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Abstract

In this paper, we investigate the existence of traveling front solutions for a class of quintic
Ginzburg-Landau equations coupled with a slow diffusion mode. By employing the theory of ge-
ometric singular perturbations, we turn the problem into a geometric perturbation problem. We
demonstrate the intersection property of the critical manifold and further validate the existence
of heteroclinic orbits by computing the zeros of the Melnikov function on the critical manifold.
The results demonstrate that under certain parameters, there is 1 or 2 heteroclinic solutions,
confirming the existence of traveling front solutions for the considered quintic Ginzburg-Landau
equation coupled with a slow diffusion mode.
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1. Introduction

In 1950 V. L. Ginzburg and L. D. Landau [1] introduced the equations that have since been
called Ginzburg-Landau equations to describe the quantum phenomenon of superconductivity.
This was an extension of Landau′s theory of second-order phase transitions [2]. The Ginzburg-
Landau equations and their modified forms have been used to model a wide variety of nonlinear
phenomena, such as second-order phase transitions [3, 4], superconductivity, superfluidity [5],
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Bose–Einstein condensates [6, 7] and more. For further reading on these applications, we rec-
ommend the work of Kengne et.al. [8].

For different physical backgrounds, there are two main types of the Ginzburg-Landau e-
quations: the real Ginzburg-Landau equation (abbr. RGLE) and the complex Ginzburg-Landau
equation (abbr. CGLE). More precisely, the RGLE was first time proposed by Newell and White-
head [9], and this equation also can be used to explain the Bénard convection [10]. For the CGLE,
it was introduced independently by Newell and Whitehead [11], and by DiPrima, Eckhaus and
Segel [12], and then this equation is used to describe plane Poiseuille flow [13], chemical reactions
[14] and pattern formation [15, 16]. As indicated in [18], the one-dimensional CGLE with cubic
nonlinearity is governed by the following equation:

At = κ1Axx + (κ2 + τ1i)A+ (κ3 + τ2i)|A|2A, (1.1)

where κi ∈ R(i=1,2,3), τi ∈ R (i=1,2), A(x, t): R×R+ → C. If τ1=τ2=0, equation (1.1) reduces
to

At = κ1Axx + κ2A+ κ3|A|2A, (1.2)

which describes the onset of stationary periodic solutions in nonlinear stability problems [18].

To prove that unstable pulse solutions become stable under the coupling of the slow B-mode,
Doelman et. al. [17] studied a reaction-diffusion system expressed as follows:{

At = Axx −A+A3 + µAB,
ε2α1Bt = ε−2Bxx − α2ε

2B + α3Bx + α4A2 + α5A2B, (1.3)

where ε > 0 is very small, µ, αi(i=1,2,· · · ,5) are real parameters. Doelman et.al. demonstrated
the existence of homoclinic pulse solutions of the RGLE

At = Axx −A+A3 + µb0A,

as a solution of the whole system (1.3). Additionally, Tu et.al. [18] used the Melnikov function
and geometric singular perturbation theory to show that there exist a traveling front in the
following system{

At = Axx +A−A3 + µAB,
ε2α1Bt = ε−2Bxx − α2ε

2B + α3Bx + α4A2 + α5A2B + c1 + c2B + c3B2,
(1.4)

wherein ci (i=1,2,3) are O(1) constants. Notably, equation (1.4) introduces three additional
terms related to the B model compared to equation (1.3). As described in [18], Tu et.al., in
terms of physics, investigated whether these additional terms would lead to the emergence of
new dynamical behaviors in equation (1.4) that would not appear in equation (1.3).
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In recent years, many researchers have extensively analyzed the quintic complex Ginzburg-
Landau equation (QCGLE) through various algorithms, yielding intriguing findings. For in-
stance, Akhmediev et.al. [19] demonstrated the existence of stable impulsive solutions in a
QCGLE. Soheila et.al. [20] employed the homotopy analysis method to solve the generalized
QCGLE, while Yao et.al. [21] obtained an iterative solution for the generalized QCGLE using
the fractional order natural decomposition method. For the case of one-dimensional, Marcq
et.al. [22] showed the presence of solitary wave solutions in QCGLE. Additionally, Rossides
et.al. [23] conducted a thorough investigation into the dynamics of multi-pulse interactions in
QCGLE, leading to several noteworthy findings. To the best of our knowledge, there are few
results in the mathematical community regarding the real supercritical quintic Ginzburg-Landau
equation.

The RGLE in one (unbounded) spatial dimension with quintic nonlinearity can be described
by the following equation:

At = κ1Axx + κ2A+ κ3|A|4A, (1.5)

the parameters are the same as those in the earlier RGLE equation. As it was indicated in [18],
if κ1 > 0, κ2 < 0 and κ3 > 0 in the equation (1.5), the RGLE with quintic nonlinearity in one
spatial dimension is called subcritical. Conversely, if κ1 > 0, κ2 > 0 and κ3 < 0, it is called
supercritical. For equation (1.5), the global phase portraits are shown in Fig.1.
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Figure 1: (a) Global phase portraits of the one-dimensional subcritical RGLE, (b) Global phase portraits of the
one-dimensional supercritical RGLE.

In this paper, we couple a slow diffusion mode to the RGLE system

At = Axx +A−A5 + µAB,

namely, {
At = Axx +A−A5 + µAB,
ε2α1Bt = ε−2Bxx − α2ε

2B + α3Bx + α4A2 + α5A2B + c1 + c2B + c3B2,
(1.6)

3



where ε > 0 is very small, µ, αi(i=1,2,· · · ,5), are real parameters, ci (i=1,2,3) are O(1) constants.
Here we focus on discussing the existence of the traveling fronts in system (1.6). From the re-
sults obtained by Doelman et.al. [24], we know that this is equivalent to construct a heteroclinic
orbit in the corresponding four-dimensional singularly perturbed ordinary differential equations.
Therefore, the main purpose of this article is whether, under certain conditions, such hetero-
clinic orbits can be controlled and approximated to two different saddle points corresponding to
ordinary differential equations.

The structure of the article is outlined as follows: In the next section, we first transform system
(1.6) into a four-dimensional ordinary differential equation, and then we analyze the dynamics
of the layer system. Moreover, we also show our main results (see Theorem 2.1) in this work.
In section 3, we elaborate on the expansion of both the stable and unstable manifolds within
the slow manifolds, revealing that W u (M−ε ) intersects W s (M+

ε ) in a transverse manner. We
proceed by defining two particular curves that lead to a heteroclinic orbit within system (2.9).
More importantly, we give a rigorous proof of Theorem 2.1. Finally, we draw a conclusion for
our work.

2. Transforming system (1.6) into ordinary differential equation

Next, we can derive the ordinary differential equation with two fast variables and two slow
variables by introducing the transformation ϕ = x − c̃t, where c̃ = ε2c. This transformation
models the traveling fronts of (1.6). i.e.

p′ = q,
q′ = −p+ p5 − µpν − cε2q,
ν ′ = ετ,
τ ′ = ε

[
α2νε

2 − ε
(
α3 + α1cε

4
)
τ − α4p

2 − α5νp
2 + c1 + c2ν + c3ν

2
]
,

(2.1)

in which, (p, q, ν, τ) = (A,Aϕ,B,Bϕ/ε) and, the prime denotes the derivative in ϕ. System (2.1)
is called fast system, where p and q are fast variables, while ν and τ are slow variables.

When ε→ 0, system (2.1) becomes
p′ = q,
q′ = −(1 + µν0)p+ p5,
ν ′ = 0,
τ ′ = 0,

(2.2)

which is layer system, the flow of (2.2) is called the fast flow, where ν0, ν and τ denote constants.
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Taking into account time rescaling ϕ∗ = εϕ, the slow system of (2.1) is governed by
εṗ = q,
εq̇ = −p+ p5 − µpν − cε2q,
ν̇ = τ,
τ̇ = α2νε

2 − ε
(
α3 + α1cε

4
)
τ − α4p

2 − α5νp
2 + c1 + c2ν + c3ν

2,

where the dot denotes the derivative of ϕ∗. Similarly, when ε→ 0 system (2.3) becomes
q = 0,
−p+ p5 − µpν = 0,
ν̇ = τ,
τ̇ = α2νε

2 − ε
(
α3 + α1cε

4
)
τ − α4p

2 − α5νp
2 + c1 + c2ν + c3ν

2,

(2.3)

the flow of (2.3) is called the slow flow. Direct computation shows that the critical manifold is

C0 =
{

(p0, q0, ν0, τ0) | p− p5 + µpν0 = 0, q0 = 0
}
,

i.e.,

M+
0 =

{
(p0, q0, ν0, τ0) | p0 = (1 + µν0)

1
4 , q0 = 0

}
,

M−0 =
{

(p0, q0, ν0, τ0) | p0 = −(1 + µν0)
1
4 , q0 = 0

}
,

and
M0

0 = {(p0, q0, ν0, τ0) | p0 = 0, q0 = 0} ,

which are two-dimensional manifolds in the four-dimensional phase space. Points on the critical
manifold correspond the equilibria of the layer system (2.2), where τ0 is a constant. The (slow)
dynamics of the reduced system (2.3) are restricted to the critical manifolds M+

0 , M−0 and
M0

0. Therefore, the layer system and reduced system form a two-dimensional system in the
four-dimensional phase space, then the dynamics of these systems can be analyzed easily.

Firstly, we will analyze the dynamics of system (2.2). In the following discussion, we are in
the restriction of

1 + µν0 > 0. (2.4)

The layer system (2.2) is a two-dimensional system in the four-dimensional phase space,{
p′ = q,
q′ = −p+ p5 − µpν0.

(2.5)

Note that system (2.5) is a two-parameter (ν0 and τ0) families of planar integrable systems.
These equations describe the leading order behaviour of the amplitude A in the full system
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(1.6), with the constants ν0 and τ0 representing the approximate values that ν and τ take in
the full system (2.1) during an O(1) time interval in ϕ, during which the amplitude A forms its
pulse, i.e. jumps away from and returns to |A| = 0.

A direct computation shows that system (2.5) has two normally hyperbolic manifoldsM+
0 =

{p0 = (1 + µν0)
1
4 , q0 = 0},M−0 = {p0 = −(1 + µν0)

1
4 , q0 = 0} and a non-hyperbolic M0

0 =
{p0 = q0 = 0}. This indicates that the layer system (2.5) has a Hamiltonian structure, and its
Hamiltonian function is

H(p, q, ν0, τ0) =
q2

2
+

1

2
(1 + µν0)p

2 − 1

6
p6.

The phase diagram of this function is shown below.
q

p
-

6

0

Figure 2: The plane portrait of the Hamiltonian system (2.5).

.

For any point ((1 +µν0)
1
4 , 0, ν0, τ0) ∈M+

0 , there will always be a corresponding point (−(1 +

µν0)
1
4 , 0, 0, 0) ∈M−0 , creating a heteroclinic connection between the two points, and vice versa.

These heteroclinic orbits will form the three-dimensional stable and unstable manifolds of the
two-dimensional critical manifold M+

0 and M−0 , denoted as W s
0

(
M+

0

)
, W u

0

(
M+

0

)
, as well as

W s
0

(
M−0

)
, W u

0

(
M−0

)
. According to geometric singular perturbation theory of Fenichel [25], if

ε > 0 is very small, the normally hyperbolic critical manifolds M+
0 and M−0 of system (2.5) as

well as their stable and unstable manifolds, exist. Therefore, the two-dimensional slow manifold
M+

ε as well as its three-dimensional stable manifold W s
ε (M+

ε ) and unstable manifold W u
ε (M+

ε ),
persist, and are O(ε)-close and diffeomorphism to their counterparts W s

0

(
M+

0

)
and W u

0

(
M+

0

)
,

respectively. Similarly, we can obtain the same conclusion for the two-dimensional slow manifold
M−ε of system (2.1).

The W s
0

(
M+

0

) (
resp.W u

0

(
M+

0

))
and W u

0

(
M−0

) (
resp.W s

0

(
M−0

))
coincide with each other,

forming a three-dimensional heteroclinic manifold in the four-dimensional phase space. Assum-
ing that (2.4) holds, this heteroclinic manifold can be seen as the union of a two-parameter
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families of heteroclinic orbits, denoted as

p0 =
√

2 tanh
(√

1 + µν0ϕ
)√
−

√
1 + µν0

tanh(
√

1 + µν0ϕ)2 − 3
, (2.6)

and

q0 = p′0 = 3
√

2 sech
(√

1 + µν0ϕ
)2 [
−

√
1 + µν0

−3 + tanh
(√

1 + µν0ϕ
)2
] 3

2

. (2.7)

Under small perturbations (i.e. 0 < ε � 1), most of the points in M+
ε ∪M−ε are no longer

saddles of system (2.1). Therefore, we choose

c1 + c2B + c3B2 = (
√

1 + µν)(α4 + α5ν), (2.8)

such that system (2.1) has two saddles S1 = ((1 + µν)
1
4 , 0, 0, 0) ∈ M+

ε and S2 = (−(1 +

µν)
1
4 , 0, 0, 0) ∈M−ε , where v is a constant.

From (2.8), system (2.1) becomes
p′ = q,
q′ = −p+ p5 − µpν − cε2q,
ν ′ = ετ,
τ ′ = ε

[
α2νε

2 − ε
(
α3 + α1cε

4
)
τ − α4p

2 − α5νp
2 + (

√
1 + µν)(α4 + α5ν)

]
.

(2.9)

Finally, we present the main results of this article, which will be proved in the next section.

Theorem 2.1. If µ 6= 0, α2 > 0, αi ∈ R (i = 3, 4, 5). For every ε > 0 sufficiently small, ν0
satisfying (2.4), then there exists a unique

c̃ = ε2c = ε2c0 +O(ε3),

such that system (2.9) has a unique solution Lh((ph (ϕ) , qh (ϕ) , νh(ϕ), τh(ϕ)) that is heteroclinic
to S1 = (1, 0, 0, 0) ∈M+

ε and S2 = (−1, 0, 0, 0) ∈M−ε as ϕ→ ±∞, this solution satisfies

|ph(ϕ; ν0)− p0(ϕ; ν0)| = O(ε), |qh(ϕ; ν0)− q0(ϕ; ν0)| = O(ε),

where ν0 is given below. The specific expressions for p0 and q0 are given in (2.6) and (2.7)
respectively. The heteroclinic solutions to system (2.9) are corresponding to the fronts of system
(1.6) with (Ah(ϕ),Bh(ϕ)) = (ph(ϕ), qh(ϕ)) and limϕ→±∞(Ah(ϕ),Bh(ϕ)) = (±1, 0), and, there
is one case to consider:

c0 =
α3ν0µ

2 (1 + µν0)
, ν0 = −

2
√

3α4 arctanh
(√

3
3

)
2
√

3α5 arctanh
(√

3
3

)
+
√
α2
3 + 4α2

.
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3. Existence of traveling fronts in system (2.9)

The flows on M−ε and M+
ε for the full system (2.9) can be determined by substituting(

±(1 + µν0)
1
4 , 0
)

into (p, q), then system (2.9) reduces{
ν ′ = ετ,
τ ′ = ε

[
α2νε

2 − ε
(
α3 + α1cε

4
)
τ)
]
.

(3.1)

By applying the results on [17, 18], if α2 > 0, we have two saddles S1 = (1, 0, 0, 0) ∈ M+
ε and

S2 = (−1, 0, 0, 0) ∈M−ε of the system (2.9), as well as the two equations

lu =

(ν, τ) | τ =


(
−α3 +

√
α2
3 + 4α2

)
2

ε+O
(
ε5
) ν

 ,

and

ls =

(ν, τ) | τ =


(
−α3 −

√
α2
3 + 4α2

)
2

ε+O
(
ε5
) ν

 ,

representing the unstable and stable manifolds of the saddle S1 onM+
ε , respectively. It is worth

noting that S2 on the critical manifolds M−ε has the same expressions.

3.1. Transversal intersection between W u (M−ε ) and W s (M+
ε )

Currently, we plan to combine the fast isocline heteroclinic solution in (2.5) with partial curves
lu,s representing the slow orbits in M+

ε and M−ε . In this way, if all the manifolds intersected
transversally [25, 26], we can construct a global singularity structure that corresponds to a
heteroclinic orbit in the full system (2.9).

The fast field with a Hamiltonian structure, as we are all aware, is associated with a Melnikov
integral, whose simple zeroes correspond to transversal intersections of W u (M−ε ) and W s (M+

ε ).
Thus, we can ascertain whether W u (M−ε ) and W s (M+

ε ) intersect by employing the Melnikov
integral. Robinson et.al. [27] proposed that the transversal intersection between W u (M−ε ) and
W s (M+

ε ) can be determined by

∆ (ν0, τ0) =

∫ +∞

−∞
c0q

2
0 (ϕ; ν0) ε+ µτ0p0 (ϕ; ν0) q0 (ϕ; ν0)ϕdϕ, (3.2)

where the explicit expressions of p0 (ϕ; ν0) and q0 (ϕ; ν0) are given in (2.6) and (2.7), respectively.
They are the heteroclinic orbits L0 of the layer system (2.5) . Hence, we substitute (2.6) and
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(2.7) into (3.2) , and then we have

∆ (ν0, τ0) =

∫ +∞

−∞
c0q

2
0 (ϕ; ν0) ε+ µτ0p0 (ϕ; ν0) q0 (ϕ; ν0)ϕdϕ,

= c0ε

∫ +∞

−∞
q20 (ϕ; ν0) dϕ+ µτ0

∫ +∞

−∞
p0(ϕ; ν0)q0 (ϕ; ν0)ϕdϕ

= −
√

3εc0 (1 + uν0)

2
ln(2−

√
3) +

√
3 ln(2 +

√
3)

2
uτ0,

(3.3)

which permit two zeros,

τ0 = −εc0 (1 + µν0)

µ
, µ 6= 0, (3.4)

and
c0 = 0, µ = 0. (3.5)

For the case of (3.5), when c0 = 0 this wave becomes stationary and it is impossible for
system (1.6) to have traveling fronts. Therefore, we will only consider the case (3.4) for the rest
of the article. From the analysis above, we can conclude that W u (M−ε ) and W s (M+

ε ) intersect

transversally. As a result, any heteroclinic orbit fromM+
ε toM−ε should satisfy τ0 = − εc0(1+µν0)

µ
at leading order.

3.2. Take-Off and Touch-Down curves

As ϕ → ±∞, each heteroclinic orbit L0 within the heteroclinic manifold asymptotically
approaches the points on M+

0 and M−0 , known as base points. Let ζ0 represents the ini-
tial value of the flow L (ϕ, ζ0) of system (2.9), and let ζ−0 and ζ+0 be the base points of
the flows on M−ε and M+

ε . According to Doelman and Tu et.al. in [17, 18], for any orbit
L (ϕ, ζ0) with ζ0 = L (0, ζ0) ∈ W u (M−ε ) ∩ W s (M+

ε )∩ {q = 0}, geometric singular pertur-
bation theory states that there exist two orbits respectively, L− = L−

(
ϕ, ζ−0

)
⊂ M−ε and

L+ = L+
(
ϕ, ζ+0

)
⊂ M+

ε , such that
∥∥L (ϕ, ζ0)− L+

(
ϕ, ζ+0

)∥∥ is exponentially small in ε when
ϕ ≥ O

(
1
ε

)
and

∥∥L (ϕ, ζ0)− L−
(
ϕ, ζ−0

)∥∥ is exponentially small in ε when −ϕ > O
(
1
ε

)
.

The take-off curve and the touch-down curve onM±ε play a crucial role in determining whether
any of the constructed family of orbits L(ϕ; ν0) is a heteroclinic orbit connecting the two saddle
points S1,2. This means that the heteroclinic orbit settling on W s (M+

ε ) ∩W u (M−ε ) can be
connected respectively by the stable manifold of the saddle S1 ∈M+

ε and the unstable manifold
of the saddle S2 ∈M−ε transversally. By applying the results from [18, 28], we define the take-off
curve T −o ⊂M−ε

T −o =
⋃
ζ0

{
ζ−0 = L−

(
0, ζ−0

)}
,
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and the touch-down curve T +
d ⊂M

+
ε

T +
d =

⋃
ζ0

{
ζ+0 = L+

(
0, ζ+0

)}
.

The sets of T −o and T +
d are determined by the accumulated change in ν and τ during half the

jump through the fast field. The calculation of the curves To,d implicitly provides information
about the possibility of a jump from ζ−0 ∈M−ε to ζ+0 ∈M+

ε . The accumulated change in τ over
a full jump through the fast field is represented by

∆τ =

∫ −k log ε
k log ε

ε
[
α2ε

2ν − ε
(
α3 + α1ε

4c
)
τ − α4p

2 − α5νp
2 + (

√
1 + µν)(α4 + α5ν)

]
dϕ

= −ε
∫ −k log ε
k log ε

α4p
2 + α5νp

2 − (
√

1 + µν)(α4 + α5ν)dϕ+O
(
ε2| log ε|

)
= −ε

∫ −k log ε
k log ε

(α4 + α5ν0)
(
p20 − (

√
1 + µν)

)
dϕ+O

(
ε2| log ε|

)
= −ε (α4 + α5ν0)

∫ ∞
−∞

(
p20 − (

√
1 + µν)

)
dϕ+O

(
ε1+2k

)
+O

(
ε2| log ε|

)
= −ε (α4 + α5ν0)

∫ ∞
−∞

(
−3

2 + cosh(2
√

1 + µνϕ)

)√
1 + µνdϕ+O

(
ε2| log ε|

)
= 3ε (α4 + α5ν0)

√
(1 + µν0)

1

2
√

1 + µν

4
√

3arctanh(
√
3
3 )

3
+O

(
ε2| log ε|

)
= 2
√

3ε (α4 + α5ν0) arctanh(

√
3

3
) +O

(
ε2| log ε|

)
,

(3.6)

in the same way, we have

∆ν =

∫ −k log ε
k log ε

ν ′ |L(ϕ,ζ0) dϕ

= ε

∫ −k log ε
k log ε

(τ0 +O(ε))dϕ

= −2kε log ε(τ0 +O(ε)),

(3.7)

where k denotes a positive constant, L(ϕ, ζ0) can be approximated by the unperturbed hete-
roclinic orbit (p0 (ϕ; ν0) , q0 (ϕ; ν0) , ν0, τ0) = L0 (ϕ; ζ0) given by (2.6)-(2.7). So the take-off and
touch-down curves are respectively

T −o =

{
ν−0 , τ

−
0 = (ν0, τ0) | τ−0 =

(
τ0 −

√
3ε (α4 + α5ν0) arctanh(

√
3

3
)

)}
,
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and

T +
d =

{
ν+0 , τ

+
0 = (ν0, τ0) | τ+0 =

(
τ0 +

√
3ε (α4 + α5ν0) arctanh(

√
3

3
)

)}
,

with τ0 = − εc0(1+µν0)
µ . The existence of heteroclinic orbits approaching to the saddles S1 =

(1, 0, 0, 0) ∈ M+
ε and S2 = (−1, 0, 0, 0) ∈ M−ε respectively as ϕ → ±∞ requires that T −o ∩ lu

and T +
d ∩ l

s intersect transversally. In fact, the ν-coordinates of the base points ζ−0 and ζ+0 of a
heteroclinic orbit have to be equal at leading order since ∆ν = O(ε2|log ε|) during an excursion
through the fast field, see (3.7).

If the two equations

−εc0 (1 + µν0)

µ
−
√

3ε (α4 + α5ν0) arctanh

(√
3

3

)
=
ε
(
−α3 +

√
α2
3 + 4α2

)
2

ν0, (3.8)

and

−εc0 (1 + µν0)

µ
+
√

3ε (α4 + α5ν0) arctanh

(√
3

3

)
=
ε
(
−α3 −

√
α2
3 + 4α2

)
2

ν0, (3.9)

in which (ν0, c0) can be seen as two unknowns, have non-degenerate zeroes, then T −o ∩ lu and
T +
d ∩ l

s intersect transversally.

Based on the above analysis, we can conclude that a singular heteroclinic orbit connecting
S1 to S2 is formed, consisting of one of the fast heteroclinic orbits (2.6)-(2.7) and the slow
trajectories lu,s ⊂ M±ε . This singular structure persists for 0 < ε � 1, as the slow manifolds
M±0 are normally hyperbolic and all the involved manifold intersect transversally. Therefore,
according to geometric singular perturbation theory, the heteroclinic orbits L (ϕ, ζ0) can be
controlled and will approach the two different saddles of system (2.9) as ϕ→ ±∞, resulting in
the existence of traveling fronts in system (1.6), as illustrated in the figure 3.

Before proving Theorem 2.1, we first give the following result.

Lemma 3.1. If µ 6= 0, α2 > 0, αi ∈ R (i = 3, 4, 5), and (2.4) holds, then when ε > 0 is small
enough, it is possible that there is one type of solutions (ν0, c0) to equation (3.8)-(3.9), namely,

c0 =
α3ν0µ

2 (1 + µν0)
, ν0 = −

2
√

3α4 arctanh
(√

3
3

)
2
√

3α5 arctanh
(√

3
3

)
+
√
α2
3 + 4α2

.

i.e. there is one kind of base point pairs ζ−0 and ζ+0 that can give rise to a heteroclinic connection
between S1 and S2. This means that the corresponding intersections of T −o ∩ lu and T +

d ∩ l
s are

transversal.
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In the figure on the right, the
green curve and red curve
represent the singular hete-
roclinic orbit and the hetero-
clinic orbit of the entire sys-
tem (2.9) generated by the
singular heteroclinic orbit re-
spectively.

M+
ε

M−
ε ζ0

Figure 3: Schematic diagram of heteroclinic solutions for the system-wide (2.9).

Proof. The sum of equations (3.8) and (3.9) is

−2εc0 (1 + µν0)

µ
= −εα3ν0,

then we have 2c0 + (2c0 − α3)µν0 = 0, namely,

c0 =
α3ν0µ

2 (1 + µν0)
. (3.10)

Plugging (3.10) into (3.8) or (3.9), we get

ν0 = −
2
√

3α4 arctanh
(√

3
3

)
2
√

3α5 arctanh
(√

3
3

)
+
√
α2
3 + 4α2

.

Therefore, the proof of Lemma is complete.

Now we turn to prove Theorem 2.1.

Proof of Theorem 2.1. Upon revisiting Section 3.1, 3.2 and Lemma 3.1, it becomes evident
that when 0 < ε � 1, the three-dimensional stable manifold W s

ε (M+
ε ) and unstable man-

ifold W u
ε (M−ε ), take-off curve T −o and unstable manifold lu of the saddle S2 = (−1, 0, 0, 0)

intersect transversely as well as the touch-down curve T +
d and stable manifold ls of the saddle

S1 = (1, 0, 0, 0). Otherwise the three-dimensional stable manifold W s
ε (M+

ε ) and unstable man-
ifold W u

ε (M−ε ), the take-off curve T −o and unstable manifold lu of the saddle S1 = (1, 0, 0, 0)
intersect transversely as well as the touch-down curve T +

d and stable manifold ls of the saddle
S2 = (−1, 0, 0, 0). Therefore the conclusions of Theorem 2.1 are easily obtained.
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4. Conclusion

Using the Fenichel’s geometric singular perturbation theory and Melnikov’s methods, we in-
vestigate the traveling fronts of a quintic Ginzburg-Landau equation (1.6) with slow diffusion.
Firstly, we transform system (1.6) into a four-dimensional ordinary differential equation (2.9)
using a specific transformation, and employ geometric singular perturbation theory to carry
out fast and slow separation to obtain the layer system and reduced system, as well as their
dynamics. We then measure the transversal intersection of the stable and unstable manifolds
of the slow manifolds W u (M−ε ) and W s (M+

ε ) using the Melnikov function. We define the
take-off curve T −o and touch-down curve T +

d to intersect transversally with the stable and un-
stable manifolds of the two different saddle points S1 ∈ M+

ε and S2 ∈ M−ε , respectively. This
allows us to obtain the existence of the heteroclinic orbit located at two different saddle points
of the system near the singular heteroclinic orbit. Furthermore, we establish the existence of the
traveling fronts solutions of the quintic Ginzburg-Landau equation (1.6). Finally, under certain
parameter conditions, we demonstrate that the coupled quintic Ginzburg-Landau system (1.6)
may possess one or two heteroclinic solutions.
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Appendix

Appendix A

The derivation process for the explicit expressions of equations (2.6) and (2.7) is as follows:
The first integral of equation (2.5) is

H(p, q, ν0, τ0) =
q2

2
+

1

2
(1 + µν0)p

2 − 1

6
p6. (5.1)
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By performing a simple calculation, we determine that equation (2.5) has two hyperbolic saddle

points, denoted as (p = ± (1 + µν0)
1
4 ), q = 0). Substituting (p = ± (1 + µν0)

1
4 ), q = 0) into

equation (5.1) yields

H(p, q, ν0, τ0) =
1

3
(1 + µν0)

3
2 ,

then we have
1

2
q2 +

1

2
(1 + µν0) p

2 − 1

6
p6 =

1

3
(1 + µν0)

3
2 ,

therefore

q = ±
√

1

3

(
2 (1 + µν0)

3
2 − 3 (1 + µν0) p2 + p6

)
.

i.e.
dp

dϕ
= ±

√
1

3

(
2 (1 + µν0)

3
2 − 3 (1 + µν0) p2 + p6

)
= ±

√
1

3

((
p− (1 + µν0)

1
4

)2 (
p+ (1 + µν0)

1
4

)2 (
p2 + 2 (1 + µν0)

1
2

))
,

then we have

±
√

3
dp

(p− (1 + µν0)
1
4 )(p+ (1 + µν0)

1
4 )

√
p2 + 2(1 + µν0)

1
2

= dϕ,

by integrating both sides and using symmetry of the phase portrait of system (5.1) with respect
to p and q, we have

√
3

∫
− dp

(p− (1 + µν0)
1
4 )(p+ (1 + µν0)

1
4 )

√
p2 + 2(1 + µν0)

1
2

= ϕ+ c. (5.2)

By substituting the initial point (0, 0) into the above equation, we get c = 0. Taking the auxiliary
calculation of Mathematica and referencing the integral table, we obtain

ArcTanh

[ √
3p√

p2 + 2
√

1 + µν0

]
=
√

1 + µν0ϕ,

thus, we obtain equation (2.6). The derivative of variable ϕ in equation (2.6) gives equation
(2.7).
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Appendix B

Here are the calculation details for the Melnikov integral (3.3).

According to equation (2.6) and equation (2.7), we have

p0 · q0 =
6 sech(

√
1 + µν0ϕ)2(1 + µν0) tanh(

√
1 + µν0ϕ)

(−3 + tanh(
√

1 + µν0ϕ)2)2
,

and

q20 = −18 sech(
√

1 + µν0ϕ)4(1 + µν0)
3
2

(−3 + tanh(
√

1 + µν0ϕ)2)3
.

Substituting them into equation (3.2), we get∫ +∞

−∞
c0q

2
0 (ϕ; ν0) ε+ µτ0p0 (ϕ; ν0) q0 (ϕ; ν0)ϕdϕ

=c0ε

∫ +∞

−∞
q20 (ϕ; ν0) dϕ+ µτ0

∫ +∞

−∞
p0(ϕ; ν0)q0 (ϕ; ν0)ϕdϕ

=c0ε

∫ +∞

−∞
−18 sech(

√
1 + µν0ϕ)4(1 + µν0)

3
2

(−3 + tanh(
√

1 + µν0ϕ)2)3
dϕ

+µτ0

∫ +∞

−∞

6 sech(
√

1 + µν0ϕ)2(1 + µν0) tanh(
√

1 + µν0ϕ)

(−3 + tanh(
√

1 + µν0ϕ)2)2
dϕ

=− 18(1 + µν0)c0ε

∫ +∞

−∞

sech(
√

1 + µν0ϕ)4

(−3 + tanh(
√

1 + µν0ϕ)2)3
d(
√

1 + µν0ϕ)

+6µτ0

∫ +∞

−∞

sech(
√

1 + µν0ϕ)2 tanh(
√

1 + µν0ϕ)(
√

1 + µν0ϕ)

(−3 + tanh(
√

1 + µν0ϕ)2)2
d(
√

1 + µν0ϕ),

(5.3)

taking the auxiliary calculation of Mathematica and referencing the integral table, we obtain∫ +∞

−∞

sech t4

(−2− sech t2)3
dt =

√
3 ln(2−

√
3)

36
,

and ∫ +∞

−∞

sech t2 tanh t · t
(−3 + tan t2)2

=

√
3 ln(2 +

√
3)

12
,

substituting the above two equations into equation (5.3), we obtain equation (3.3).
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