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Abstract

In this paper, on the base of the methodology of the new modulus-based matrix
splitting method in [Optim. Lett., (2022) 16:1427-1443], we establish a two-step
matrix splitting (TMS) method for solving the mixed linear complementarity prob-
lem (MLCP). Three sufficient conditions to ensure the convergence of the proposed
method are presented. Numerical examples are provided to illustrate the feasibility
and efficiency of the proposed method.
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1 Introduction

The mixed linear complementarity problem is to find two vectors x ∈ Rn and y ∈ Rm

such that 



Ax + By + a = 0,

w = b + Cx + Dy ≥ 0, y ≥ 0,

wT y = 0,

(1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, a ∈ Rn and b ∈ Rm, see [1, 2]. We
denote the problem (1.1) by the MLCP(A,B,C,D, a, b). The MLCP(A,B,C,D, a, b) is
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from several aspects, such as the variational inequalities, complementarity problems and a
variety of mathematical programs, which is commonly considered as an important tool for
the stability aspects of nonlinear complementarity problem and the Karush-Kuhn-Tucker
(KKT) system of a variational problem. In addition, in a way, the MLCP(A,B,C,D, a, b)
is also viewed as a generalization form of the linear complementarity problem (LCP), the
vertical linear complementarity problem (VLCP), the horizontal linear complementarity
problem (HLCP), respectively. For example, the MLCP(A,B,C,D, a, b) reduces to the
LCP(D − CA−1B, b− cA−1a) if A is nonsingular in (1.1), see [4, 5].

In [1,2], the authors mainly focused on the theory research of the MLCP(A,B,C,D, a, b),
such as the existence of the solution, the perturbation bound of the solution, the degree
theory, and so on. As is known, besides that, another important aspect is to develop
some efficient numerical methods for solving the MLCP(A,B,C,D, a, b). To know our
knowledge, using the iteration method for solving the MLCP(A,B,C,D, a, b) has not
been discussed. In order to fill in this study gap, in this paper, inspired by the new
modulus-based matrix splitting method for the LCP in [3], we establish a two-step matrix
splitting (TMS) method for solving the MLCP(A,B,C,D, a, b).

Of course, as mentioned above, the MLCP(A,B,C,D, a, b) with A being nonsingular
in (1.1) can reduce to the corresponding LCP. In such case, there exist many numerical
methods for its LCP form, such as interior point method [7,8], projected splitting method
[9–11], matrix multisplitting iteration method [6], modulus-based matrix splitting (MMS)
method [12] and new modulus-based matrix splitting (NMMS) method [3]. Due to the
convenience and performance of the MMS and NMMS methods, they are two power
tools to gain the numerical solution of the LCP. Not only that, there exist their other
forms, see [13–18] (to name a few) for more details. In addition, the MMS and NMMS
methods have been used to address other complementarity problems, such as the implicit
complementarity problem [19], the quasi-complementarity problem [20] and the horizontal
linear complementarity problem [26]. Recent some related researches, one see [27–29].

It should be noted that if we directly use the above MMS and NMMS methods for its
LCP form to obtain the numerical solution of the MLCP(A,B,C,D, a, b), then we have
to use other technique for handling with the inverse of matrix A. As is known, this case
should be avoided as much as possible because the computational expense for computing
the inverse of matrix A is commonly large. What is worse, when we face to matrix A that
is singular or is close to singular, the above MMS and NMMS methods may be failure. To
avoid this disadvantage, with the help of the methodology of the NMMS method in [3],
we establish a numerical method, i.e., a two-step matrix splitting (TMS) method, for
solving the MLCP(A,B,C,D, a, b). To ensure the convergence of the proposed method,
three coarse sufficient conditions are presented. In addition, to illustrate the feasibility
and efficiency of the proposed method, some numerical examples are provided as well.

The layout of this paper unfolds below. In Section 2, a two-step matrix splitting (TMS)
method for solving the MLCP(A,B,C,D, a, b) is proposed on the base of the NMMS
method. In Section 3, three coarse convergence conditions of the proposed method are
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given. Numerical experiments are reported to verify the efficiency of the proposed method
in Section 4. Finally, in Section 5, we give some conclusions to end this paper.

2 A two-step matrix splitting method

In this section, we will establish a two-step matrix splitting (TMS) method for solving
the MLCP (A,B,C,D, a, b). To this end, Lemma 2.1 is required.

Lemma 2.1 [3] Let a, b ∈ R. Then a ≥ 0, b ≥ 0, ab = 0 if and only if a + b = |a − b|.
This result carries immediately over to vectors in Rn.

Exploiting Lemma 2.1, we can forthrightly gain the following system with absolute
value equation, see Theorem 2.1, whose proof is firsthand and omitted.

Theorem 2.1 The MLCP(A,B,C,D, a, b) is equivalent to find two vectors x ∈ Rn and
y ∈ Rm such that

{
Cx + (Ω + D)y = |(D − Ω)y + Cx + b| − b,

Ax + By + a = 0,
(2.1)

where Ω is a positive diagonal matrix.

Naturally, in the light of two functions in Theorem 2.1, it is easy to establish a two-
step matrix splitting (TMS) method for solving the MLCP(A,B,C,D, a, b), specifically
see Method 2.1.

Method 2.1 Let D = F1 − G1 be a splitting of the matrix D, A = F2 − G2 be
a splitting of the matrix A with F2 being nonsingular, and let Ω be a positive diagonal
matrix such that matrix Ω + F1 is nonsingular. Assume that (x(0), y(0)) ∈ Rn+m is an
arbitrary initial vector with x(0) ∈ Rn, y(0) ∈ Rm. For k = 0, 1, 2, . . ., until the sequence
of iterates {(x(k), y(k))}+∞

k=0 ⊂ Rn+m is convergent, calculate (x(k+1), y(k+1)) by solving the
following two systems

{
(Ω + F1)y

(k+1) = G1y
(k) − Cx(k) + |(D − Ω)y(k) + Cx(k) + b| − b,

F2x
(k+1) = G2x

(k) −By(k+1) − a.
(2.2)

Obviously, per iteration in Method 2.1, it is necessary to solve two linear subsystems
with matrices Ω+F1 and F2, which in practical computations compels us to quickly obtain
the inverse of the matrices Ω + F1 and F2. Fortunately, we can easily do it by the matrix
splitting technique. Specially, for Method 2.1, if UD(UA) is the minus strictly upper part
of D(A),

F1 =
1

α
(∧D − βLD) and F2 =

1

α
(∧A − βLA),
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where ∧D(∧A) and LD(LA) denote the diagonal and minus strictly lower part of D(A),
respectively, then the two-step Jacobi (TJ), Gauss-Seidel (TGS) and successive overre-
laxation (TSOR) iteration method with (α, β) being equal to (1, 0), (1, 1) and (α, α) can
be obtained, respectively. Clearly, these relaxation versions of Method 2.1 easily gain the
inverse of the matrices Ω+F1 and F2. Not only that, they are quite practical and efficient
for solving the large sparse MLCP(A,B,C,D, a, b) on the high-peed processor systems.

3 Convergence analysis

In this section, we will discuss the convergence property of Method 2.1. To this end, we
require some necessary definitions, notations and lemmas.

Let A = (aij), B = (bij) ∈ Rn×n. If aij ≥ bij (aij > bij) for i, j = 1, 2, . . . , n, we
denote A ≥ B (A > B), in particular, we call A a nonnegative (positive) matrix and
denote A ≥ 0 (A > 0) if B = 0. Matrix A = (aij) ∈ Rn×n is called a Z-matrix if
aij ≤ 0 (i 6= j); an M -matrix if A−1 ≥ 0 and A is a nonsingular Z-matrix. In addition,
|A| = (|aij|), det(A), ‖A‖ and ρ(A), respectively, denotes the determinant, the 2-norm
and the spectral radius of the matrix A, see [21, 22].

Lemma 3.1 [23] Let λ be any root of the quadratic equation x2+bx+d = 0 with b, d ∈ R.
Then |λ| < 1 if and only if |d| < 1 and |b| < 1 + d.

Lemma 3.2 [21] Let A ≥ 0 be an irreducible matrix. Then

(i) A has a positive eigenvalue equal to its spectral radius;

(ii) A has an eigenvector x > 0 corresponding to ρ(A);

(iii) ρ(A) is a simple eigenvalue of A.

Lemma 3.3 [21] Let A ≥ 0. Then

αx ≤ Ax, x ≥ 0, implies α ≤ ρ(A),

and
Ax ≤ βx, x > 0, implies ρ(A) ≤ β.

Let

s1 = ‖(Ω + F1)
−1G1‖+ ‖(Ω + F1)

−1‖‖D − Ω‖, s2 = ‖(Ω + F1)
−1C‖+ ‖(Ω + F1)

−1‖‖C‖

and
t1 = ‖F−1

2 G2‖, t2 = ‖F−1
2 B‖.

Then the following main convergence theorem for Method 2.1 is presented.
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Theorem 3.1 Let D = F1 − G1, A = F2 − G2 with det(F2) 6= 0 be a matrix splitting
of the matrices D and A, respectively, and let Ω be a positive diagonal matrix such that
matrix Ω + F1 is nonsingular. If

t1s1 < 1 and t2s2 < (1− t1)(1− s1), (3.1)

then Method 2.1 is convergent.

Proof. Assume that (x∗, y∗) is a solution of the MLCP(A,B,C,D, a, b), then it satisfies
{

(Ω + F1)y∗ = G1y∗ − Cx∗ + |(D − Ω)y∗ + Cx∗ + b| − b,

F2x∗ = G2x∗ −By∗ − a.
(3.2)

Combining (2.2) with (3.2), we obtain

y(k+1) − y∗ =(Ω + F1)
−1(G1(y

(k) − y∗)− C(x(k) − x∗)

+ |(D − Ω)y(k) + Cx(k) + b| − |(D − Ω)y∗ + Cx∗ + b|),
and

x(k+1) − x∗ =F−1
2 (G2(x

(k) − x∗)−B(y(k+1) − y∗)).

Additionally,

‖y(k+1) − y∗‖ =‖(Ω + F1)
−1(G1(y

(k) − y∗)− C(x(k) − x∗)

+ |(D − Ω)y(k) + Cx(k) + b| − |(D − Ω)y∗ + Cx∗ + b|)‖
≤‖(Ω + F1)

−1G1(y
(k) − y∗)‖+ ‖(Ω + F1)

−1C(x(k) − x∗)‖
+ ‖(Ω + F1)

−1‖|‖(D − Ω)y(k) + Cx(k) + b| − |(D − Ω)y∗ + Cx∗ + b|‖
≤‖(Ω + F1)

−1G1‖‖y(k) − y∗‖+ ‖(Ω + F1)
−1C‖‖x(k) − x∗‖

+ ‖(Ω + F1)
−1‖‖(D − Ω)(y(k) − y∗) + C(x(k) − x∗)‖

≤|(Ω + F1)
−1G1||y(k) − y∗|+ |(Ω + F1)

−1C||x(k) − x∗|
+ ‖(Ω + F1)

−1‖‖D − Ω‖‖y(k) − y∗‖+ ‖(Ω + F1)
−1‖‖C‖‖x(k) − x∗‖

≤(‖(Ω + F1)
−1G1‖+ ‖(Ω + F1)

−1‖‖D − Ω‖)‖y(k) − y∗‖
+ (‖(Ω + F1)

−1C‖+ ‖(Ω + F1)
−1‖‖C‖)‖x(k) − x∗‖

=s1‖y(k) − y∗‖+ s2‖x(k) − x∗‖
and

|x(k+1) − x∗| =|F−1
2 (G2(x

(k) − x∗)−B(y(k+1) − y∗))|
≤|F−1

2 G2||x(k) − x∗|+ |F−1
2 B||y(k+1) − y∗|

=t1|x(k) − x∗|+ t2|y(k+1) − y∗|.
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Denote
e(k)

x = x(k) − x∗, e(k)
y = y(k) − y∗,

then

‖e(k+1)
y ‖ ≤ s1‖e(k)

y ‖+ s2‖e(k)
x ‖. (3.3)

Similarly,

‖e(k+1)
x ‖ ≤ t1‖e(k)

x ‖+ t2‖e(k+1)
y ‖. (3.4)

Thus, from (3.3) and (3.4), we have

(
1 0
−t2 1

) (
‖e(k+1)

y ‖
‖e(k+1)

x ‖

)
≤

(
s1 s2

0 t1

) (
‖e(k)

y ‖
‖e(k)

x ‖

)
. (3.5)

Let

P =

(
1 0
−t2 1

)
.

Then it is easy to find that matrix P is an M -matrix. It follows that matrix P−1 is a
nonsingular nonnegative matrix. Left-multiplying (3.5) by P−1 gives

(
‖e(k+1)

y ‖
‖e(k+1)

x ‖

)
≤

(
1 0
t2 1

)(
s1 s2

0 t1

) (
‖e(k)

x ‖
‖e(k)

y ‖

)
=

(
s1 s2

t2s1 t2s2 + t1

) (
|e(k)

y |
|e(k)

x |

)
.

Let

W =

(
s1 s2

t2s1 t2s2 + t1

)
.

Clearly, when ρ(W ) < 1, Method 2.1 is convergent. Let λ be an eigenvalue of W . Then

∣∣∣∣
λ− s1 −s2

−t2s1 λ− (t2s2 + t1)

∣∣∣∣ = 0. (3.6)

Further, from (3.6) we have

λ2 − (s1 + t2s2 + t1)λ + t1s1 = 0. (3.7)

Applying Lemma 3.1 to Eq. (3.7), |λ| < 1 if and only if

t1s1 < 1

and
s1 + t2s2 + t1 < 1 + t1s1.

Therefore, if the condition (3.1) holds, then ρ(W ) < 1. This completes the proof. 2
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In addition, if we take

S1 = |(Ω + F1)
−1G1|+ |(Ω + F1)

−1||D − Ω|, S2 = |(Ω + F1)
−1C|+ |(Ω + F1)

−1||C|

and
T1 = |F−1

2 G2|, T2 = |F−1
2 B|,

then the following convergence theorem for Method 2.1 is also presented by the proof of
Theorem 3.1.

Theorem 3.2 Let D = F1 − G1, A = F2 − G2 with det(F2) 6= 0 be a matrix splitting
of the matrices D and A, respectively, and let Ω be a positive diagonal matrix such that
matrix Ω + F1 is nonsingular. If

ρ(W ) < 1,

where

W =

[
S1 S2

T2 T1

]
,

then Method 2.1 is convergent.

Proof. Based on the proof of Theorem 3.1, we set

W̄ =

[
S1 S2

T2S1 T2S2 + T1

]
.

It is not difficult to find that under ρ(W̄ ) < 1, Method 2.1 is convergent. According to
Lemma 3.2, there is a vector

ξ =

[
ξ1

ξ2

]
≥ 0, ξ 6= 0,

such that W̄ ξ = ρ(W̄ )ξ, i.e.,

[
S1 S2

T2S1 T2S2 + T1

] [
ξ1

ξ2

]
= ρ(W̄ )

[
ξ1

ξ2

]
,

or
[

S1 S2

0 T1

] [
ξ1

ξ2

]
= ρ(W̄ )

[
I 0
−T2 I

] [
ξ1

ξ2

]
. (3.8)

By simple passages, from (3.8), we have

S1ξ1 + S2ξ2 = ρ(W̄ )ξ1,

T1ξ2 = −ρ(W̄ )T2ξ1 + ρ(W̄ )ξ2,
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which is equal to
[

S1 S2

ρ(W̄ )T2 T1

] [
ξ1

ξ2

]
= ρ(W̄ )

[
ξ1

ξ2

]
. (3.9)

If ρ(W̄ ) ≥ 1, then from (3.9) we have

[
ξ1

ξ2

]
=

[
1

ρ(W̄ )
S1

1
ρ(W̄ )

S2

T2
1

ρ(W̄ )
T1

] [
ξ1

ξ2

]

≤
[

S1 S2

T2 T1

] [
ξ1

ξ2

]

=W

[
ξ1

ξ2

]
,

along with Lemma 3.2, we that ρ(W ) ≥ 1, which is not in line with ρ(W ) < 1. This
shows that ρ(W̄ ) < 1, further, Method 2.1 is convergent. 2

Based on Theorem 2.2, it is not difficult to find that we have the following result, see
Theorem 2.3.

Theorem 3.3 Let D = F1 − G1, A = F2 − G2 with det(F2) 6= 0 be a matrix splitting
of the matrices D and A, respectively, and let Ω be a positive diagonal matrix such that
matrix Ω + F1 is nonsingular. If

‖S‖∞ < 1, ‖T‖∞ < 1,

where
S = [S1, S2], T = [T2, T1],

then Method 2.1 is convergent.

4 Numerical experiments

In this section, some examples are provided to investigate the performance of Method 2.1
for solving the MLCP(A,B,C,D, a, b), which are from the KKT conditions of a quadratic
program with general equality and inequality constraints, see [4] for more details.

For the sake of simplicity, we consider the following two examples.
Example 4.1 Consider the MLCP(A,B,C,D, a, b), for which A,B,C,D are given

below:

A = Ā + µI, Ā =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2m2×2m2

B =

(
I ⊗ F
F ⊗ I

)
∈ R2m2×m2

, C = −BT , D = I ⊗ T + T ⊗ I + µI ∈ Rm2×m2

,
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with
T = tridiag(−1, 2,−1) ∈ Rm×m and F = tridiag(−1, 1, 0) ∈ Rm×m,

where ⊗ denotes the Kronecker product symbol, which is inspired by in [12,24].
Example 4.2 Consider the MLCP(A,B,C,D, a, b), for which A = (akj) ∈ Rq×q, D =

(dkj) ∈ R(n−q)×(n−q) with 2q > n are given below:

akj =





k + 1 for j = k,

1 for |j − k| = 1,

0 otherwise,

k, j = 1, 2, . . . , q,

dkj =





k + 1 for j = k,

1 for |j − k| = 1

0 otherwise,

k, j = 1, 2, . . . , n− q,

and B = (bkj) with

bkj =

{
j for k = j + 2q − n,

0 otherwise,
k, j = 1, 2, . . . , n− q,

and C = −BT , see [25].
Numerical results consist of three aspects: the number of iteration steps (denoted by

‘IT’), elapsed CPU time in seconds (denoted by ‘CPU’) and the relative residual error
(denoted by ‘RES’), which is defined by

RES(x(k)) = ‖min(Ax(k) + By(k) + a, b + Cx(k) + Dy(k))‖2,

where x(k) and y(k) is the kth approximate solution of the MLCP(A,B,C,D, a, b). In
addition, we list the spectral radii ρ(W ) of the corresponding matrix.

In our numerical computations, the starting vectors x(0) and y(0) for Method 2.1 are
set to be zero vector. Method 2.1 is stopped once RES(z(k)) ≤ 10−5 or the number of
iterations surpass 500. The vectors a and b are to be adjusted such that a = −Ax∗−By∗

and b = w∗ − Cx∗ −Dy∗, where x∗ = e with e = (1, 1, . . . , 1)T , w∗ and y∗ are defined as

w∗ = (1, 0, 1, 0 . . . , 1, 0, . . .)T , y∗ = (0, 1, 0, 1 . . . , 0, 1, . . .)T .

With respect to the choice of Ω, we use the strategy described in [26] for Method 2.1, i.e.,
we take Ω = ∧D, where ∧D denotes the diagonal part of D. In the implementations, we
consider two relaxation versions of Method 2.1, i.e., TJ and TGS are adopted to solve the
MLCP(A,B,C,D, a, b). All runs are executed in R2016B.

Tables 1-3 list the numerical results (including ρ(W ), IT, CPU and RES) of two
testing methods for Examples 4.1 and 4.2. The numerical results in Tables 1-3 verify
that these two testing methods can rapidly calculate a satisfactory approximation to the
solution of the MLCP(A,B,C,D, a, b) under certain conditions. That is to say, in a way,
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m 30 60 90 120
ρ(W ) 0.8505 0.8528 0.8532 0.8534

TJ IT 20 19 19 19
CPU 0.0147 0.0441 0.0865 0.1360
RES 5.17e-6 9.30e-6 8.84e-6 8.59e-6
ρ(W ) 0.7732 0.7758 0.7762 0.7764

TGS IT 13 12 12 12
CPU 0.0113 0.0261 0.0549 0.0931
RES 3.42e-6 9.20e-6 8.73e-6 8.47e-6

Table 1: Numerical comparison of TJ and TGS for Example 4.1 with µ = 4.

m 30 60 90 120
ρ(W ) 0.6804 0.6822 0.6826 0.6827

TJ IT 15 15 15 15
CPU 0.0116 0.0306 0.0627 0.1085
RES 8.79e-6 7.86e-6 7.47e-6 7.25e-6
ρ(W ) 0.5947 0.5966 0.5969 0.5970

TGS IT 10 10 10 10
CPU 0.0090 0.0214 0.0456 0.0780
RES 7.88e-6 7.00e-6 6.64e-6 6.44e-6

Table 2: Numerical comparison of TJ and TGS for Example 4.1 with µ = 6.

q 6000 7000 8000 9000
ρ(W ) 0.8166 0.6548 0.5224 0.5223

TJ IT 33 19 19 19
CPU 12.32 6.26 6.02 5.12
RES 7.86e-6 9.99e-6 9.99e-6 9.99e-6
ρ(W ) 0.8166 0.6548 0.5002 0.4439

TGS IT 31 16 11 11
CPU 10.91 4.94 3.03 2.57
RES 8.89e-6 4.47e-6 8.91e-6 8.91e-6

Table 3: Numerical comparison of TJ and TGS for Example 4.2 with n = 10000.

these numerical results in Tables 1-3 implies that Method 2.1 can be adopted to solve the
MLCP(A,B,C,D, a, b).

Comparing the TJ method and the TGS method, the latter requires least iteration
steps and CPU times than the former. Therefore, from the perspective of the computing
efficiency, when used as a solver, the latter may be top-priority under certain conditions,
compared with the former.
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5 Conclusion

In this paper, we focus on the numerical solution of the mixed linear complementarity
problem (MLCP) by the iteration method. Our motivation is from that at present there
no exists the iteration method for solving the MLCP. In such case, to fill in the study gap,
we make use of the methodology of the NMMS method in [3] to design a two-step matrix
splitting (TMS) method. Under certain assumptions, three convergence conditions are
obtained to ensure the convergence of the TMS method. Finally, some examples (although
they are synthetic) in a way can show the efficiency of the proposed method.

Here, we notice that the convergence conditions of Theorems 3.1, 3.2 and 3.3 may be
difficult to check in the implementations. How to simply the convergence conditions of
Theorems 3.1, 3.2 and 3.3 is considered in the future. On the other hand, how to improve
the convergence speed of Method 2.1 is further considered in the future.
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