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Abstract

An initial value problem of a class of semi-linear fractional order
iterative differential equations is researched in this paper. The exis-
tence of solution is acquired in respect of Banach space C(I, I) and
CK,q(I, I) for fractional order iterative differential equations. Never-
theless, because the operator is Hölder continuous rather than Lipschitz
continuous, uniqueness results can not be obtained. Additionally, a
change of solution to [k, β] for the k ∈ I will arise from a small
perturbation of the initial value. Our analysis is on the basis of
the properties of Mittag-Leffler function and Schauder’s fixed point
theorem. Lastly, some examples are provided to demonstrate our results.
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1 Introduction

Iterative differential equations (IDE) are highly essential when people inves-
tigate the movement of charged particles with retarded interaction. On the
other hand, because the use of IDE is one of the most practical approaches
to research biological modeling of the bacteria reproduction, the usage of IDE
has drawn the attention of numerous scholars.
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Considering FDE with real variables can be employed in fields such as
control theory [1], biology chemical physics [2], economics [3], electrical net-
works [4] that are naturally modeled by FDE, fractional derivatives are
perceived as important tools to describe nonlinearity. The monographs [5–
8] are a great resource for fractional calculus theory and applications. There
are many papers handling the existence or uniqueness of solutions to ini-
tial /boundary value problem (IVP or BVP) for some nonlinear FDE. For
example, Barrett [9] proved the existence and uniqueness of solutions for a
non-integer order IVP. In [10, 11], the authors considered the IVP and BVP
for FDE by applying the upper and lower solutions method. In [12–14], the
authors presented the existence and uniqueness results for fractional non-
linear Volterra-Fredholm integro differential equations. In [15], the authors
used Gagliardo-Nirenberg inequalities, fixed point theory and operator theory
to consider the global/local well-posedness of the semi-linear time fractional
Rayleigh-Stokes problem. In [16], the authors discussed the Hölder regular-
ity result for CDq

τx(τ) + A(τ)x(τ) = f(τ) concerning Caputo’s fractional
derivative.

IDE offer an effective method to explore the approximation solutions
and people have researched them over the years because of their extensive
applications. Some important results regarding the existence (uniqueness) of
solutions for integer order differential equations or fractional iterative differ-
ential equation (FIDE) have been obtained. For example, the authors [17]
provided sufficient conditions for the existence and uniqueness of solutions
to the second order iterative dynamic BVP with mixed derivative operators.
In [18–20], the authors proved the existence and uniqueness of solutions for
first-order IDE. In [21], the authors investigated the existence, uniqueness, con-
tinuous dependence and Ulam stability theorems for iterative Caputo FDE. In
[22, 23], the authors proved the existence and uniqueness of solutions for frac-
tional iterative integro-differential equations. In [24–28], the authors proved
the existence and uniqueness of solutions FIDE using some standard fixed
point technology.

The author [29] discussed the existence, uniqueness and continuous depen-
dence theorems for

x′(τ) = f(τ, x(x(τ))), x(τ0) = x0, τ ∈ I = [α, β],

The authors [10] considered the following nonlinear fractional relaxation
differential equation{

CDq
0+x(τ) + γx(τ) = f(τ, x(τ)), τ ∈ (0, 1],

x(0) = x0 > 0,

where q ∈ (0, 1), γ > 0, t0, x0 ∈ [0, 1] and f ∈ C([0, 1] × R+,R+).
CDq

0+ is
standard Caputo fractional derivative.
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The authors [30] discussed the existence of approximate solutions to FIDE{
CDq

α,τx(τ) = f(τ, x(τ), x(xv(τ))), τ ∈ I,
x(τ0) = x0, x′(α) = 0,

where v ∈ R\{0}, 1 < q < 2 and f ∈ C(I3,R).
The authors [31, 32] considered the following FIDE

Dq
0+x(τ) = f(τ, x(τ), x(x(τ))), x(0) = x0,

where q ∈ (0, 1), x0 ∈ [0, T ] and f ∈ C([0, T ]3,R).
The authors [33] considered the following Caputo fractional quadratic IDE

CDq
0+x(τ) = f(τ, x(τ), x(x(τ))), x(0) = x0,

where q ∈ (0, 1), x0 ∈ [0, T ] and f ∈ C([0, T ]3,R).
Motivated by the papers [10, 29–33], we’ll discuss the fractional iterative

IVP with linear term

CDq
α+x(τ) + γx(τ) = f(τ, x(τ), x(xv(τ))), τ ∈ I, 0 < q < 1 (1)

subject to boundary condition

x(α) = xa, (2)

where xa ∈ I, γ > 0, v ∈ R \ {0}, 0 ≤ α ≤ αv, βv ≤ β, CDq
α+ is starded

Caputo fractional derivative and f ∈ C(I3,R).
As far as we are aware, no study on IVP (1)-(2) of fractional order iter-

ative has been done, hence we hope to make some progress in this area with
this paper. Compared to the paper [10], our nonlinear term f has two space
variables, the latter of which is an iteration term. Compared to the papers
[31–33], equation (1) involves a linear term γx(τ), which can be considered as
a perturbation to an equation. It can be handled quite differently without it.
The existence results were obtained in Banach space C(I, I) and CK,q(I, I)
by employing the properties of Mittag-Leffler function and Schauder’s fixed
point theorem. However, the operator is just Hölder continuous rather than
Lipschitz continuous, which prevents obtaining uniqueness results. This paper
also discusses the continuous dependence of the solutions.

2 Some definitions and lemmas

Some fractional calculus theory concepts and other basic knowledge are
presented in this section.

Let C(I,R) be the set of all continuous functions from I into R with the
norm ∥x∥ = sup{| x(τ) |; τ ∈ I}.
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Definition 1 (see [7, 34]) The Riemann-Liouville fractional integral of order q > 0
of a function x ∈ C(I, R) is given by

Iq
α+x(τ) =

∫ τ

α

(τ − ς)q−1

Γ(q)
x(ς)dς

provided that the right-hand side is pointwise defined on (0,∞), and Γ(q) is the
Euler gamma function defined by Γ(q) =

∫∞
0 τq−1e−τdτ .

Definition 2 (see [7, 34]) The Caputo’s fractional order derivative of order q > 0,
n ∈ N of a continuous function h : (0,∞) → R is given by

CDq
α+h(τ) = In−q

α+ Dnh(τ) =
1

Γ(n− q)

∫ τ

α

h(n)(ς)

(τ − ς)q+1−n
dς,

where n = [q] + 1, and [q] represents the integer part of the real number q. The
Laplace transform is given as

L{CDq
α+h(τ)} = ςqH(ς)−

n−1∑
k=0

ςq−k−1h(k)(α),

where H(ς) = L{h(τ)} denotes the Laplace transform of h(τ).

Let us review the Mittag-Leffler function

Eq,p(z) =

∞∑
k=0

zk

Γ(qk + p)
, q > 0, p ∈ R, z ∈ C,

and the Wright-type function

Mθ(z) =

∞∑
k=0

(−z)k

k!Γ(1− θ(k + 1))
, θ ∈ (0, 1), z ∈ C.

For additional information, read Kilbas [7] and Mainardi[35]. When limited to
the real line, the function Eα,β is real analytic and represents a full function.

The Laplace transform for the Mittag-Leffler function with two parameters
is as follows:

L{τp−1Eq,p(−γτ q)} =
ςq−p

ςq + γ
, (R(ς) >| γ |

1
q ), (3)

where τ ≥ 0, R(ς) denotes the real part of ς, γ ∈ R.

Lemma 1 (see [36, Lemma 2]) Let 0 < q ≤ 2 and p ∈ R+. For all z < 0,
Eq(·), Eq,p(·) and Eq,p(·) are non-negative.

Moreover, Eq,q(0) =
1

Γ(q)
. For any τ1, τ2 ≥ 0 and γ > 0,

Eq,p(−γτq1 ) → Eq,p(−γτq2 ) as τ1 → τ2.
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Lemma 2 (see [37]) The following equality holds for γ > 0, 0 < q < 1,

d

dτ
Eq(−γτq) = −γτq−1Eq,q(−γτq), τ > 0.

where Eq(·) = Eq,1(·).

Lemma 3 (see [37]) The following equality holds for γ > 0, q > 0 and m ∈ Z, then

dm

dτm
Eq(−γτq) = −γτq−mEq,q+1−m(−γτq), τ > 0.

Lemma 4 (see [35]) The Wright-type function has the following properties for each
τ > 0, ∫ ∞

0
νκMθ(ν)dν =

Γ(κ+ 1)

Γ(θκ+ 1)
, Mθ(τ) ≥ 0, for − 1 < κ < ∞. (4)

Remark 1 (see [38]) The Mittag-Leffler function and Wright-type function have the
following formula

Eq(−z) =

∫ ∞

0
Mq(ν)e

−zνdν, Z ∈ C. (5)

Lemma 5 (see [7, pp.140-141],[10]) Let h ∈ C(I,R), γ > 0, then the solution to
FDE

CDq
α+x(τ) + γx(τ) = h(τ), τ ∈ I, 0 < q < 1 (6)

is affected by the initial condition (2) which is the same as the integral equation

x(τ) = xaEq(−γ(τ − α)q) +

∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)h(ς)dς.

Sketch of Proof By applying Laplace transform for both sides of (6), we
obtain

ςqX(ς)− ςq−1xa + γX(ς) = H(ς),

where X(ς) and H(ς) represent the Laplace transform of x(τ) and h(τ),
respectively.

It then follows

X(ς) =
ςq−1xa +H(ς)

ςq + γ
. (7)

By applying inverse Laplace transform for both sides of (7), we have

x(τ) = xaEq(−γ(τ − α)q) + h(τ) ∗ [(τ − α)q−1Eq,q(−γ(τ − α)q)],

where ∗ is the convolution operator. Therefore, it follows

x(τ) = xaEq(−γ(τ − α)q) +

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)h(ς)dς.
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3 Existence result in C(I, I)

We investigate the existence of solutions to FDE (1)-(2) by Schauder’s fixed
point theorem [39].

The following conditions are provided to handle our problem,
(H1) The function f ∈ C(I3,R) is a Carathéodory function;
(H2) α, β ≥ 0 and satisfy α ≤ αv, βv ≤ β, v ∈ R\{0}.

Consider the operator T : C(I, I) → C(I,R) as follows:

(Tx)(τ) =xaEq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x(ς), x(xv(ς)))dς.

(8)

Recall that we require α ≤ x(τ) ≤ β, for any α ≤ τ ≤ β, in a bid to make
solutions to (1)-(2) be well-defined. Thus, if x ∈ C(I, I) is a fixed point of the
operator T , x is a solution to (1)-(2) so that α ≤ (Tx)(τ) ≤ β for every τ ∈ I.
Then the next step is to investigate the operator equation

T (x) = x.

Theorem 1 Let (H1) and (H2) hold. If
(H3) there exist constant constants fm and fM so that

fm ≤ f(τ, x, y) ≤ fM , (τ, x, y) ∈ I3,M = max{| fm |, | fM |};
(H4) one of the subsequent assumptions satisfies:

(i) M(1− Eq(−γ(β − α)q)) ≤ γMa or

(ii) xa = α, γ(β − xa) ≥ fM (1− Eq(−γ(β − α)q)),
fm(1− Eq(−γ(β − α)q)) ≥ γxa(1− Eq(−γ(β − α)q)), f(t, x, y) ≥ 0, or

(iii) xa = β, fm ≥ γxa(1− Eq(−γ(β − α)q)), f(t, x, y) ≤ 0,

where Ma = max{xaEq(−γ(β − α)q)− α, β − xa}.
Then there is a minimum of one solution for the fractional BVP (1)-(2) in C(I, I).

Proof We firstly prove that T (C(I, I)) ⊂ C(I, I).
Eq(−γ(τ − α)q) ≥ 0 is known from Lemma 1, which means that for any

τ − α ≥ ς ≥ 0, (τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q) ≥ 0 is true. Furthermore,
based on Lemma 3, when m = 1 and Eq(0) = 1, we know that∫ τ−α

0

(τ−ς−α)q−1Eq,q(−γ(τ−ς−α)q)dς =
1

γ

(
1−Eq(−γ(τ−α)q)

)
≥ 0. (9)

Lemma 2 tells us that Eq(−γ(τ −α)q) is monotonously decreasing concerning
τ . Therefore, for τ ∈ I, we have

0 < Eq(−γ(β − α)q) ≤ Eq(−γ(τ − α)q) ≤ Eq(0) = 1. (10)
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For any τ ∈ I, from (H3-H4), (9)-(10), we have

| (Tx)(τ) |≤xaEq(−γ(τ − α)q)+ |
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)

× f(ς, x(ς), x(xv(ς)))dς |

≤xa +
1

γ
M
(
1− Eq(−γ(τ − α)q)

)
≤xa +

1

γ
M
(
1− Eq(−γ(β − α)q)

)
≤ β,

and

| (Tx)(τ) |≥xaEq(−γ(τ − α)q)− |
∫ τ−α

0
(τ − α− ς)q−1Eq,q(−γ(τ − α− ς)q)

× f(ς, x(ς), x(xv(ς)))dς |

≥xaEq(−γ(β − α)q)− 1

γ
M
(
1− Eq(−γ(τ − α)q)

)
≥xaEq(−γ(β − α)q)− 1

γ
M
(
1− Eq(−γ(τ − α)q)

)
≥ α.

It indicates that T is a self-mapping operator

T : C(I, I) → C(I, I).

We handle the case (H4)(ii) and (H4)(iii) in a manner similar to that of (H4)(i).
Next, we prove that T is an operator that is completely continuous.

Let {xn} be a sequence with xn → x in C(I, I). Then, from (9), for each
τ ∈ J , we get

(| Txn)(τ)− (Tx)(τ) |

= |
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)(f(ς, xn(ς), xn(x

v
n(ς)))

− f(ς, x(ς), x(xv(ς))))dς |

≤ sup
ς∈I

| f(ς, xn(ς), xn(xvn(ς)))− f(ς, x(ς), x(xv(ς)))) | 1
γ

(
1− Eq(−γ(τ − α)q)

)
,

which implies that

∥Txn−Tx∥ ≤ sup
ς∈I

| f(ς, xn(ς), x
v
n(ς))−f(ς, x(ς), xv(ς))) | 1

γ

(
1−Eq(−γ(τ−α)q)

)
.

We can sum up by using condition (H1) and Lebesgue’s dominated convergence
theorem that

∥Txn − Tx∥ → 0 as n → ∞.
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T is hence continuous. For τ1 = α and α < τ2 ≤ β, from (9) and (10) and
Lemma 1, we have

| (Tx)(τ2)− (Tx)(τ1) |

= |
∫ τ2−α

0
(τ2 − ς − α)q−1Eq,q(−γ(τ2 − ς − α)q)f(ς, x(ς), x(xv(ς)))dς

+ xaEq(−γ(τ2 − α)q)− xaEq(−γ(τ1 − α)q) |

≤M

γ

(
1− Eq(−γ(τ2 − α)q)

)
+ | xaEq(−γ(τ2 − α)q)− xa |

=

{
M

γ
+ xa

}(
1− Eq(−γ(τ2 − α)q)

)
→ 0 as τ2 → α.

For α < τ1 < τ2 ≤ β, from Lemma 1 and (9), we have

| (Tx)(τ2)− (Tx)(τ1) |=| xaEq(−γ(τ2 − α)q)− xaEq(−γ(τ1 − α)q)

+

∫ τ2−α

0
(τ2 − ς − α)q−1Eq,q(−γ(τ2 − ς − α)q)f(ς, x(ς), x(xv(ς)))dς

−
∫ τ1−α

0
(τ1 − ς − α)q−1Eq,q(−γ(τ1 − ς − α)q)f(ς, x(ς), x(xv(ς)))dς |

≤xa | Eq(−γ(τ2 − α)q)− Eq(−γ(τ1 − α)q) | +M |
∫ τ2−α

0
(τ2 − ς − α)q−1

× Eq,q(−γ(τ2 − ς − α)q)dς −
∫ τ1−α

0
(τ1 − ς − α)q−1Eq,q(−γ(τ1 − ς − α)q)dς |

=xa | Eq(−γ(τ2 − α)q)− Eq(−γ(τ1 − α)q) |

+
M

γ
(Eq(−γ(τ1 − α)q)− Eq(−γ(τ2 − α)q))

=

{
M

γ
+ xa

}
(Eq(−γ(τ1 − α)q)− Eq(−γ(τ2 − α)q)).

(11)

From (7) and Remark 1, it follows from 1−e−y ≤ y and e−y ≤ 1 for y ≥ 0 that

Eq(−γ(τ1 − α)q)− Eq(−γ(τ2 − α)q)

≤
∫ ∞

0

Mα(ν) | e−γ(τ1−α)qν − e−γ(τ2−α)qν | dν

=

∫ ∞

0

Mα(ν)e
−γ(τ1−α)qν | 1− e−γ((τ2−α)q−(τ1−α)q)ν | dν

≤γ((τ2 − α)q − (τ1 − α)q)

∫ ∞

0

Mα(ν)νdν

=
γΓ(2)

Γ(1 + q)
((τ2 − α)q − (τ1 − α)q) ≤ γΓ(2)

Γ(1 + q)
(τ2 − τ1)

q,

(12)

where α < τ1 < τ2 ≤ β and we use the inequality

(τ2−α)q−(τ1−α)q ≤ max{1, q}(τ2−α)max{0,q−1}(τ2−τ1)
min{q,1} ≤ (τ2−τ1)

q.
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Thus,

| (Tx)(τ2)− (Tx)(τ1) |≤
{
M

γ
+ xa

}
γΓ(2)

Γ(1 + q)
(τ2 − τ1)

q

−→ 0 as τ2 → τ1.

(13)

We assert that T is a completely continuous operator on the basis of Arzelá-
Ascoli theorem. By Schauder’s fixed point theorem, the problem (1)-(2) has
at least one solution in C(I, I).

Corollary 1 The fractional order iterative differential equation (1)-(2) has at least
one continuous solution, if γ → 0, v → 1 and α → 0+ as demonstrated by Ibrahim
(2012) and (2013).

4 Existence and an estimate of the result in
CK,q(I, I)

Assuming that K is a positive constant and E ⊂ R is a compact interval, we
present the following set:

CK,q(E,R) = {x ∈ C(E,R) || x(τ1)− x(τ2) |≤ K | τ1 − τ2 |q}

for any τ1, τ2 ∈ R. Note that CK,q(E,R) ⊆ C(E,R) is a complete metric space.

Theorem 2 Let (H1)-(H4) hold. The solution to the IVP (1)-(2) can be acquired in
CK,q(I, I), and CK,q(I, I) owns all its solutions for

K =

{
M

γ
+ xa

}
γΓ(2)

Γ(1 + q)
.

Proof Based on Theorem 1, we know that

T : C(I, I) → C(I, I),

and T has a minimum of one solution in C(I, I). Consider α < τ1 < τ2 ≤ β.
Then from (11), (12) and (13), we have

| (Tx)(τ2)− (Tx)(τ1) |≤ K | τ1 − τ2 |q .

Furthermore, for τ1 = α and α < τ2 ≤ β, from Theorem 1, we have

| (Tx)(τ2)− (Tx)(τ1) |≤
{
M

γ
+ xa

}
| 1− Eq(−γ(τ2 − α)q) | .
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From Lemma 4 and Remark 1, we have

| 1−Eq(−γ(τ2 − α)q) |=| Eq(0)− Eq(−γ(τ2 − α)q) |

=|
∫ ∞

0

Mα(ν)dν −
∫ ∞

0

Mα(ν)e
−γ(τ2−α)qνdν |

≤
∫ ∞

0

Mα(ν) | 1− e−γ(τ2−α)qν | dν

≤ γ(τ2 − α)q
∫ ∞

0

Mα(ν)νdν

=
γΓ(2)

Γ(1 + q)
(τ2 − τ1)

q,

where we use the inequality

1− e−z ≤ z for z ≥ 0.

In summary, for τ1, τ2 ∈ I, we have

| (Tx)(τ2)− (Tx)(τ1) |≤ K | τ1 − τ2 |q .

As a result, at least one solution for the IVP (1)-(2) exists in CK,q(I, I).

Theorem 3 Let (H1-H4) hold. There are constants K1, K2 > 0 such that

(H5) | f(τ, x1, y1)−f(τ, x2, y2) |≤ K1 | x1−x2 | +K2 | y1−y2 |

for τ ∈ I, xi, yi ∈ I(i = 1, 2). Then two solutions x1 and x2 of problems (1)-(2)
satisfy

∥ x1 − x2 ∥≤ K
1

1−q min{1,v}
T ,

where

KT =
1

γ

(
1− Eq(−γ(β − α)q)

)
[(K1 +K2)β

1−qmin{1,v}

+max{1, vq}(β − α)qmax{v−1,0}KK2].

If (
1− Eq(−γ(β − α)q)

)
(K1 +K2) ≤ γ,

then

∥ x1 − x2 ∥≤ K̃
1

1−q min{1,v}
T ,

where

K̃T =
γ −

(
1− Eq(−γ(β − α)q)

)
(K1 +K2)(

1− Eq(−γ(β − α)q)
)
max{1, vq}(β − α)qmax{v−1,0}KK2

.
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Proof We can infer that there is at least one solution to problem (1)-(2) from
Theorem 1. Let x1 and x2 be two solutions of (1)-(2). Then from Lemma 5,
we have

x1(τ) =xaEq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x1(ς), x1(x
v
1(s)))dς,

x2(τ) =xaEq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x2(ς), x2(x
v
2(s)))dς.

For τ ∈ I, from (H5), we obtain

| T (x1)(τ)− T (x2)(τ) |

= |
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − a)q)f(ς, x1(ς), x1(x

v
1(s)))dς

−
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x2(ς), x2(x

v
2(s)))dς |

≤
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q) | f(ς, x1(ς), x1(xv1(s)))

− f(ς, x2(ς), x2(x
v
2(s))) | dς

≤
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)[K1 | x1(ς)− x2(ς) |

+K2 | x1(xv1(s))− x2(x
v
2(s)) |]dς

≤
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)[K1 | x1(ς)− x2(ς) |

+K2 | x1(xv1(s))− x1(x
v
2(s)) |] +K2 | x1(xv2(s))− x2(x

v
2(s)) |]dς

≤
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)[(K1 +K2) ∥ x1 − x2 ∥

+KK2 | xv1(ς)− xv2(ς) |q]dς

≤
∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)[(K1 +K2) ∥ x1 − x2 ∥

+max{1, vq}(β − α)qmax{v−1,0}KK2 ∥ x1 − x2 ∥qmin{1,q}]dς

≤ 1

γ

(
1− Eq(−γ(τ − α)q)

)
[(K1 +K2) ∥ x1 − x2 ∥

+max{1, vq}(β − α)qmax{v−1,0}KK2 ∥ x1 − x2 ∥qmin{1,q}].

From ∥ x1 − x2 ∥≤ β, we obtain

∥ T (x1)− T (x2) ∥≤
1

γ

(
1− Eq(−γ(β − α)q)

)
[(K1 +K2)β

1−qmin{1,v}

+max{1, vq}(β − α)qmax{v−1,0}KK2] ∥ x1 − x2 ∥qmin{1,v}

=KT ∥ x1 − x2 ∥qmin{1,v} .
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We know that T is Hölder continuous rather than Lipschitz continuous since
αmin{1, v} ≤ α < 1. Assume that T has fixed points x1 and x2, then

∥ x1 − x2 ∥=∥ T (x1)− T (x2) ∥≤ KT ∥ x1 − x2 ∥qmin{1,v} .

Thus, ∥ u1 − u2 ∥≤ K
1

1−q min{1,v}
T .

In general, we get

∥ x1 − x2 ∥≤ 1

γ

(
1− Eq(−γ(β − α)q)

)
[(K1 +K2) ∥ x1 − x2 ∥

+max{1, vq}(β − α)qmax{v−1,0}KK2 ∥ x1 − x2 ∥qmin{1,v}]

≤ 1

γ

(
1− Eq(−γ(β − α)q)

)
(K1 +K2) ∥ x1 − x2 ∥

+
1

γ

(
1− Eq(−γ(β − α)q)

)
max{1, vq}(β − α)qmax{v−1,0}

×KK2 ∥ x1 − x2 ∥qmin{1,v} .

Thus,

∥ x1 − x2 ∥≤
γ −

(
1− Eq(−γ(β − α)q)

)
(K1 +K2) ∥ x1 − x2 ∥qmin{1,v}(

1− Eq(−γ(β − α)q)
)
max{1, vq}(β − α)qmax{v−1,0}KK2

,

which means that

∥ x1 − x2 ∥

≤
{

γ −
(
1− Eq(−γ(β − α)q)

)
(K1 +K2)(

1− Eq(−γ(β − α)q)
)
max{1, vq}(β − α)qmax{v−1,0}KK2

} 1
1−q min{1,v}

.

5 Continuous dependence of solutions

We address the continuous dependence of the solutions to (1) by utilizing
integral inequalities as a useful tool. Let’s give a slight modification to the
initial value, that is,

x(α) = xa + ε, (14)

where ε can be any kind of constant.

Theorem 4 Assume that the Theorem 3’s conditions are met. Suppose that IVP
(1)-(2) has a solution x(τ) and ω(τ) is the solution of{

CDq
α,ω(τ) + γω(τ) = f(τ, ω(τ), ω(ωv(τ))),

ω(α) = xa + ε, τ ∈ I.
(15)

Let γ1 be a positive root of equation

γ1 =| ε | +KT γ
qmin{1,v}
1 .
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Then
∥ x− ω ∥≤ γ1. (16)

If in addition (
1− Eq(−γ(β − α)q)

)
(K1 +K2) ≤ γ,

and let γ2 be a positive root of equation

γ2 =| ε | +K̃T γ
qmin{1,v}
2 ,

then
∥ x− ω ∥≤ γ2. (17)

Proof Recall that we just need to change xa to xa + ε in (H4) in a bid to
make the solution to (15) be well-defined.

Lemma 5 indicates that

x(τ) =xaEq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x(ς), x(xv(s)))dς,

(18)

and

ω(τ) =(xa + ε)Eq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, ω(ς), ω(ωv(s)))dς,

(19)

which are the equivalent integral solution to (1)-(2) and (15), respectively.
(18) minus (19), given condition (H5), for any sufficiently small ε we get

| x(τ)− ω(τ) |≤ | ε | Eq(−γ(τ − α)q) +

∫ τ−α

0
(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)

× | f(ς, x(ς), x(xv(s)))− f(ς, ω(ς), ω(ωv(s))) | dς

≤ | ε | +
∫ τ−α

0
| Eq,q(−γ(τ − ς − α)q)[K1 | u(ς)− ω(ς) |

+K2 | x(xv(s))− ω(ωv(s)) |]dς.

Comparable to Theorem 3’s proof, from ∥ x− ω ∥≤ β, we have

∥ x− ω ∥≤| ε | +KT ∥ x− ω ∥qmin{1,v},

which means (16). Generally speaking, we get

∥ x− ω ∥≤| ε | +K̃T ∥ x− ω ∥qmin{1,v},

which means (17).
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Remark 2 Theorem 4 tells us the solution to [k, β] for k between α and β will vary
if the condition (14) is slightly perturbed.

Remark 3 Our results can be used to the fractional IVP:
cDq

α+x(τ) + γx(τ) = f(τ, x(τ), x(xv1(τ)), · · · , x(xvn(τ)), n ∈ N+,

x(α) = xa, xa ∈ I, τ ∈ I, 0 < q < 1.

6 Examples

Example 1 Consider the fractional IVP

cD0.5
0+ x(τ) + γx(τ) =

1√
τ2 + 1 + 99

sin2(x(x(τ))),

x(0) = 0, γ > 0,

(20)

where function f is defined by

f(τ, x, x(x(τ))) =
1√

τ2 + 1 + 99
sin2(x(x(τ))),

q = 0.5, v = 1, α = 0, β = π, xa = 0. It is evident that (H1-H2) are valid. In
addition, we obtain

0 ≤ f(τ, x(τ), x(x(τ))(τ)) ≤ 1√
τ2 + 1 + 99

≤ 1

100
.

Taking fm = 0, fM = 1
100 , if γ satisfies the following inequality equation

1

100γ
(1− E0.5(−

√
πγ)) ≤ π, (21)

employing Theorem 1, we know that for every value of γ, the solution to (20) exists
such that (21) holds.

Additionally, from the Mean Value Theorem we have

1√
τ2 + 1 + 99

| sin2 v1− sin2 v2 |= 1√
τ2 + 1 + 99

| sin 2θ || v1−v2 |≤ 1

100
| v1−v2 |,

where θ ∈ [0.π]. Taking K1 = 0 and K2 = 1
100 , we get

K =

{
M

γ
+ xa

}
γΓ(2)

Γ(1 + q)
=

Γ(2)

100Γ(1.5)

1− qmin{1, v} =
1

2
,

1

1− qmin{1, v} = 2,

max{1, vq}(β − α)qmax{v−1,0} = 1.

By simple calculation, we have

KT =
1

γ
(1− E0.5(−

√
πγ))

[√
π

100
+

Γ(2)

104Γ(1.5)

]
,

where γ satisfies equation (21).
Thus, by Theorem 2, there is a solution for equation (20) in CK, 12

, where K =

Γ(2)
100Γ(1.5)

. By Theorem 3, any two solutions x1, x2 ∈ CK, 12
(0, π) of (20) satisfy

∥ x1 − x2 ∥≤ 1

γ2
(1− E0.5(−

√
πγ))2

[√
π

100
+

Γ(2)

104Γ(1.5)

]2
.
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Example 2 Consider the fractional IVP

cD0.5
0+ x(τ) + γx(τ) = cos(τ)

(
1√

1 + x2(τ)
+ sin(x(x(τ)))

)
,

x(0) = 0.1, γ > 0 τ ∈ [0, 1],

(22)

where the function f is defined by

f(τ, x, x(x(τ))) = cos(τ)

(
1√

1 + x2(τ)
+ sin(x(x(τ)))

)
,

q = 0.5, v = 1, α = 0, xa = 0.1, β = 1. It is evident that (H1-H2) are valid. In
addition, we get

−2 ≤ f(τ, x(τ), x(x(τ))(τ)) ≤ 2.

Taking fm = −2, fM = 2, we assume that γ satisfies the inequality equation that
follows

(1− E0.5(−γ)) ≤ 2γMa, Ma = max {0.1E0.5(−γ), 0.9} . (23)

Employing Theorem 1 we know that for every value of γ, the solution to (22) exists
such that (23) holds. Furthermore, it is simple to infer that for any (x1, y1), (x2, y2) ∈
R× R and τ ∈ [0, 1]

|f(τ, x1, y1)− f(τ, x2, y2)| ≤ |cos(τ)|

| 1√
1 + x21

− 1√
1 + x22

|+ |sin y21 − sin y22 |


≤ |x1 − x2|+ |y1 − y2|.

Taking K1 = 1 and K2 = 1, we get

K =

{
M

γ
+ xa

}
γΓ(2)

Γ(1 + q)
=

(20 + γ)Γ(2)

10Γ(1.5)

1− qmin{1, v} =
1

2
,

1

1− qmin{1, v} = 2,

max{1, vq}(β − α)qmax{v−1,0} = 1.

By simple calculation, we have

KT =
1

γ
(1− E0.5(−γ))(K + 2),

where γ satisfies equation (23).
Thus, according to Theorem 2, the solution to equation (22) can be found in

CK, 12
, where K =

(20+γ)Γ(2)
10Γ(1.5)

. By Theorem 3, any two solutions x1, x2 ∈ CK, 12
(0, 1)

of (22) satisfy

∥ x1 − x2 ∥≤ 1

γ2
(1− E0.5(−

√
πγ))2(K + 2)2.

7 Conclusions

This paper addressed the existence, uniqueness and continuous dependence of
solutions to the IVP of semi-linear FIDE. More specifically, we changed IVP
into a fixed point problem employing the Laplace transform and some relations
in fractional calculus. Schauder’s fixed point theorem was utilized to explain
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the existence of solutions for FIDE. Unfortunately, because the operator is
only Hölder continuous rather than Lipschitz continuous, uniqueness results
can not be acquired. Moreover, continuous dependence of solutions offers a
potential way to characterize the error estimates between approximate and
explicit solutions to these kinds of problems. Lastly, some examples have been
provided to demonstrate the findings.

Even if there have been a lot of works on FIDE thus far, there are still
a lot of issues that need to be resolved. As far as we are aware, The FIDE
coupled system has not been studied extensively. Hence, we intend to look
into those more intriguing and challenging problems in our further research.
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