Solvability and Optimal Controls of Fractional Impulsive Stochastic Evolution Equations with Nonlocal Conditions

Yonghong Ding ${ }^{\text {a }}$ and Jing Niu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Tianshui Normal University, Tianshui, Gansu 741000, China;
${ }^{\text {b }}$ Department of Geology, Gansu Industry Polytechnic College, Tianshui, Gansu 741000, China

ARTICLE HISTORY

Compiled December 5, 2023

Abstract

This paper deals with the solvability and optimal controls of a class of impulsive fractional stochastic evolution equations with nonlocal initial conditions in a Hilbert space. Firstly, the existence and uniqueness of mild solutions for the considered system are investigated. Then, we derive the existence conditions of optimal pairs to the control systems. In the end, an example is presented to illustrate the effectiveness of our abstract results.

KEYWORDS

Nonlocal problem; Impulsive; Optimal control; Stochastic evolution equations

AMS CLASSIFICATION

49J15; 60H15; 47J35

1. Introduction

The purpose of this paper is to study the solvability and optimal controls to the following nonlinear time fractional evolution equations with impulsive and nonlocal initial conditions

$$
\left\{\begin{array}{l}
{ }^{c} D_{t}^{\alpha} x(t)+A x(t)=f(t, x(t))+\sigma\left(t, x(t) \frac{d W(t)}{d t}\right. \tag{1.1}\\
\quad \quad+B(t) u(t), \quad t \in[0, b], t \neq t_{i}, i=1,2, \cdots, p, \\
x(0)=g(x), \\
\Delta x\left(t_{i}\right)=I_{i}\left(x\left(t_{i}\right)\right), \quad i=1,2, \cdots, p,
\end{array}\right.
$$

where ${ }^{c} D_{t}^{\alpha}$ is the Caputo fractional derivatives of order $\frac{1}{2}<\alpha<1$,

$$
\begin{equation*}
g(x)=\int_{0}^{b} h(s, x(s)) d s \tag{1.2}
\end{equation*}
$$

[^0]$0<t_{1}<t_{2}<\cdots<t_{p}<b, I_{i}$ is an impulsive function, $i=1,2, \cdots, p, \Delta x\left(t_{i}\right)=$ $x\left(t_{i}^{+}\right)-x\left(t_{i}^{-}\right), x\left(t_{i}^{+}\right), x\left(t_{i}^{-}\right)$denote the right and the left limit of x at t_{i}, respectively. The state $x(\cdot)$ takes values in the separable Hilbert space $\mathbb{H}, A: D(A) \subset \mathbb{H} \rightarrow \mathbb{H}$ is a closed linear operator and $-A$ is the infinitesimal generator of a C_{0}-semigroup $T(t)(t \geq 0)$ on \mathbb{H}. Let \mathbb{K} be another separable Hilbert space. For convenience, we will use the same notation $\|\cdot\|$ to denote the norms of \mathbb{H} and \mathbb{K}, and use $\langle\cdot, \cdot\rangle$ to denote inner product of \mathbb{H} and \mathbb{K} without any confusion. We are also using the same notation $\|\cdot\|$ for the norm of $L(\mathbb{K}, \mathbb{H})$, which denotes the space of all linear bounded operators from \mathbb{K} into \mathbb{H}. Suppose that $\{W(t): t \geq 0\}$ is a given \mathbb{K}-valued Wiener process or Brownian motion with a finite trace nuclear covariance operator $Q \geq 0$ defined on a filtered complete probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, P\right)$. The control function $u(\cdot)$ takes values in another separable reflexive Hilbert space $\mathbb{U}, B: \mathbb{U} \rightarrow \mathbb{H}$ is a linear operator. f, σ, I_{i} and h are appropriate functions to be given later.

In the past two decades, stochastic differential systems have attracted great interest because of their practical applications in many areas, such as economics, physics, population dynamics, chemistry, medicine biology, social sciences and other areas of science and engineering. For more details, we refer to the books by Mao[18], Da Prato and Zabczyk [20], Sobczyk [30], Grecksch and Tudor [31] and Liu [32]. One of the branches of stochastic differential equations is the theory of fractional stochastic evolution equations. Many researchers investigated the existence, uniqueness, controllability and asymptotic behavior of mild solutions to fractional stochastic evolution equations by using different approaches, see $[1,2,4-10,12-17,19,21-25,28]$ and the references therein.

The theory of impulsive differential equations describes processes which experience a sudden change in their states at certain moments. For the basic theory on impulsive differential equations, the reader can refer to the monographs of Bainov and Simeonov [33], Benchohra et al. [34] and Lakshmikantham et al. [35]. Particularly, impulsive fractional evolution equations in Banach spaces has been emerging as an important area of investigation in the last few decades. For more details on this theory and its applications, we refer to the the references $[3,6,7,9-10,12,21,36-44]$. Some works $[6,7,9,10,12,21]$ considered fractional stochastic evolution equation with impulsive. For example, Balasubramaniam et al.[21] investigated a class of impulsive fractional stochastic integro-differential equations in Hilbert space of the form

$$
\left\{\begin{array}{l}
{ }^{c} D_{t}^{\alpha} x(t)=A x(t)+J_{t}^{1-\alpha}\left[B(t) u(t)+f\left(t, x(t), x\left(a_{1}(t)\right), x\left(a_{2}(t)\right), \cdots, x\left(a_{m}(t)\right)\right)\right] \\
\quad+J_{t}^{1-\alpha}\left(\int_{0}^{t} g\left(s, x(s), x\left(b_{1}(s)\right), x\left(b_{2}(s)\right), \cdots, x\left(b_{m}(s)\right) d w s\right)\right) \quad t \in[0, b], t \neq t_{i}, \\
x(0)=x_{0}, \\
\Delta x\left(t_{i}\right)=I_{i}\left(x\left(t_{i}\right)\right), \quad i=1,2, \cdots, p,
\end{array}\right.
$$

they obtained the existence of mild solution and optimal controls for the considered system. Dhayal et al.[10] studied the existence of optimal multicontrol pairs for a class of noninstantaneous impulsive fractional stochastic differential systems driven by the Rosenblatt process with state-dependent delay.

It is well known that the study of abstract nonlocal Cauchy problem was initiated by Byszewski and Lakshmikantham [45]. Since the nonlocal initial condition have better effects in applications than the classical initial condition, differential equations with nonlocal conditions were studied by many authors and some basic results on nonlocal
problems have been obtained, see $[2,3,16,23,24,27,36,37,44,46-48]$. However, to the best of our knowledge, we have not seen the relevant papers to study the optimal control of system governed by fractional impulsive stochastic evolution equations with nonlocal conditions. Due to its importance in both theoretical and real-life applications point of view, it is significant to investigate its existence, controllability, and other quantitative properties.

Inspired by the above discussions, in this paper, we first prove the existence and uniqueness of mild solution for fractional impulsive stochastic evolution equations with nonlocal conditions (1.1). Secondly, the existence of fractional optimal controls for (1.1) is investigated. The obtained results are new and considered as a contribution to the theory of fractional impulsive stochastic optimal control problem.

The rest of this paper is organized as follows: In Section 2, we give some definitions and preliminary results to be used in this paper. In Section 3, the existence and uniqueness of mild solutions are proved. Existence of fractional optimal controls is shown in Section 4. Finally, In Section 5, an example is provided to illustrate the applications of the obtained results.

2. Preliminaries

Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, P\right)$ be a filtered complete probability space satisfying the usual condition, which means that the filtration is a right continuous increasing family and \mathcal{F}_{0} contains all P-null sets. Let $\left\{e_{k}, k \in \mathbb{N}\right\}$ be a complete orthonormal basis of \mathbb{K}. $\{W(t): t \geq 0\}$ is a cylindrical \mathbb{K}-valued Brownian motion or Wiener process defined on the probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, P\right)$ with a finite trace nuclear covariance operator $Q \geq 0$, we denote $\operatorname{Tr}(Q)=\sum_{k=1}^{\infty} \lambda_{k}=\lambda<\infty$, which satisfies that $Q e_{k}=\lambda_{k} e_{k}, k \in$ \mathbb{N}. Let $\left\{W_{k}(t), k \in \mathbb{N}\right\}$ be a sequence of one-dimensional standard Wiener processes mutually independent on $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, P\right)$ such that

$$
W(t)=\sum_{k=1}^{\infty} \sqrt{\lambda_{k}} W_{k}(t) e_{k}, t \geq 0
$$

Forthermore, we assume that $\mathcal{F}_{t}=\sigma\{W(s), 0 \leq s \leq t\}$ is the σ-algebra generated by W and $\mathcal{F}_{b}=\mathcal{F}$. Let $L_{2}^{0}=L_{2}\left(Q^{\frac{1}{2}} \mathbb{K}, \mathbb{H}\right)$ denote the space of all Hilbert-Schmidt operators from $Q^{\frac{1}{2}} \mathbb{K}$ into \mathbb{H} with the inner product $\langle\phi, \varphi\rangle=\operatorname{Tr}\left(\phi Q \varphi^{*}\right)$. It also turns out to be a separable Hilbert space. The collection of all \mathcal{F}_{b}-measurable, square-integrable \mathbb{H}-valued random variables, denoted $L^{2}(\Omega, \mathbb{H})$, is a Banach space equipped with the norm $\|x\|_{L^{2}}=\left(\mathbb{E}\|x(\omega)\|^{2}\right)^{\frac{1}{2}}$, where \mathbb{E} denotes the expectation with respect to the measure \mathbb{P}. For more details on stochastic integrals, see the books of [18, 20].

Let $C\left([0, b], L^{2}(\Omega, \mathbb{H})\right)$ be the Banach space of all continuous mappings from $[0, b]$ to $L^{2}(\Omega, \mathbb{H})$ with the norm $\|x\|_{C}=\left(\sup _{t \in[0, b]} \mathbb{E}\|x(t)\|^{2}\right)^{\frac{1}{2}}$. Let

$$
\begin{aligned}
P C\left([0, b], L^{2}(\Omega, \mathbb{H})\right) & =\left\{x:[0, b] \rightarrow L^{2}(\Omega, \mathbb{H}), x(t) \text { is continuous at } t \neq t_{i},\right. \\
& \text { left continuous at } t=t_{i}, \text { and the right limit } x\left(t_{i}^{+}\right) \\
& \text {exists for } i=1,2, \cdots, p\} .
\end{aligned}
$$

$\mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right)$ be the space of all \mathcal{F}_{t}-adapted measurable stochastic processes $x \in P C\left([0, b], L^{2}(\Omega, \mathbb{H})\right)$ with the norm $\|x\|_{\mathcal{P C}}=\left(\sup _{t \in[0, b]} \mathbb{E}\|x(t)\|^{2}\right)^{\frac{1}{2}}$. It is easy to
see that $\left(\mathcal{P C},\|\cdot\|_{\mathcal{P C}}\right)$ is a Banach space. We suppose that \mathbb{U} is a separable reflexive Hilbert space from which the controls u take the values. Let

$$
\begin{aligned}
L_{\mathcal{F}}^{2}(J, \mathbb{U})= & \left\{u: J \times \Omega \rightarrow \mathbb{U}: u \text { is } \mathcal{F}_{\mathrm{t}}-\right.\text { adapted measurable stochastic } \\
& \text { processes and } \left.\mathbb{E} \int_{0}^{\mathrm{b}}\|\mathrm{u}(\mathrm{t})\|^{2} \mathrm{dt}<\infty\right\} .
\end{aligned}
$$

Let Y be a nonempty closed bounded convex subset of \mathbb{U}. Define the admissible control set

$$
U_{a d}=\left\{u(\cdot) \in L_{\mathcal{F}}^{2}(J, \mathbb{U}) \mid u(t) \in Y, t \in J\right\} .
$$

We assume that the control function $u \in U_{a d}$ and $B \in L^{\infty}(J, L(\mathbb{U}, \mathbb{H})),\|B\|_{\infty}$ stands for the norm of operator B on Banach space $L^{\infty}(J, L(\mathbb{U}, \mathbb{H}))$, where $L^{\infty}(J, L(\mathbb{U}, \mathbb{H}))$ is the space of operator valued functions which are measurable in the strong operator topology and uniformly bounded on the interval J.

In the rest of the manuscript, we suppose that A generates a compact C_{0}-semigroup $T(t)(t \geq 0)$ of uniformly bounded linear operator in \mathbb{H}. That is there exists a positive constant $M \geq 1$ such that $\|T(t)\| \leq M$ for all $t \geq 0$.

The following result will be used in the sequel of this paper.
Lemma 2.1. (see [20]) For any $p \geq 1$ and for arbitrary L_{2}^{0}-valued predictable process $\chi(\cdot)$ such that

$$
\sup _{s \in[0, t]} \mathbb{E}\left\|\int_{0}^{s} \chi(\tau) d W(\tau)\right\|^{2 p} \leq(p(2 p-1))^{p}\left(\int_{0}^{t}\left(\mathbb{E}\|\chi(s)\|_{L_{2}^{0}}^{2 p}\right)^{\frac{1}{p}} d s\right)^{p}, t \in[0, \infty) .
$$

Definition 2.2. (see [26]) The Riemann-Liouville fractional integral of order $\alpha>0$ of a function $y:(0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
I_{0}^{\alpha} y(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} y(s) d s
$$

provided the right side is pointwise defined on $(0,+\infty)$.
Definition 2.3. (see [26]) The Riemann-Liouville fractional derivative of order $\alpha>0$ of a function $y:[0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
D_{0}^{\alpha} y(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{y(s)}{(t-s)^{\alpha-n+1}} d s
$$

where $n=[\alpha]+1$, provided that the right side is pointwise defined on $(0,+\infty)$.
Definition 2.4. (see [26]) The Caputo fractional derivative of order $\alpha>0$ of a function $y:[0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
{ }^{c} D_{0}^{\alpha} y(t)=D_{0}^{\alpha}\left[y(t)-\sum_{k=0}^{n-1} \frac{t^{k}}{k!} y^{(k)}(0)\right],
$$

where $n=[\alpha]+1$, provided that the right side is pointwise defined on $(0,+\infty)$.

Remark 2.5. (i) If $y(t) \in C^{n}[0,+\infty)$, then

$$
{ }^{c} D_{0}^{\alpha} y(t)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} \frac{y^{(n)}(s)}{(t-s)^{\alpha-n+1}} d s=I_{0}^{n-\alpha} y^{(n)}(t)
$$

(ii) If $y(t)$ is an abstract function, then the integrals which appear in Definitions 2.2 and 2.3 are taken in Bochner's sense.

For $x \in \mathbb{H}$, define two operators $\mathscr{T}(t)(t \geq 0)$ and $\mathscr{S}(t)(t \geq 0)$ as follows:

$$
\begin{equation*}
\mathscr{T}(t) x=\int_{0}^{\infty} \zeta_{\alpha}(\theta) T\left(t^{\alpha} \theta\right) x d \theta, \quad \mathscr{S}(t) x=\alpha \int_{0}^{\infty} \theta \zeta_{\alpha}(\theta) T\left(t^{\alpha} \theta\right) x d \theta \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gathered}
\zeta_{\alpha}(\theta)=\frac{1}{\alpha} \theta^{-1-1 / \alpha} \rho_{\alpha}\left(\theta^{-1 / \alpha}\right) \\
\rho_{\alpha}(\theta)=\frac{1}{\pi} \sum_{k=0}^{\infty}(-1)^{n-1} \theta^{-\alpha n-1} \frac{\Gamma(n \alpha+1)}{n!} \sin (n \pi \alpha), \quad \theta \in(0, \infty)
\end{gathered}
$$

$\zeta_{\alpha}(\theta)$ is a probability density function defined on $(0,+\infty)$ which satisfies

$$
\begin{equation*}
\zeta_{\alpha}(\theta) \geq 0, \theta \in(0, \infty), \quad \int_{0}^{\infty} \zeta_{\alpha}(\theta) d \theta=1, \quad \int_{0}^{\infty} \theta \zeta_{\alpha}(\theta) d \theta=\frac{1}{\Gamma(1+\alpha)} \tag{2.2}
\end{equation*}
$$

The following lemma about the operators $\mathscr{T}(t)(t \geq 0)$ and $\mathscr{S}(t)(t \geq 0)$, which can be found in [27], will be used throughout this paper.

Lemma 2.6. The operators $\mathscr{T}(t)(t \geq 0)$ and $\mathscr{S}(t)(t \geq 0)$ satisfy the following properties:
(i) For any fixed $t \geq 0, \mathscr{T}(t)$ and $\mathscr{S}(t)$ are linear and bounded operators in \mathbb{H}, i.e., for any $x \in \mathbb{H}$,

$$
\begin{equation*}
\|\mathscr{T}(t) x\| \leq M\|x\|, \quad\|\mathscr{S}(t) x\| \leq \frac{M}{\Gamma(\alpha)}\|x\| \tag{2.3}
\end{equation*}
$$

(ii) For every $x \in \mathbb{H}, t \rightarrow \mathscr{T}(t) x$ and $t \rightarrow \mathscr{S}(t) x$ are continuous functions from $[0, \infty)$ into \mathbb{H}.
(iii) The operators $\mathscr{T}(t)(t \geq 0)$ and $\mathscr{S}(t)(t \geq 0)$ are strongly continuous.
(iv) If the semigroup $T(t)$ is compact, then $\mathscr{T}(t)$ and $\mathscr{S}(t)$ are also compact operators in \mathbb{H} for $t>0$, and hence they are norm continuous.

Lemma 2.7. (Krasnoselskii's Fixed Point Theorem, see[27]). Let \mathbb{X} be a Banach space, let Y be a bounded closed and convex subset of \mathbb{X} and let F_{1}, F_{2} be maps of Y into \mathbb{X} such that $F_{1} x+F_{2} y \in Y$ for every pair $x, y \in Y$. If F_{1} is a contraction and F_{2} is completely continuous, then the equation $F_{1} x+F_{2} x=x$ has a solution on Y.

According to [19, 42], we adopt the following definition of the mild solution of (1.1).

Definition 2.8. For any given $u \in U_{a d}$, a stochastic process x is said to be a mild solution of (1.1) on $[0, b]$ if $x \in \mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right)$ and satisfies
(i) $x(t)$ is measurable and adapted to \mathcal{F}_{t};
(ii) $x(t)$ satisfies the following integral equation

$$
\begin{aligned}
x(t) & =\mathscr{T}(t) g(x)+\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)[f(s, x(s))+B(s) u(s)] d s \\
& +\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s) \sigma(s, x(s)) d W(s)+\sum_{0<t_{i}<t} \mathscr{T}\left(t-t_{i}\right) I_{i}\left(x\left(t_{i}\right)\right) .
\end{aligned}
$$

3. Existence and Uniqueness of Mild Solution

To prove the main results, we list some assumptions:
(H1) Let $f:[0, b] \times \mathbb{H} \rightarrow \mathbb{H}$ be a continuous function. Suppose also that the following assumptions are satisfied:
(i) There exists a constant L_{f} such that

$$
\|f(t, x)\|^{2} \leq L_{f}\left(1+\|x\|^{2}\right), t \in J, \quad x \in \mathbb{H}
$$

(ii) For some $r>0$, there exists a constant \bar{L}_{f} such that for all $t \in J$ and $x, y \in$ \mathbb{H} satisfying $\|x\|^{2} \leq r,\|y\|^{2} \leq r$,

$$
\left.\|f(t, x)-f(t, y)\|^{2} \leq \bar{L}_{f}\|x-y\|^{2}\right)
$$

(H2) Let $\sigma: J \times \mathbb{H} \rightarrow L_{2}^{0}$ be a continuous function. Suppose also that the following assumptions are satisfied:
(i) There exists a constant L_{σ} such that

$$
\|\sigma(t, x)\|_{L_{2}^{0}}^{2} \leq L_{\sigma}\left(1+\|x\|^{2}\right), t \in J, \quad x \in \mathbb{H}
$$

(ii) For some $r>0$, there exists a constant \bar{L}_{σ} such that for all $t \in J$ and $x, y \in$ \mathbb{H} satisfying $\|x\|^{2} \leq r,\|y\|^{2} \leq r$,

$$
\|\sigma(t, x)-\sigma(t, y)\|_{L_{2}^{0}}^{2} \leq \bar{L}_{\sigma}\|x-y\|^{2}
$$

(H3) Let $h: J \times \mathbb{H} \rightarrow \mathbb{H}$ be a continuous function. Suppose also that the following assumptions are satisfied:
(i) There exists a constant L_{h} such that

$$
\|h(t, x)\|^{2} \leq L_{h}\left(1+\|x\|^{2}\right), t \in J, \quad x \in \mathbb{H}
$$

(ii) For some $r>0$, there exists a constant \bar{L}_{h} such that for all $t \in J$ and $x, y \in$ \mathbb{H} satisfying $\|x\|^{2} \leq r,\|y\|^{2} \leq r$,

$$
\|h(t, x)-h(t, y)\|^{2} \leq \bar{L}_{h}\|x-y\|^{2}
$$

(H4) Let $I_{i}: \mathbb{H} \rightarrow \mathbb{H}$ be a continuous function for every $i=1,2, \cdots, p$. Suppose also that the following assumptions are satisfied:
(i) There exist constants $M_{i}(i=1,2, \cdots, p)$ such that

$$
\left\|I_{i}(x)\right\|^{2} \leq M_{i}\|x\|^{2}, \quad i=1,2, \cdots, p, \quad x \in \mathbb{H} .
$$

(ii) For some $r>0$, there exist constants $\bar{M}_{i}(i=1,2, \cdots, p)$ such that for all $t \in J$ and $x, y \in \mathbb{H}$ satisfying $\|x\|^{2} \leq r,\|y\|^{2} \leq r$,

$$
\left\|I_{i}(x)-I_{i}(y)\right\|^{2} \leq \bar{M}_{i}\|x-y\|^{2} i=1,2, \cdots, p .
$$

We are now ready to state our main results.
Theorem 3.1. Assume that $-A$ generates a compact C_{0}-semigroup $T(t)(t \geq 0)$ of uniformly bounded operators in Hilbert space \mathbb{H}. If the assumptions (H1)(i), (H2)(i), (H3) and (H4) are satisfied, then impulsive fractional stochastic systems with nonlocal conditions (1.1) has at least one mild solution in $\mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right)$ provided that

$$
\begin{equation*}
N+M^{2} p \sum_{i=1}^{p} M_{i}<\frac{1}{5} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{2} b^{2} \bar{L}_{h}+M^{2} p \sum_{i=1}^{p} \bar{M}_{i}<\frac{1}{2} \tag{3.2}
\end{equation*}
$$

are satisfied, where

$$
N=M^{2} b^{2} L_{h}+c_{0} b L_{f}+c_{0} L_{\sigma}, \quad c_{0}=\frac{M^{2}}{\Gamma^{2}(\alpha)} \cdot \frac{b^{2 \alpha-1}}{2 \alpha-1} .
$$

Proof. For any constant $r>0$, let

$$
B_{r}=\left\{x \in \mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right):\|x\|_{\mathcal{P C}}^{2} \leq r\right\} .
$$

It is easy to see that B_{r} is a bounded closed convex set in $\mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right)$.
Define two operators F_{1} and F_{2} on B_{r} as follows:

$$
\begin{aligned}
\left(F_{1} x\right)(t)= & \mathscr{T}(t) g(x)+\sum_{0<t_{i}<t} \mathscr{T}\left(t-t_{i}\right) I_{i}\left(x\left(t_{i}\right)\right), \quad t \in[0, b], \\
\left(F_{2} x\right)(t)= & \int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s) f(s, x(s)) d s+\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s) B(s) u(s) d s \\
& +\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s) \sigma(s, x(s)) d W(s), \quad t \in[0, b] .
\end{aligned}
$$

Obviously, x is a mild solution of (1.1) if and only if the operator equation $x=$ $F_{1} x+F_{2} x$ has a solution.

Next we prove that $F_{1}+F_{2}$ has a fixed point by Krasnoselskii's Fixed Point Theorem. For this, we proceed in several steps.
Step 1. We prove that there exists a positive number r_{0} such that $F_{1} x+F_{2} y \in B_{r_{0}}$ whenever $x, y \in B_{r_{0}}$.

In fact, choose

$$
r_{0} \geq \frac{5\left(N+c_{0}\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s\right)}{1-5\left(N+M^{2} p \sum_{i=1}^{p} M_{i}\right)}
$$

then for every pair $x, y \in B_{r_{0}}$ and $t \in J$, by Lemma 2.1, Lemma 2.6, conditions (H1)(i), (H2)(i) and Hölder inequality, we have

$$
\begin{aligned}
& \mathbb{E}\left\|\left(F_{1} x\right)(t)+\left(F_{2} y\right)(t)\right\|^{2} \\
\leq & 5 \mathbb{E}\|\mathscr{T}(t) g(x)\|^{2}+5 \mathbb{E}\left\|\sum_{0<t_{i}<t} \mathscr{T}\left(t-t_{i}\right) I_{i}\left(x\left(t_{i}\right)\right)\right\|^{2} \\
& +5 \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s) f(s, y(s)) d s\right\|^{2} \\
& +5 \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s) B(s) u(s) d s\right\|^{2} \\
& +5 \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s) \sigma(s, y(s)) d W(s)\right\|^{2} \\
\leq & 5 M^{2} b \int_{0}^{b} L_{h}\left(1+\mathbb{E}\|x(s)\|^{2}\right) d s+5 M^{2} p \sum_{i=1}^{p} M_{i}\left(\mathbb{E}\left\|x\left(t_{i}\right)\right\|^{2}\right) \\
& +5 c_{0} \int_{0}^{t} L_{f}\left(1+\mathbb{E}\|y(s)\|^{2}\right) d s+5 c_{0} \int_{0}^{t} \mathbb{E}\|B(s) u(s)\|^{2} d s \\
& +\frac{5 M^{2}}{\Gamma^{2}(\alpha)} \int_{0}^{t}(t-s)^{2 \alpha-2} L_{\sigma}\left(1+\mathbb{E}\|y(s)\|^{2}\right) d s \\
\leq & 5 M^{2} b^{2} L_{h}\left(1+r_{0}\right)+5 M^{2} p r_{0} \sum_{i=1}^{p} M_{i}+5 c_{0} b L_{f}\left(1+r_{0}\right) \\
& +5 c_{0}\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s+5 c_{0} L_{\sigma}\left(1+r_{0}\right) \\
= & 5\left(N+M^{2} p \sum_{i=1}^{p} M_{i}\right) r_{0}+5\left(N+c_{0}\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s\right) \\
\leq & r_{0} .
\end{aligned}
$$

It then follows that $F_{1}+F_{2}$ maps $B_{r_{0}}$ to $B_{r_{0}}$.
Step 2. F_{1} is a contraction on $B_{r_{0}}$.
For any $x, y \in B_{r_{0}}$ and $t \in J$, it follows from (H3) and (H4) that

$$
\begin{aligned}
& \mathbb{E}\left\|\left(F_{1} x\right)(t)-\left(F_{1} y\right)(t)\right\|^{2} \\
\leq & 2 \mathbb{E}\left\|\mathscr{T}(t) \int_{0}^{t}[h(s, x(s))-h(s, y(s))] d s\right\|^{2}+2 \mathbb{E} \| \sum_{i=1}^{p} \mathscr{T}\left(t-t_{i}\right)\left[I _ { i } \left(x\left(t_{i}\right)-I_{i}\left(y\left(t_{i}\right)\right] \|^{2}\right.\right. \\
\leq & \left(2 M^{2} b^{2} \bar{L}_{h}+2 M^{2} p \sum_{i=1}^{p} \bar{M}_{i}\right)\|x-y\|_{\mathcal{P C}}^{2},
\end{aligned}
$$

which implies that

$$
\left\|F_{1} x-F_{1} y\right\|_{\mathcal{P C}}^{2} \leq 2\left(M^{2} b^{2} \bar{L}_{h}+M^{2} p \sum_{i=1}^{p} \bar{M}_{i}\right)\|x-y\|_{\mathcal{P C}}^{2} .
$$

By (3.2), we easily see that F_{1} is a contraction on $B_{r_{0}}$.
Step 3. F_{2} is a completely continuous operator.
Firstly, we show that the mapping F_{2} is continuous on $B_{r_{0}}$. For this purpose, let $x_{m} \rightarrow x$ in $B_{r_{0}}$, then we have

$$
f\left(t, x_{m}(t)\right) \rightarrow f(t, x(t)), \quad \sigma\left(t, x_{m}(t)\right) \rightarrow \sigma(t, x(t)), \quad(m \rightarrow \infty) .
$$

Moreover, by Hölder inequality and Lebesgue dominated convergence theorem, we can get

$$
\begin{aligned}
& \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)\left[f\left(s, x_{m}(s)\right)-f(s, x(s))\right] d s\right\|^{2} \\
\leq & \left(\frac{M}{\Gamma(\alpha)}\right)^{2} \int_{0}^{t}(t-s)^{2 \alpha-2} d s \int_{0}^{t} \mathbb{E}\left\|f\left(s, x_{m}(s)\right)-f(s, x(s))\right\|^{2} d s \\
\leq & \frac{b^{2 \alpha-1}}{2 \alpha-1}\left(\frac{M}{\Gamma(\alpha)}\right)^{2} \int_{0}^{t} \mathbb{E}\left\|f\left(s, x_{m}(s)\right)-f(s, x(s))\right\|^{2} d s \\
\rightarrow & 0(m \rightarrow \infty) .
\end{aligned}
$$

On the other hand, from Lemma 2.1, Hölder inequality and Lebesgue dominated convergence theorem, we obtain

$$
\begin{aligned}
& \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)\left[\sigma\left(s, x_{m}(s)\right)-\sigma(s, x(s))\right] d W(s)\right\|^{2} \\
\leq & \left(\frac{M}{\Gamma(\alpha)}\right)^{2} \int_{0}^{t}(t-s)^{2 \alpha-2} \mathbb{E}\left\|\sigma\left(s, x_{m}(s)\right)-\sigma(s, x(s))\right\|^{2} d s \\
\rightarrow & 0(m \rightarrow \infty) .
\end{aligned}
$$

By the above discuss, we obtain the following relation:

$$
\begin{aligned}
& \mathbb{E}\left\|F_{2}\left(x_{m}\right)-F_{2}(x)\right\|^{2} \\
\leq & 2 \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)\left[f\left(s, x_{m}(s)\right)-f(s, x(s))\right] d s\right\|^{2} \\
+ & 2 \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)\left[\sigma\left(s, x_{m}(s)\right)-\sigma(s, x(s))\right] d W(s)\right\|^{2} \\
\rightarrow & 0(m \rightarrow \infty),
\end{aligned}
$$

which means that $F_{2}(x)$ is continuous in $B_{r_{0}}$.
Secondly, we prove that for any $t \in J, V(t)=\left\{F_{2}(x)(t), x \in B_{r_{0}}\right\}$ is relatively compact in \mathbb{H}. It is obvious that $V(0)$ is relatively compact in \mathbb{H}. Let $0<t \leq b$ be
given. For any $\epsilon \in(0, t)$ and $\nu>0$, define an operator $F^{\epsilon, \nu}$ on $B_{r_{0}}$ by

$$
\begin{aligned}
& \left(F^{\epsilon, \nu} x\right)(t) \\
= & \alpha \int_{0}^{t-\epsilon} \int_{\nu}^{\infty} \theta \zeta_{\alpha}(\theta)(t-s)^{\alpha-1} T\left((t-s)^{\alpha} \theta\right)[f(s, x(s))+B(s) u(s)] d \theta d s \\
& +\alpha \int_{0}^{t-\epsilon} \int_{\nu}^{\infty} \theta \zeta_{\alpha}(\theta)(t-s)^{\alpha-1} T\left((t-s)^{\alpha} \theta\right) \sigma(s, x(s)) d \theta d W(s) \\
= & T\left(\epsilon^{\alpha} \nu\right) \alpha \int_{0}^{t-\epsilon} \int_{\nu}^{\infty} \theta \zeta_{\alpha}(\theta)(t-s)^{\alpha-1} T\left((t-s)^{\alpha} \theta-\epsilon^{\alpha} \nu\right)[f(s, x(s))+B(s) u(s)] d \theta d s \\
& +T\left(\epsilon^{\alpha} \nu\right) \alpha \int_{0}^{t-\epsilon} \int_{\nu}^{\infty} \theta \zeta_{\alpha}(\theta)(t-s)^{\alpha-1} T\left((t-s)^{\alpha} \theta-\epsilon^{\alpha} \nu\right) \sigma(s, x(s)) d \theta d W(s) .
\end{aligned}
$$

Then the set $\left\{\left(F^{\epsilon, \nu} x\right)(t): x \in B_{r}\right\}$ is relatively compact in \mathbb{H} because $T\left(\epsilon^{\alpha} \nu\right)$ is compact. From (H1)(i), (H2)(i), Lemma 2.1, Lemma 2.6 and Hölder inequality, we get that

$$
\begin{aligned}
& \mathbb{E}\left\|\left(F_{1} x\right)(t)-\left(F^{\epsilon, \nu} x\right)(t)\right\|^{2} \\
\leq & 4 \mathbb{E}\left\|\alpha \int_{0}^{t} \int_{0}^{\nu} \theta \zeta_{\alpha}(\theta)(t-s)^{\alpha-1} T\left((t-s)^{\alpha} \theta\right)[f(s, x(s))+B(s) u(s)] d \theta d s\right\|^{2} \\
& +4 \mathbb{E}\left\|\alpha \int_{t-\epsilon}^{t} \int_{\nu}^{\infty} \theta \zeta_{\alpha}(\theta)(t-s)^{\alpha-1} T\left((t-s)^{\alpha} \theta\right)[f(s, x(s))+B(s) u(s)] d \theta d s\right\|^{2} \\
& +4 \mathbb{E}\left\|\alpha \int_{0}^{t} \int_{0}^{\nu} \theta \zeta_{\alpha}(\theta)(t-s)^{\alpha-1} T\left((t-s)^{\alpha} \theta\right) \sigma(s, x(s)) d \theta d W(s)\right\|^{2} \\
& +4 \mathbb{E}\left\|\alpha \int_{t-\epsilon}^{t} \int_{\nu}^{\infty} \theta \zeta_{\alpha}(\theta)(t-s)^{\alpha-1} T\left((t-s)^{\alpha} \theta\right) \sigma(s, x(s)) d \theta d W(s)\right\|^{2} \\
\leq & \frac{4 M^{2} \alpha^{2} b^{2 \alpha-1}}{2 \alpha-1} \int_{0}^{t} \mathbb{E}\|f(s, x(s))+B(s) u(s)\|^{2} d s\left(\int_{0}^{\nu} \theta \zeta_{\alpha}(\theta) d \theta\right)^{2} \\
& +\frac{4 M^{2} \alpha^{2} \epsilon^{2 \alpha-1}}{(2 \alpha-1) \Gamma^{2}(1+\alpha)} \int_{t-\epsilon}^{t} \mathbb{E}\|f(s, x(s))+B(s) u(s)\|^{2} d s \\
& +4 M^{2} \alpha^{2} \int_{0}^{t}(t-s)^{2(\alpha-1)} \mathbb{E}\|\sigma(s, x(s))\|_{L_{2}^{o}}^{2} d s\left(\int_{0}^{\nu} \theta \zeta_{\alpha}(\theta) d \theta\right)^{2} \\
& +\frac{4 M^{2} \alpha^{2}}{\Gamma^{2}(1+\alpha)} \int_{t-\epsilon}^{t}(t-s)^{2(\alpha-1)} \mathbb{E}\|\sigma(s, x(s))\|_{L_{2}^{o}}^{2} d s \\
\leq & \frac{4 M^{2} \alpha^{2} b^{2 \alpha-1}}{2 \alpha-1}\left(2 b L_{f}\left(1+r_{0}\right)+2\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s\right)\left(\int_{0}^{\nu} \theta \zeta_{\alpha}(\theta) d \theta\right)^{2} \\
& +\frac{4 M^{2} \alpha^{2} \epsilon^{2 \alpha-1}}{(2 \alpha-1) \Gamma^{2}(1+\alpha)}\left(2 L_{f}\left(1+r_{0}\right) \epsilon+2\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s\right) \\
& +\frac{4 M^{2} \alpha^{2} b^{2 \alpha-1}}{2 \alpha-1} L_{\sigma}\left(1+r_{0}\right)\left(\int_{0}^{\nu} \theta \zeta_{\alpha}(\theta) d \theta\right)^{2} \\
& +\frac{4 M^{2} \alpha^{2} \epsilon^{2 \alpha-1}}{(2 \alpha-1) \Gamma^{2}(1+\alpha)} L_{\sigma}\left(1+r_{0}\right) \rightarrow 0(\epsilon, \nu \rightarrow 0) .
\end{aligned}
$$

Hence, there are relatively compact sets arbitrarily close to the set $V(t)(t>0)$ in \mathbb{H}.

Therefore, the set $V(t)$ is relatively compact in \mathbb{H}.
Finally, we prove that $F_{1}\left(B_{r_{0}}\right)$ equicontinuous on J.
For any $x \in B_{r_{0}}$ and $0 \leq t_{1}<t_{2} \leq b$, we have

$$
\begin{aligned}
& \mathbb{E}\left\|\left(F_{1} x\right)\left(t_{2}\right)-\left(F_{1} x\right)\left(t_{1}\right)\right\|^{2} \\
& +6 \mathbb{E}\left\|\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} \mathscr{S}\left(t_{2}-s\right)[f(s, x(s))+B(s) u(s)] d s\right\|^{2} \\
& +6 \mathbb{E}\left\|\int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right] \mathscr{S}\left(t_{2}-s\right)[f(s, x(s))+B(s) u(s)]\right\|^{2} \\
& +6 \mathbb{E}\left\|\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}\left[\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right][f(s, x(s))+B(s) u(s)]\right\|^{2} \\
& +6 \mathbb{E}\left\|\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} \mathscr{S}\left(t_{2}-s\right) \sigma(s, x(s)) d W(s)\right\|^{2} \\
& +6 \mathbb{E}\left\|\int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right] \mathscr{S}\left(t_{2}-s\right) \sigma(s, x(s)) d W(s)\right\|^{2} \\
& +6 \mathbb{E}\left\|\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}\left[\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right] \sigma(s, x(s)) d W(s)\right\|^{2} \\
& =I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} .
\end{aligned}
$$

In order to prove $\mathbb{E}\left\|(F x)\left(t_{2}\right)-(F x)\left(t_{1}\right)\right\|^{2} \rightarrow 0\left(t_{2}-t_{1} \rightarrow 0\right)$, we only need to show $I_{i} \rightarrow 0$ independently of $x \in B_{r_{0}}$ when $t_{2}-t_{1} \rightarrow 0$ for $i=1,2, \cdots, 6$.

For I_{1} and I_{4}, we obtain by (H2)(i), (H3)(i), Lemma 2.1 and Lemma 2.6 that

$$
\begin{aligned}
I_{1} & =6 \mathbb{E}\left\|\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} \mathscr{S}\left(t_{2}-s\right)[f(s, x(s))+B(s) u(s)] d s\right\|^{2} \\
& \leq \frac{6 M^{2}}{\Gamma^{2}(\alpha)} \int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{2 \alpha-2} d s \int_{t_{1}}^{t_{2}} \mathbb{E}\|f(s, x(s))+B(s) u(s)\|^{2} d s \\
& \leq \frac{6 M^{2}\left[2 b L_{f}\left(1+r_{0}\right)+2\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s\right]}{\Gamma^{2}(\alpha)} \cdot \frac{\left(t_{2}-t_{1}\right)^{2 \alpha-1}}{2 \alpha-1} \\
& \rightarrow 0\left(t_{2}-t_{1} \rightarrow 0\right) . \\
I_{4} & =6 \mathbb{E}\left\|\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} \mathscr{S}\left(t_{2}-s\right) \sigma(s, x(s)) d W(s)\right\|^{2} \\
& \leq \frac{6 M^{2}}{\Gamma^{2}(\alpha)} \int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{2 \alpha-2} \mathbb{E}\|\sigma(s, x(s))\|^{2} d s \\
& \leq \frac{6 M^{2} L_{\sigma}\left(1+r_{0}\right)}{\Gamma^{2}(\alpha)} \cdot \frac{\left(t_{2}-t_{1}\right)^{2 \alpha-1}}{2 \alpha-1} \\
& \rightarrow 0\left(t_{2}-t_{1} \rightarrow 0\right) .
\end{aligned}
$$

In a similar way, for I_{2} and I_{5}, we get

$$
I_{2}=6 \mathbb{E}\left\|\int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right] \mathscr{S}\left(t_{2}-s\right)[f(s, x(s))+B(s) u(s)]\right\|^{2}
$$

$$
\begin{aligned}
& \leq \frac{6 M^{2}}{\Gamma^{2}(\alpha)} \int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right]^{2} d s \int_{0}^{t_{1}} \mathbb{E}\|f(s, x(s))+B(s) u(s)\|^{2} d s \\
& \leq \frac{6 M^{2}\left[2 L_{f} b\left(1+r_{0}\right)+2\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s\right]}{\Gamma^{2}(\alpha)} \int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right]^{2} d s \\
& \rightarrow 0\left(t_{2}-t_{1} \rightarrow 0\right) . \\
I_{5} & =6 \mathbb{E}\left\|\int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right] \mathscr{S}\left(t_{2}-s\right) \sigma(s, x(s))\right\|^{2} \\
& \leq \frac{6 M^{2}}{\Gamma^{2}(\alpha)} \int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right]^{2} \mathbb{E}\|\sigma(s, x(s))\|^{2} d s \\
& \leq \frac{6 M^{2} L_{\sigma}\left(1+r_{0}\right)}{\Gamma^{2}(\alpha)} \int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right]^{2} d s \\
& \rightarrow 0\left(t_{2}-t_{1} \rightarrow 0\right) .
\end{aligned}
$$

Further, for I_{3} and I_{6}, if $t_{1}=0,0<t_{2}<b$, it is easy to see $I_{3}=I_{6}=0$, so for $t_{1}>0$ and $0<\varepsilon<t_{1}$ small enough, we have that

$$
\begin{aligned}
& I_{3}=6 \mathbb{E}\left\|\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}\left[\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right][f(s, x(s))+B(s) u(s)] d s\right\|^{2} \\
& \leq 12 \mathbb{E}\left\|\int_{0}^{t_{1}-\varepsilon}\left(t_{1}-s\right)^{\alpha-1}\left[\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right][f(s, x(s))+B(s) u(s)] d s\right\|^{2} \\
& +12 \mathbb{E}\left\|\int_{t_{1}-\varepsilon}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}\left[\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right][f(s, x(s))+B(s) u(s)] d s\right\|^{2} \\
& \leq 12 \sup _{s \in\left[0, t_{1}-\varepsilon\right]}\left\|\mathscr{S}\left(t_{2}-s\right)-\left(t_{1}-s\right)\right\|^{2}\left(2 L_{f} b\left(1+r_{0}\right)+2\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s\right) \\
& \times \frac{t_{1}^{2 \alpha-1}-\varepsilon^{2 \alpha-1}}{2 \alpha-1} \\
& +12\left(\frac{2 M}{\Gamma(\alpha)}\right)^{2}\left(2 L_{f} b\left(1+r_{0}\right)+2\|B\|_{\infty}^{2} \int_{0}^{b} \mathbb{E}\|u(s)\|^{2} d s\right) \frac{\varepsilon^{2 \alpha-1}}{2 \alpha-1} \\
& \rightarrow 0\left(t_{2}-t_{1} \rightarrow 0 \text { and } \varepsilon \rightarrow 0\right) \text {. } \\
& I_{6}=6 \mathbb{E}\left\|\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}\left[\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right] \sigma(s, x(s)) d W(s)\right\|^{2} \\
& \leq 12 \mathbb{E}\left\|\int_{0}^{t_{1}-\varepsilon}\left(t_{1}-s\right)^{\alpha-1}\left[\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right] \sigma(s, x(s)) d s\right\|^{2} \\
& +12 \mathbb{E}\left\|\int_{t_{1}-\varepsilon}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}\left[\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right] \sigma(s, x(s)) d s\right\|^{2} \\
& \leq 12 \sup _{s \in\left[0, t_{1}-\varepsilon\right]}\left\|\mathscr{S}\left(t_{2}-s\right)-\mathscr{S}\left(t_{1}-s\right)\right\|^{2} L_{\sigma}\left(1+r_{0}\right) \frac{t_{1}^{2 \alpha-1}-\varepsilon^{2 \alpha-1}}{2 \alpha-1} \\
& +12\left(\frac{2 M}{\Gamma(\alpha)}\right)^{2} L_{\sigma}\left(1+r_{0}\right) \frac{\varepsilon^{2 \alpha-1}}{2 \alpha-1} \\
& \rightarrow 0\left(t_{2}-t_{1} \rightarrow 0 \text { and } \varepsilon \rightarrow 0\right) \text {. }
\end{aligned}
$$

This implies that $F_{1}\left(B_{r_{0}}\right)$ is equicontinuous.

Hence by the Arzela-Ascoli theorem one has that F_{2} is a completely continuous operator. Thus, by Lemma 2.7, $F_{1}+F_{2}$ has at least a fixed point $x \in B_{r_{0}}$, which is just the mild solution of system (1.1).

This completes the proof of Theorem 3.1.
Furthermore, if conditions (H1)(ii) and (H2)(ii) also hold, we can obtain the uniqueness theorem for system (1.1).

Theorem 3.2. Assume that $-A$ generates a compact C_{0}-semigroup $T(t)(t \geq 0)$ of uniformly bounded operators in Hilbert space \mathbb{H}. Suppose the assumptions (H1)-(H4) hold, then impulsive fractional stochastic systems with nonlocal conditions (1.1) has an unique mild solution in $\mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right)$ provided that (3.1) and

$$
\begin{equation*}
4\left(M^{2} b^{2} \bar{L}_{h}+M^{2} p \sum_{i=1}^{p} \bar{M}_{i}+c_{0} \bar{L}_{f} b+c_{0} \bar{L}_{\sigma} b\right)<1, \tag{3.3}
\end{equation*}
$$

are satisfied.
Proof. Introduce the mapping $F: \mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right) \rightarrow \mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right)$ by

$$
(F x)(t)=\left(F_{1} x\right)(t)+\left(F_{2} x\right)(t), \quad t \in[0, b] .
$$

Clearly, the mild solution of system (1.1) is equivalent to the fixed point of the operator F. By Step 1 of Theorem 3.1, we know that $F\left(B_{r_{0}}\right) \subset B_{r_{0}}$. For any $x_{1}, x_{2} \in B_{r_{0}}$ and $t \in J$, we have

$$
\begin{aligned}
& \mathbb{E}\left\|\left(F x_{2}\right)(t)-\left(F x_{1}\right)(t)\right\|^{2} \\
\leq & 4 \mathbb{E}\left\|\mathscr{T}(t)\left[g\left(x_{2}\right)-g\left(x_{1}\right)\right]\right\|^{2}+4 \mathbb{E}\left\|\sum_{0<t_{i}<t} \mathscr{T}\left(t-t_{i}\right)\left[I_{i}\left(x_{2}\left(t_{i}\right)\right)-I_{i}\left(x_{1}\left(t_{i}\right)\right)\right]\right\|^{2} \\
& +4 \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)\left[f\left(s, x_{2}(s)\right)-f\left(s, x_{1}(s)\right)\right] d s\right\|^{2} \\
& +4 \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)\left[\sigma\left(s, x_{2}(s)\right)-\sigma\left(s, x_{1}(s)\right)\right] d W(s)\right\|^{2} \\
\leq & 4 M^{2} b \int_{0}^{b} \mathbb{E}\left\|h\left(s, x_{2}(s)\right)-h\left(s, x_{1}(s)\right)\right\|^{2} d s+4 M^{2} p \sum_{i=1}^{p} \mathbb{E}\left\|I_{i}\left(x_{2}\left(t_{i}\right)\right)-I_{i}\left(x_{1}\left(t_{i}\right)\right)\right\|^{2} \\
& +\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \int_{0}^{t} \mathbb{E}\left\|f\left(s, x_{2}(s)\right)-f\left(s, x_{1}(s)\right)\right\|^{2} d s \\
& +\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \int_{0}^{t} \mathbb{E}\left\|\sigma\left(s, x_{2}(s)\right)-\sigma\left(s, x_{1}(s)\right)\right\|^{2} d s \\
\leq & 4 M^{2} b \bar{L}_{h} \int_{0}^{b} \mathbb{E}\left\|x_{2}(s)-x_{1}(s)\right\|^{2} d s+4 M^{2} p \sum_{i=1}^{p} \bar{M}_{i} \mathbb{E}\left\|x_{2}\left(t_{i}\right)-x_{1}\left(t_{i}\right)\right\|^{2} \\
& +\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \bar{L}_{f} \int_{0}^{t} \mathbb{E}\left\|x_{2}(s)-x_{1}(s)\right\|^{2} d s \\
& \left.+\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \bar{L}_{\sigma} \int_{0}^{t} \mathbb{E} \| x_{2}(s)\right)-x_{1}(s) \|^{2} d s
\end{aligned}
$$

$$
\begin{aligned}
\leq & 4 M^{2} b^{2} \bar{L}_{h}\left\|x_{2}-x_{1}\right\|_{\mathcal{P C}}^{2}+4 M^{2} p \sum_{i=1}^{p} \bar{M}_{i}\left\|x_{2}-x_{1}\right\|_{\mathcal{P C}}^{2} \\
& +\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \bar{L}_{f} b\left\|x_{2}-x_{1}\right\|_{\mathcal{P C}}^{2}+\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \bar{L}_{\sigma} b\left\|x_{2}-x_{1}\right\|_{\mathcal{P C}}^{2} \\
= & 4\left(M^{2} b^{2} \bar{L}_{h}+M^{2} p \sum_{i=1}^{p} \bar{M}_{i}+c_{0} \bar{L}_{f} b+c_{0} \bar{L}_{\sigma} b\right)\left\|x_{2}-x_{1}\right\|_{\mathcal{P C}}^{2} \\
:= & \kappa\left\|x_{2}-x_{1}\right\|_{\mathcal{P C}}^{2} .
\end{aligned}
$$

Hence

$$
\left\|\left(F x_{2}\right)-\left(F x_{1}\right)\right\|_{\mathcal{P C}}^{2} \leq \kappa\left\|x_{2}-x_{1}\right\|_{\mathcal{P C}}^{2} .
$$

We have by (3.3) that F is a contraction mapping on $B_{r_{0}}$. Thus, by the well known contraction mapping principle we know that F has a unique fixed point $x \in B_{r_{0}}$, that is, $x(t)$ is the unique mild solution of system (1.1).

This completes the proof of Theorem 3.2.

4. Existence of Optimal Controls

In this section, we investigate the existence of optimal controls.
Let x^{u} denote the mild solution of system (1.1) corresponding to the control $u \in U_{a d}$. Consider the Lagrange problem (\mathscr{P}):
Find an optimal pair $\left(x^{0}, u^{0}\right) \in \mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right) \times U_{\text {ad }}$ such that

$$
\begin{equation*}
\mathcal{J}\left(x^{0}, u^{0}\right) \leq \mathcal{J}\left(x^{u}, u\right), \quad \text { for all }\left(x^{u}, u\right) \in \mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right) \times U_{\text {ad }}, \tag{4.1}
\end{equation*}
$$

where the cost function

$$
\mathcal{J}\left(x^{u}, u\right)=\mathbb{E}\left(\int_{0}^{b} \mathscr{L}\left(t, x^{u}(t), u(t)\right) d t\right) .
$$

Assume that
(L1) The functional $\mathscr{L}: J \times \mathbb{H} \times \mathbb{U} \rightarrow \mathbb{R} \cup\{\infty\}$ is \mathcal{F}_{t} measurable.
(L2) For any $t \in J, \mathscr{L}(t, \cdot, \cdot)$ is sequentially lower semicontinuous on $\mathbb{H} \times \mathbb{U}$.
(L3) For any $t \in J$ and $x \in \mathbb{H}, \mathscr{L}(t, x, \cdot)$ is convex on \mathbb{U}.
(L4) There exist two constants $d_{1} \geq 0, d_{2}>0, \xi$ is nonnegative and $\xi \in L^{1}(J, \mathbb{R})$ such that

$$
\mathscr{L}(t, x, u) \geq \xi(t)+d_{1} \mathbb{E}\|x\|^{2}+d_{2} \mathbb{E}\|u\|^{2} .
$$

Now we are in a position to present the existence of optimal controls for problem (\mathscr{P}).

Theorem 4.1. Let hypothesis of Theorem 3.2 and (L1)-(L4) hold. Suppose that B is a strongly continuous operator, then Lagrange problem (\mathscr{P}) admits at least one optimal pair, that is, there exists an admissible state-control pair

$$
\left(x^{0}, u^{0}\right) \in \mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right) \times U_{a d},
$$

such that

$$
\begin{equation*}
\mathcal{J}\left(x^{0}, u^{0}\right) \leq \mathcal{J}\left(x^{u}, u\right), \quad \text { for all } \quad\left(x^{u}, u\right) \in \mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right) \times U_{a d} . \tag{4.2}
\end{equation*}
$$

Proof. Without loss of generality, we suppose that

$$
\inf \left\{\mathcal{J}\left(x^{u}, u\right) \mid u \in U_{a d}\right\}=\varepsilon<+\infty .
$$

Otherwise, there is nothing to prove. It follows from (L4) that $\varepsilon>-\infty$. We obtain by definition of infimum that there is a minimizing sequence of feasible pairs $\left(x^{m}, u^{m}\right) \in$ $\mathcal{P C}\left([0, b], L^{2}(\Omega, \mathbb{H})\right) \times U_{a d}$ such that

$$
\mathcal{J}\left(x^{m}, u^{m}\right) \rightarrow \varepsilon, \quad m \rightarrow \infty,
$$

where x^{m} is a mild solution of system (1.1) corresponding to $u^{m} \in U_{a d}$.
Note that $\left\{u^{m}\right\} \subset U_{a d}(m=1,2, \cdots)$, which implies that $\left\{u^{m}\right\} \in L_{\mathcal{F}}^{2}(J, \mathbb{U})$ is bounded. Thus, there exists $u^{0} \in L_{\mathcal{F}}^{2}(J, \mathbb{U})$ and a subsequence extracted from $\left\{u^{m}\right\}$ (still denoted $\left\{u^{m}\right\}$) such that

$$
u^{m} \xrightarrow{w} u^{0} \quad(m \rightarrow \infty) .
$$

Since $U_{a d}$ is convex and closed, from the Marzur theorem[49], we deduce that $u^{0} \in U_{a d}$.
Let x^{0} be the mild solution of (1.1) corresponding to u^{0}. It follows the boundedness of $\left\{u^{m}\right\},\left\{u^{0}\right\}$, one can check that there exists a positive number r_{0} such that $\left\|x^{m}\right\|_{\mathcal{P} \mathcal{C}}^{2} \leq$ $r_{0},\left\|x^{0}\right\|_{\mathcal{P C}}^{2} \leq r_{0}$. For $t \in J$, we have

$$
\begin{aligned}
& \mathbb{E}\left\|x^{m}(t)-x^{0}(t)\right\|^{2} \\
\leq & 4 \mathbb{E}\left\|\mathscr{T}(t)\left[g\left(x^{m}\right)-g\left(x^{0}\right)\right]\right\|^{2}+4 \mathbb{E}\left\|\sum_{0<t_{i}<t} \mathscr{T}\left(t-t_{i}\right)\left[I_{i}\left(x_{2}\left(t_{i}\right)\right)-I_{i}\left(x^{0}\left(t_{i}\right)\right)\right]\right\|^{2} \\
& +4 \mathbb{E} \| \int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)\left[\left(f\left(s, x^{m}(s)\right)-f\left(s, x^{0}(s)\right)\right)\right. \\
& \left.+\left(B(s) u^{m}(s)-B(s) u^{0}(s)\right)\right] d s \|^{2} \\
& +4 \mathbb{E}\left\|\int_{0}^{t}(t-s)^{\alpha-1} \mathscr{S}(t-s)\left[\sigma\left(s, x^{m}(s)\right)-\sigma\left(s, x^{0}\right)\right] d W(s)\right\|^{2} \\
\leq & 4 M^{2} b \int_{0}^{b} \mathbb{E}\left\|h\left(s, x^{m}(s)\right)-h\left(s, x^{0}(s)\right)\right\|^{2} d s+4 M^{2} p \sum_{i=1}^{p} \mathbb{E}\left\|I_{i}\left(x^{m}\left(t_{i}\right)\right)-I_{i}\left(x^{0}\left(t_{i}\right)\right)\right\|^{2} \\
& +\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \int_{0}^{t} 2 \mathbb{E}\left\|f\left(s, x^{m}(s)\right)-f\left(s, x^{0}(s)\right)\right\|^{2} \\
& +\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \int_{0}^{t} 2 \mathbb{E}\left\|B(s) u^{m}(s)-B(s) u^{0}(s)\right\| d s \\
& +\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \int_{0}^{t} \mathbb{E}\left\|\sigma\left(s, x^{m}(s)\right)-\sigma\left(s, x^{0}(s)\right)\right\|^{2} d s \\
\leq & 4 M^{2} b^{2} \bar{L}_{h}\left\|x^{m}-x_{1}\right\|_{\mathcal{P C}}^{2}+4 M^{2} p \sum_{i=1}^{p} \bar{M}_{i}\left\|x^{m}-x^{0}\right\|_{\mathcal{P C}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
&+\frac{8 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \bar{L}_{f} b\left\|x^{m}-x^{0}\right\|_{\mathcal{P C}}^{2}+\frac{4 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1} \bar{L}_{\sigma} b\left\|x^{m}-x^{0}\right\|_{\mathcal{P C}}^{2} \\
&+\frac{8 M^{2}}{\Gamma^{2}(\alpha)} \frac{b^{2 \alpha-1}}{2 \alpha-1}\left\|B u^{m}-B u^{0}\right\|_{L_{\mathcal{F}}^{2}(J, \mathbb{U})}^{2} \\
&=4\left(M^{2} b^{2} \bar{L}_{h}+M^{2} p \sum_{i=1}^{p} \bar{M}_{i}+2 c_{0} \bar{L}_{f} b+c_{0} \bar{L}_{\sigma} b\right)\left\|x^{m}-x^{0}\right\|_{\mathcal{P C}}^{2} \\
&+8 c_{0}\left\|B u^{m}-B u^{0}\right\|_{L_{\mathcal{F}}^{2}(J, \mathbb{U})}^{2}
\end{aligned}
$$

which means

$$
\left\|x^{m}-x^{0}\right\|_{\mathcal{P C}}^{2} \leq \frac{8 c_{0}\left\|B u^{m}-B u^{0}\right\|_{L_{\mathcal{F}}^{2}(J, \mathbb{U})}^{2}}{1-4\left(M^{2} b^{2} \bar{L}_{h}+M^{2} p \sum_{i=1}^{p} \bar{M}_{i}+2 c_{0} \bar{L}_{f} b+c_{0} \bar{L}_{\sigma} b\right)}
$$

Since B is strongly continuous, we get

$$
\left\|B u^{m}-B u^{0}\right\|_{L_{\mathcal{F}}^{2}(J, \mathbb{U})}^{2} \stackrel{s}{\rightarrow} 0(m \rightarrow \infty) .
$$

Consequently,

$$
\left\|x^{m}-x^{0}\right\|_{\mathcal{P C}}^{2} \xrightarrow{s} 0(m \rightarrow \infty)
$$

Thus, by (L1)-(L4)and Balders theorem (see Theorem 2.1 [29]), we can deduce that $(x, u) \rightarrow \mathbb{E}\left(\int_{0}^{b} \mathscr{L}(t, x(t), u(t)) d t\right)$ is sequentially lower semicontinuous in the strong topology of $L_{\mathcal{F}}^{1}(J, \mathbb{H})$ and weak topology of $L_{\mathcal{F}}^{2}(J, \mathbb{U}) \subset L_{\mathcal{F}}^{1}(J, \mathbb{U})$. Hence, \mathcal{J} is weakly lower semicontinuous on $L_{\mathcal{F}}^{2}(J, \mathbb{U})$. Therefore, we obtain

$$
\begin{aligned}
\varepsilon & =\lim _{m \rightarrow \infty} \mathbb{E}\left(\int_{0}^{b} \mathscr{L}\left(t, x^{m}(t), u^{m}(t)\right) d t\right) \\
& \geq \mathbb{E}\left(\int_{0}^{b} \mathscr{L}\left(t, x^{0}(t), u^{0}(t)\right) d t\right)=\mathcal{J}\left(x^{0}, u^{0}\right) \geq \varepsilon
\end{aligned}
$$

which implies that $u^{0} \in U_{a d}$ is a minimum of \mathcal{J}.
This completes the proof of Theorem 4.1.
Remark 4.2. The result of Theorem 4.1 can be extended to the noninstantaneous impulsive fractional stochastic evolution equations with nonlocal conditions. The corresponding result that appear are also new.

Remark 4.3. In recent paper [10], Dhayal et al. studied the existence of optimal multicontrol pairs for a class of noninstantaneous impulsive fractional stochastic differential systems. In [11], Dhayal et al. obtained the optimal pair for a nonlinear system governed by the fractional differential equation by using the resolvent family and approximation techniques. In [12], Dhayal et al. discussed the approximate and trajectory controllability for a class of fractional stochastic differential equations with
noninstantaneous impulses. Inspired by [10, 11, 12], in the future, we will investigate the fractional stochastic evolution equations with nonlocal initial conditions and noninstantaneous impulsive.

Remark 4.4. The uniqueness of the solution is a prerequisite for discussing optimal control, so it is necessary that the mild solution of (1.1) should be unique.

5. Application

To illustrate the main result, we consider the following fractional stochastic control system

$$
\left\{\begin{array}{l}
\frac{\partial^{\frac{2}{3}}}{\partial t^{\frac{2}{3}}} x(z, t)-\frac{\partial^{2}}{\partial s^{2}} x(z, t)=\left(\frac{\sin t}{10}+\frac{x(z, t)}{t+10}\right)+\frac{1}{10}\left(\frac{1}{1+e^{t}}+\frac{|x(z, t)|}{1+|x(z, t)|}\right) \frac{d W(t)}{d t} \tag{5.1}\\
\quad+\int_{0}^{1} \mathcal{K}(z, s) u(s, t) d s, \quad z \in[0,1], t \in[0,1], t \neq \frac{1}{2}, \\
\Delta x\left(\frac{1}{2}, z\right)=\frac{|x(z, t)|}{5+\mid x z, t) \mid}, \quad z \in[0,1], \\
x(0, t)=x(\pi, t)=0, \quad t \in[0,1], \\
x(z, 0)=\int_{0}^{1} \frac{1}{8}\left(e^{-t}+\sin (x(z, s))\right) d s, \quad z \in[0,1],
\end{array}\right.
$$

where $W(t)$ is a standard one dimensional Brownian motion defined on the filtered probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, P\right)$.

In order to write the above system (5.1) into the abstract form of (1.1), let $\mathbb{H}=$ $\mathbb{U}=L^{2}[0,1]$ with the norm $\|w\|=\left(\int_{0}^{1}|w(z)|^{2} d z\right)^{\frac{1}{2}}$. Define the operator $A: D(A) \subset$ $\mathbb{H} \rightarrow \mathbb{H}$ by

$$
D(A)=\left\{w \in \mathbb{H} \mid w^{\prime}, w^{\prime \prime} \in X, w(0)=w(1)=0\right\}, \quad A w=-\frac{\partial^{2} w}{\partial z^{2}} .
$$

We know that $-A$ generates a compact, analytic semigroup $T(t)(t \geq 0)$ in \mathbb{H} and

$$
T(t) v=\Sigma_{n=1}^{\infty} e^{-n^{2} t}\left(v, v_{n}\right) v_{n}, \quad\|T(t)\| \leq e^{-t}<1, t>0,
$$

where $v_{n}=\sqrt{2} \sin (n s), n=1,2, \cdots$ is the orthogonal set of eigenvectors in A. Moreover, we assume that $\mathcal{K}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ is continuous, and the admissible control set

$$
U_{a d}=\left\{u \in \mathbb{U} \mid\|u\|_{L_{\mathcal{F}}^{2}} \leq 1\right\} .
$$

For any $t \in[0,1]$, let

$$
x(t)(z)=x(z, t), \quad B(t) u(t)(z)=\int_{0}^{1} \mathcal{K}(z, s) u(s, t) d s
$$

$$
f(t, x(t))(z)=\frac{\sin t}{10}+\frac{x(z, t)}{t+10}, \quad \sigma(t, x(t))(z)=\frac{1}{10}\left(\frac{1}{1+e^{t}}+\frac{|x(z, t)|}{1+|x(z, t)|}\right),
$$

$$
I_{1}(x(t))(z)=\frac{|x(z, t)|}{5+|x(z, t)|}, \quad h(t, x(t))(z)=\frac{1}{8}\left(e^{-t}+\sin (x(z, s))\right) .
$$

Then the problem (5.1) can be rewritten into the abstract form of (1.1) with the cost function

$$
\mathcal{J}(x, u)=\mathbb{E}\left(\int_{0}^{b} \int_{0}^{1}|x(z, t)|^{2} d z d t+\int_{0}^{b} \int_{0}^{1}|u(z, t)|^{2} d z d t\right)
$$

We can easily check that the assumptions (H1)-(H4) holds with $\mathrm{L}_{f}=\mathrm{L}_{\sigma}=\frac{1}{50}, \bar{L}_{f}=$ $\bar{L}_{\sigma}=\frac{1}{100}, \mathrm{~L}_{h}=\bar{L}_{h}=\frac{1}{32}$ and $M_{1}=\bar{M}_{1}=\frac{1}{25}$. In addition,

$$
\begin{gathered}
N+M^{2} p \sum_{i=1}^{p} M_{i}<\frac{1}{32}+1.68 \cdot \frac{1}{25} \approx 0.09<\frac{1}{5}, \\
M^{2} b^{2} \bar{L}_{h}+M^{2} p \sum_{i=1}^{p} \bar{M}_{i}=\frac{1}{32}+\frac{1}{25}<\frac{1}{2}, \\
M^{2} b^{2} \bar{L}_{h}+M^{2} p \sum_{i=1}^{p} \bar{M}_{i}+c_{0} \bar{L}_{f} b+c_{0} \bar{L}_{\sigma} b<\frac{1}{32}+\frac{1}{25}+1.68 \cdot \frac{1}{50} \approx 0.1<0.25 .
\end{gathered}
$$

Hence, by Theorem 4.1, system (5.1) has at least one optimal pair.

6. Conclusions

In this paper, the optimal controls for a class of impulsive stochastic fractional evolution equations with nonlocal initial conditions in a Hilbert space is studied. More precisely, by utilizing the fractional calculus, stochastic analysis theory, and fixed point theorems, we obtained the existence and uniqueness of mild solutions and optimal pairs for these equations. Finally, an example is provided to show the effectiveness of the proposed results. There are two direct issues which require further study. We will investigate the fractional stochastic evolution equations for order $\alpha \in(1,2]$ with nonlocal initial conditions and noninstantaneous impulsive. Also, we will be devoted to study the optimal controls problem for fractional stochastic partial differential inclusions with nonlocal initial conditions.

Statements and Declarations

No potential conflict of interest was reported by the authors.

Funding

Research is supported by NNSF of China (12261078), NSF of Gansu Province (21JR11RE031, 22JR11RE193), Innovation Foundation of Tianshui Normal Universi-
ty (CXJ2020-02, CXT2019-03) and Innovation Team of Tianshui Normal University (TDJ2022-03).

References

[1] Y. J. Lia, Y. J. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differ. Equ., 266 (2019), 3514-3558.
[2] Y. H. Ding, Y. X. Li, Approximate controllability of fractional stochastic evolution equations with nonlocal conditions, Int. J. Nonlinear Sci. Numer. Simul., 21 (2020), 829-841.
[3] Y. H. Ding, Y. X. Li, Finite-approximate controllability of impulsive ψ-Caputo fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 26 (2023), 13261358.
[4] R. Chaudhary, Partial approximate controllability results for fractional order stochastic evolution equations using approximation method, Evol. Equ. Control Theory, 12 (2023), 1083-1101.
[5] T. Sathiyaraj, J. R. Wang, P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Optim., 84 (2021), 2527-2554.
[6] Z. M, Yan, Y. H. Zhou, Optimization of exact controllability for fractional impulsive partial stochastic differential systems via analytic sectorial operators, Int. J. Nonlinear Sci. Numer. Simul., 22 (2021), 559-579.
[7] Z. M, Yan, X. X. Yan, Optimal controls for impulsive partial stochastic differential equations with weighted pseudo almost periodic coefficients, Internat. J. Control, 94 (2021), 111-133.
[8] Z. M. Yan, Time optimal control of system governed by a fractional stochastic partial differential inclusion with clarke subdifferential, Taiwanese J. Math., 25 (2021), 155-181.
[9] R. Dhayal, M. Malik, S. Abbas, Solvability and optimal controls of non-instantaneous impulsive stochastic fractional differential equation of order $q \in(1,2)$, Stochastics, 93 (2021), 780-802.
[10] R. Dhayal, M. Malik, Q. X. Zhu, Optimal controls of impulsive fractional stochastic differential systems driven by rosenblatt process with state-dependent delay, Asian J. Control (2023), https://doi.org/10.1002/asjc.3193.
[11] R. Dhayal, M. Malik, S. Abbas, A. Kumar, R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evol. Equat. Control Theory, 10 (2021), 411-429.
[12] R. Dhayal, M. Malik, S. Abbas, Approximate and trajectory controllability of fractional stochastic differential equation with non-instantaneous impulses and poisson jumps, Asian J. Control, 23 (2021), 2669-2680.
[13] Y. R. Liu, Y. J. Wang, Asymptotic behaviour of time fractional stochastic delay evolution equations with tempered fractional noise, Discrete Contin. Dyn. Syst. Ser. S 16 (2023), 2483-2510.
[14] M. Yang, Y. Zhou, Hilfer fractional stochastic evolution equations on infinite interval, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 1841-1862.
[15] Y. K. Chang, Y. T. Pei, R. Ponce, Existence and optimal controls for fractional stochastic evolution equations of Sobolev type via fractional resolvent operators, J. Optim. Theory Appl. , 182 (2019), 558-572.
[16] P. Y. Chen, X. P. Zhang, Y. X. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calc. Appl. Anal., 19 (2016), 1507-1526.
[17] P. Y. Chen, Y. X. Li, X. P. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14 (2015), 1817-1840.
[18] X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Ltd., Chichester, 1997.
[19] R. Sakthivel, P. Revathi, Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 81 (2013), 70-86.
[20] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
[21] P. Balasubramaniam, P. Tamilalagan, The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators, J. Optim. Theory Appl., 174 (2017), 139-155.
[22] R. Sakthivel, S. Suganya, S.M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63 (2012), 660-668.
[23] P. Muthukumar, C. Rajivganthi, Approximate controllability of fractional order neutral stochastic integro-differential system with nonlocal conditions and infinite delay, Taiwanese J. Math., $\mathbf{1 7}$ (2013), 1693-1713.
[24] S. Farahi, T. Guendouzi, Approximate controllability of fractional neutral stochastic evolution equations with nonlocal conditions. Results Math., 65 (2014), 501-521.
[25] J. R. Wang, Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput., 256 (2015), 315-323.
[26] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.
[27] Y. Zhou, F. Jiao, Nonlocal cauchy problem for fractional evolution equations, Nonlinear Anal., 11 (2010), 4465-4475.
[28] R. Sakthivel, S. Suganya, S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63 (2012), 660-668.
[29] E. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional, Nonlinear Anal., 11 (1987), 1399-1404.
[30] K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic Publishers, London, 1991.
[31] W. Grecksch, C. Tudor, Stochastic Evolution Equations: A Hilbert Space Approach, Akademic Verlag, Berlin,1995.
[32] K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall, London, 2006.
[33] D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, New York, 1993.
[34] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive Differential Equations and Inclusions, in: Contemporary Mathematics and its Applications, Hindawi Publ, Corp, 2006.
[35] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[36] F. Ge, H. Zhou, C. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput., 275 (2016), 107-120.
[37] H. Gou, Y. Li, A study on impulsive Hilfer fractional evolution equations with nonlocal conditions, Int. J. Nonlinear Sci. Numer. Simul., 21 (2020), 205-218.
[38] H. Gou, Y. Li, The method of lower and upper solutions for impulsive fractional evolution equations, Ann. Funct. Anal., 11 (2020), 350-369.
[39] X. Shu, Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465-476.
[40] X. Shu, F. Xu, Upper and lower solution method for fractional evolution equations with order $1<\alpha<2$, J. Korean Math. Soc., 51 (2014), 1123-1139.
[41] H. Waheed, A.Zada, J. Xu, Well-posedness and Hyers-Ulam results for a class of impulsive fractional evolution equations, Math. Methods Appl. Sci. , 44 (2021), 749-771.
[42] J. Wang, M. Feckan, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-361.
[43] J. Wang, M. Feckan, Y. Zhou, Relaxed controls for nonlinear fractional impulsive evolution equations, J. Optim. Theory Appl., 156 (2013), 13-32.
[44] X. Wang, X. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order $1<\alpha<2$, Adv. Difference Equ., 159 (2015), 15pp.
[45] L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of solutions of a nonlocal Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11-19.
[46] P. Chen, X. Zhang, Y. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 73 (2017), 794-803.
[47] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.
[48] J. Liang, J. Liu, T. J. Xiao, Nonlocal cauchy problems governed by compact operator families, Nonlinear Anal., 57 (2004), 183-189.
[49] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Courier Corporation, North Chelmsford, 2012.

[^0]: Yonghong Ding. Email: dyh198510@126.com

