrix. Let T be defined as in (9) with α > 0, β > 0 and
ξ > 0. If λ is an eigenvalue of the iteration matrix T , then λ ̸= ±1.
Proof. If λ = 1, then from Eq. (10), we can obtain

ξWϕ− ξTψ = 0. (11)

and
ξTϕ+ ξWψ = 0. (12)

By similar proving process to Lemma 2.1 in [23], we can get λ ̸= 1. Through similar proving,
we can also get λ ̸= −1.

Lemma 3.2. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈ Rn×n be
a symmetric positive semidefinite matrix. Let λ be an eigenvalue of the iteration matrix T
(with α > 0, β > 0, ξ > 0) and [ϕ∗, ψ∗]T be the corresponding eigenvector with ϕ, ψ ∈ Cn×n.
Then if ψ = 0, we have |λ| < 1.
Proof. If ψ = 0, then from (10) we get

(αI + ξW )−1(αI − ξW )ϕ = λϕ. (13)

Since W is symmetric positive definite, then by [13] we can obtain

|λ| ≤∥ (αI + ξW )−1(αI − ξW ) ∥2< 1. (14)

Theorem 3.3. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈ Rn×n be a
symmetric positive semidefinite matrix. Let ρ(T ) denote the spectral radius of the parameter
shift-splitting iteration matrix T . Then it holds that

ρ(T ) < 1,∀α > 0, β > 0, ξ > 0. (15)

i.e., the parameter shift-splitting iterative method converges to the unique solution of the
generalized saddle point problems (4).
Proof. Let λ be an eigenvalue of the iteration matrix T (with α > 0, β > 0, ξ > 0) and
[ϕ∗, ψ∗]T be the corresponding eigenvector with ϕ, ψ ∈ Cn×n.

If ψ = 0, then from Lemma 3.2 we can obtain |λ| < 1.
If ψ ̸= 0, without loss of generality let ||ψ||2 = 1. Multiplying both sides of the second

equation in Eq. (10) by ψ∗ yields

−ξ(Tψ)∗ϕ+ β − ξψ∗Wψ = ξλ(Tψ)∗ϕ+ λ(β + ξψ∗Wψ). (16)

If Tψ = 0, then Eq. (16) implies

|λ| =
∣∣∣∣β − ξψ∗Wψ

β + ξψ∗Wψ

∣∣∣∣ < 1. (17)
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If Tψ ̸= 0, by Lemma 3.1 we have λ ̸= −1. Then we can get from the first equation in Eq.
(10) that ϕ ̸= 0 and

Tψ =
α(λ− 1)

ξ(1 + λ)
ϕ+Wϕ. (18)

Substituting (18) into (16), we can obtain

(1− λ)β − (1 + λ)ξψ∗Wψ = ξ(λ+ 1)(α
λ̄− 1

(1 + λ̄)ξ
ϕ∗ϕ+ ϕ∗Wϕ). (19)

Here, λ̄ denotes the conjugate of λ. Let ς = ψ∗Wψ,φ = ϕ∗ϕ, χ = ϕ∗Wϕ, we can obtain from
Eq. (19)

ωβ + αω̄φ = ξ(ς + χ). (20)

where ω = 1−λ
λ+1

. Since α, β, ς, φ, χ, ξ > 0, from Eq. (20) we have

Re(ω) =
ξ(ς + χ)

β + αφ
> 0. (21)

where Re(ω) denotes real part of ω. So, we can obtain

|λ| = 1− ω

1 + ω
=

√
[1−Re(ω)]2 + [Im(ω)]2

[1 +Re(ω)]2 + [Im(ω)]2
< 1. (22)

where Re(ω) and Im(ω) denote real part and imaginary part of ω, respectively.

Remark 3.1 [20,22,28]. From Theorem 3.3, we know that the parameter shift-splitting
iterative method is convergent unconditionally. However, the convergence of the stationary
iteration is typically too slow for the method to be competitive. For this reason, we propose
using the Krylov subspace method to accelerate the convergence of the iteration. In par-
ticular, Krylov subspace methods apply techniques that involve orthogonal projections onto
subspaces of the form

K(A, b) ≡ span{b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES) and generalized
minimal residual method (GMRES) are all common iterative Krylov subspace methods. The
CG method is used for symmetric, positive definite matrices, MINRES for symmetric and
possibly indefinite matrices and GMRES for unsymmetric matrices.

4 Numerical examples

In this section, we present one example [8] to illustrate the effectiveness of the parameter
shift-splitting preconditioner for GMRES(m) method and MINRES to solve the linear sys-
tems (3) in the sense of iteration step (denoted as It), elapsed CPU time in seconds (denoted
as CPU), and relative residual error (denoted as RES). All numerical examples are carried
out in Matlab 7.0. In our experiments, all runs with respect to both GSS method and PSS
method are started from initial vector ((x(0))T , (y(0))T )T = 0, and terminated if the current

iteration satisfy RES := ∥b−Au(k)∥2
∥b∥2 < 10−6.
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Consider the linear system of equations (1) with

T = I ⊗ V + V ⊗ I and W = 10(I⊗ VC +VC ⊗ I) + 9(e1e
T
l + ele

T
1 )⊗ I,

where V = tridiag(−1, 2,−1) ∈ Rl×l,VC = V− e1e
T
l − ele

T
1 ∈ Rl×l and e1 and el are the first

and last unit vectors in Rl, respectively. Here T and K correspond to the five-point cen-
tered difference matrices approximating the negative Laplacian operator with homogeneous
Dirichlet boundary conditions and periodic boundary conditions, respectively, on a uniform
mesh in the unit square [0, 1]× [0, 1] with the mesh-size h = 1

l+1
.

In Figs 1 ∼ 4, we report the eigenvalue distribution for the generalized shift-splitting
preconditioned matrix T −1

GSSA and the parameter shift-splitting preconditioned matrix for
different parameter, respectively. In tables 1 ∼ 2, we report iteration counts, relative residual
and cpu time about preconditioned matrices T −1

GSSA and T −1
PSSA with l = 16 and l = 24 when

choosing different parameters. Figs 1 ∼ 4 and Tables 1 ∼ 2 show that the GSS preconditioner
and PSS preconditioner have more clustered eigenvalue distribution when choosing different
parameters.

0.9996 0.9997 0.9998 0.9999 1 1.0001 1.0002
−3

−2

−1

0

1

2

3

4
x 10

−4

Real

Im
a

g
in

a
ry

1.1106 1.1107 1.1108 1.1109 1.111 1.1111 1.1112 1.1113 1.1114
−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Real

Im
a

g
in

a
ry

1.4276 1.4278 1.428 1.4282 1.4284 1.4286 1.4288 1.429
−6

−4

−2

0

2

4

6
x 10

−4

Real

Im
a

g
in

a
ry

1.9985 1.999 1.9995 2 2.0005 2.001
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

Real

Im
a

g
in

a
ry

Figure 1: The eigenvalue distribution for the generalized shift-splitting preconditioned matrix
T −1
GSSA when α = β = 0.001(the first), the parameter shift-splitting preconditioned matrix T −1

PSSA
when α = β = 0.001, ξ = 0.8(the second),α = β = 0.001, ξ = 0.7(the third) and α = β = 0.001, ξ =
0.5(the fourth), respectively. Here, l = 16.
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Figure 2: The eigenvalue distribution for the parameter shift-splitting preconditioned matrix
T −1
PSSA when α = β = 0.001, ξ = 0.5(the first),α = β = 0.001, ξ = 0.3(the second), α = β =

0.001, ξ = 0.1(the third) and α = β = 0.001, ξ = 1.3(the fourth), respectively. Here, l = 16.

5 Conclusions

In this paper, based on the generalized shift-splitting (GSS) preconditioner [23], the author
generalizes the corresponding algorithms and further studies the parameter shift-splitting
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Figure 3: The eigenvalue distribution for the generalized shift-splitting preconditioned matrix
T −1
GSSA when α = β = 0.001(the first), the parameter shift-splitting preconditioned matrix T −1

PSSA
when α = β = 0.001, ξ = 0.8(the second),α = β = 0.001, ξ = 0.7(the third) and α = β = 0.001, ξ =
0.5(the fourth), respectively. Here, l = 24.
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Figure 4: The eigenvalue distribution for the parameter shift-splitting preconditioned matrix
T −1
PSSA when α = β = 0.001, ξ = 0.5(the first),α = β = 0.001, ξ = 0.3(the second), α = β =

0.001, ξ = 0.1(the third) and α = β = 0.001, ξ = 1.3(the fourth), respectively. Here, l = 24.

(PSS) preconditioner for complex symmetric linear systems. Moreover, theoretical analysis
shows the parameter shift-splitting iterative method is unconditionally convergent. In finally,
one example is provided to confirm the effectiveness.
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Table 1: Iteration counts, relative residual and CPU time about preconditioned matrices
T −1
GSSA and T −1

PSSA when choosing different parameters. Here, l = 16.
α β ξ ItGMRES ResGMRES CPU(s)

0.001 0.001 1 1(1) 4.0867× 10−9 0.105
0.001 0.001 0.8 1(1) 5.0454× 10−9 0.110
0.001 0.001 0.7 1(1) 8.3407× 10−9 0.104
0.001 0.001 0.5 1(1) 1.6350× 10−8 0.109
0.001 0.001 0.3 1(1) 4.5426× 10−8 0.103
0.001 0.001 0.1 1(1) 4.0932× 10−7 0.107
0.001 0.001 1.1 1(1) 3.3773× 10−9 0.103
0.001 0.001 1.3 1(1) 2.4180× 10−9 0.133

Table 2: Iteration counts, relative residual and CPU time about preconditioned matrices
T −1
GSSA and T −1

PSSA when choosing different parameters. Here, l = 24.
α β ξ ItGMRES ResGMRES CPU(s)

0.001 0.001 1 2(1) 1.4192× 10−8 0.302
0.001 0.001 0.8 2(1) 1.774× 10−8 0.299
0.001 0.001 0.7 2(1) 2.0275× 10−8 0.306
0.001 0.001 0.5 2(1) 2.8385× 10−8 0.302
0.001 0.001 0.3 2(1) 4.7309× 10−8 0.306
0.001 0.001 0.1 2(1) 1.4195× 10−7 0.299
0.001 0.001 1.1 2(1) 1.2902× 10−8 0.301
0.001 0.001 1.3 2(1) 1.0917× 10−8 0.303
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