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Abstract

In this work, based on the principle of contraction mapping, we deduce sufficient
conditions ensuring the existence of pseudo almost periodic solutions of fractional-order
Clifford-valued high-order Hopfield neural networks (FCHHNNs). In addition, we em-
ploy a kind of Gronwall inequality to study the finite-time stability of pseudo almost
periodic solutions of FCHHNNs. The results and methods of our paper are new. Finally,
we give a numerical example to illustrate the effectiveness of the results obtained.
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1 Introduction

Clifford-valued neural networks (CVNNs) have greater advantages in high-dimensional
signal processing and storage capacity because they require fewer connection weight functions
compared to real-valued, complex-valued, and quaternion-valued neural networks [1–4]. In
recent years, more and more scholars have devoted themselves to the theoretical and practical
application research of CVNN, and have achieved many results [5–12]. Since the multiplication
of Clifford algebra does not satisfy the commutative law, many results have been obtained
by decomposing CVNNs into real-valued neural networks [7, 8, 13, 14]. However, the results
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obtained by the decomposition method are essentially about the real-valued system, which
is not easy to be directly applied to the CVNN system under consideration. Therefore, it is
of great theoretical significance and potential application value to further explore the direct
method for studying the qualitative behavior of CVNNs, namely, the non decomposition
method.

In addition, it is well known that fractional order differential equation models can bet-
ter describe some real processes with heredity, memory and nonlocality than integer order
differential equation models in many aspects. Therefore, in recent decades, researchers have
proposed a large number of fractional differential equation models, and the application fields
of fractional differential equations are also expanding. In particular, the study of fractional or-
der neural networks has received extensive attention and achieved some good results [15–30].
However, the research results on fractional order CVNNs are few. Especially, up to now,
no results of almost periodic oscillation of fractional-order CVNNs have been published, but
nevertheless, as is well known, almost periodic oscillations are one of the crucial dynamics
of neural networks [11, 24, 25, 31–33]. Therefore, the study of almost periodic oscillations of
fractional-order CVNNs has important theoretical and practical implications.

Moreover, it is well known that high-order Hopfield neural networks (HHNNs) have advan-
tages over their corresponding low-order ones in approximation, convergence speed, storage ca-
pacity and fault tolerance. Therefore, HHNNs have always been the focus of research [34–37].
In addition, time delay is ubiquitous and inevitable in practical systems. Consequently, it is
more reasonable to consider the neural network systems with time delay.

Inspired by the above observations, and noted that in a certain sense, it is more practical
to consider the finite-time stability than the stability in Lyapunov’s sense. Therefore, the
main purpose of this paper is to study the existence and finite-time stability of pseudo almost
periodic solutions of FCHHNN with time-varying delays.

The contributions of this work are

(1) The result obtained in this paper is the first result regarding the pseudo almost periodic
solutions of fractional-order CVNN.

(2) The approaches used in the paper can be applied to study almost periodic and almost
automorphic solutions to other types of fractional-order CVNNs.

(3) Even when the network considered in this paper degenerates into a real-valued one, the
results of this paper still remain new.

The remaining part of the paper is structured in this way: in Sect. 2, we introduce some
concepts, notations and preliminary results, as well as the description of the model. In Sect.
3, we discuss the existence and finite time stability of pseudo almost periodic solutions for
the network under consideration. In Sect. 4, we present a numerical example and computer
simulation. Finally, we draw a brief conclusion in Sect. 5.

2 Preliminaries and model description
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Let A =

{ ∑
A∈P

aAeA, a
A ∈ R

}
be a real Clifford algebra over Rm (see [38]), where

P = {∅, 1, 2, . . . , A, . . . , 12 · · ·m} and eA = eh1eh2 · · · ehν , A ∈ P , e∅ = e0 = 1 and eh, h =
1, 2, . . . ,m are its generators and satisfy e2i = 1, i = 1, 2, . . . , s, e2i = −1, i = s+1, s+2, . . . ,m,
eiej + ejei = 0, i 6= j, where i, j = 1, 2, . . . ,m.

For x =
∑

A∈P x
AeA ∈ A, define |x|A =

√∑
A∈P(xA)2 and for y = (y1, y2, . . . , yn) ∈

An, define ‖y‖An = max
1≤p≤n

{|yp|A}. Obviously, (A, | · |A) and (An, | · |An) are Banach spaces,

respectively.

Definition 2.1. [39] The fractional integral of order α for a function f ∈ L1([a, b],R) is
defined as

aI
α
t f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t ∈ [a, b],

where α > 0 and Γ is the Gamma function, a and b may take −∞ and +∞ as their values.

Definition 2.2. [39] The Caputo derivative of order α for a function f ∈ Cn−1([a, b],R) and
f (n) ∈ L1([a, b],R) is defined by

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a

fn(s)

(t− s)α+1−nds, t ∈ [a, b],

where n is a nature number such that n− 1 < α < n and Γ is the Gamma function, a and b
may take −∞ and +∞ as their values.

Definition 2.3. The fractional integral with fractional order α > 0 of function f =
∑
A∈P

fAeA ∈

L1([a, b]),A) is defined as aI
α
t (t)f(t) =

∑
A∈P

aI
α
t f

A(t)eA and the Caputo fractional-order deriva-

tive of order α for function f ∈ Cn−1([a, b],A) and f (n) ∈ L1([a, b],A) is defined as aD
α
t f(t) =∑

A∈P
aD

α
t f

A(t)eA, where n is a nature number such that n− 1 < α < n.

Let BC(R,Al) be the set of bounded continuous functions from R to Al, where l is a
positive integer. Then (BC(R,Al), ‖ · ‖∞) is a Banach space, where ‖f‖∞ := sup

t∈R
‖f(t)‖Al for

f ∈ BC(R,Al).

Definition 2.4. [40] Function f ∈ BC(R,Al) is called to be almost periodic if for every
ε > 0, there is a positive number l = l(ε) such that in each interval with length l, there is a τ
satisfying

‖f(t+ τ)− f(t)‖Al < ε, for all t ∈ R.
The space of all such functions will be denoted by AP (R,Al).

Define

PAP0(R,Al) :=

{
f ∈ BC(R,Al) : lim

L→∞

1

2L

∫ L

−L
‖f(s)‖Alds = 0

}
.
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Definition 2.5. [40] Let f ∈ BC(R,Al), then f is called pseudo almost periodic if there
exist f1 ∈ AP (R,Al) and f2 ∈ PAP0(R,Al) such that f = f1 + f2. The collection of all such
functions will be denoted by PAP (R,Al).

Lemma 2.1. [40] The set PAP (R,A) with the supremum norm is a Banach space.

Lemma 2.2. [40] Let α ∈ R, f , g ∈ PAP (R,A), then αf , f + g, f · g ∈ PAP (R,A).

Lemma 2.3. Let f ∈ PAP (R,A), τ ∈ AP (R,R+) ∩ C1(R,R) with inf
t∈R
|1 − τ̇(t)| > 0, then

f(· − τ(·)) ∈ PAP (R,A).

Proof. In view of Definition 2.5, f can be expressed as f = f1 + f0, in which f1 ∈ AP (R,An)
and f0 ∈ PAP0(R,An) ⊂ BC(R,An), then one has

f(t− τ(t)) = f1(t− τ(t)) + f0(t− τ(t)).

Similar to the proof of Lemma 5 in [41], one can easily get f1(· − τ(·)) ∈ AP (R,An).
In addition, noting that

lim
T→+∞

1

2T

∫ T

−T
‖f0(t− τ(t))‖Andt

≤ lim
T→+∞

1

inf
t∈R
|1− τ̇(t)|

1

2T

∣∣∣∣ ∫ T−τ(T )

−T−τ(−T )
‖f0(s)‖Ands

∣∣∣∣
= lim

T→+∞

1

inf
t∈R
|1− τ̇(t)|

1

2T

∣∣∣∣( ∫ −T+τ(T )
−T−τ(−T )

+

∫ T−τ(T )

−T+τ(T )

)
‖f0(s)‖Ands

∣∣∣∣
= lim

T→+∞

1

inf
t∈R
|1− τ̇(t)|

T − τ(T )

T

1

2(T − τ(T ))

∫ T−τ(T )

−T+τ(T )
‖f0(s)‖Ands = 0,

we arrive at f0(·− τ(·)) ∈ PAP0(R,An). Thus, f(·− τ(·)) ∈ PAP (R,An). This completes the
proof.

The model we are concerned in this paper is the following Caputo FCHHNN with time-
varying delays:

t0D
α
t xp(t) =− apxp(t) +

n∑
q=1

apq(t)fq(xq(t− τpq(t))) +
n∑
q=1

n∑
l=1

bpql(t)gq(xq(t− σpql(t)))

× gl(xl(t− νpql(t))) + Ip(t), t > t0, p = 1, 2, . . . , n, (2.1)

where 0 < α < 1 is a constant, n denotes the number of units in the network; xp(t) ∈ A is the
state of the pth unit at time t; ap ≥ 0 is the self feedback connection weight; apq(t) ∈ A and
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bpql(t) ∈ A are connection weights of the network; τpq(t) ≥ 0, σpql(t) ≥ 0 and νpql(t) ≥ 0 are
transmission delays at time t; Ip(t) ∈ A represents the external inputs at time t; fq, gq : A → A
are activation functions of signal transmission.

We will use the following notations:

τ̂ = max
1≤p,q≤n

{
sup
t∈R

τpq(t)

}
, σ̂ = max

1≤p,q,l≤n

{
sup
t∈R

σpql(t)

}
, ν̂ = max

1≤p,q,l≤n

{
sup
t∈R

νpql(t)

}
,

ρ = max{τ̂ , σ̂, ν̂}, âpq = sup
t∈R
|apq(t)|A, b̂pql = sup

t∈R
|bpql(t)|A, Îp = sup

t∈R
|Ip(t)|A.

System (2.1) is supplemented with the initial values:

xp(s) = ψp(s), s ∈ [t0 − ρ, t0], p = 1, 2, . . . , n,

where ψp ∈ C([t0 − ρ, t0],A).
In the next section, in order to get our main results, we need the following conditions:

(S1) For p, q, l = 1, . . . , n, apq, bpql, Ip ∈ PAP (R,A), τpq, σpql, νpql ∈ AP (R,R+) ∩ C1(R,R)
satisfying inf

t∈R
|1− τpq(t)| > 0, inf

t∈R
|1− σpql(t)| > 0, inf

t∈R
|1− νpql(t)| > 0.

(S2) There exist positive numbers Lfq , L
g
q ,M

g
q such that, for all x, y ∈ A, q = 1, . . . , n,

|fq(x)− fq(y)|A ≤ Lfq |x− y|A, |gq(x)− gq(y)|A ≤ Lgq |x− y|A, |gq(x)|A ≤M g
q ,

fq, hq ∈ C(A,A); in addition, fq(0) = gq(0) = 0.

(S3)

max
1≤p≤n

{
Cp
ap

+
Îp
ap

}
≤ r, ξ = max

1≤p≤n

{
Dp

ap

}
< 1,

where for p = 1, 2, . . . , n,

Cp =
( n∑
q=1

âpqL
f
q +

n∑
q=1

n∑
l=1

b̂pqlL
g
qM

g
l

)
r,

Dp =
n∑
q=1

âpqL
f
q +

n∑
q=1

n∑
l=1

b̂pql

(
LgqM

g
l + LglM

g
q

)
.

3 Main results

Based on Definition 2.3 and Clifford algebra’s multiplication rule as well as Definition 3.1
in [42] of solutions for real-valued equations, we can introduce the following definition:
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Definition 3.1. A function x = (x1, x2, · · · , xn)T ∈ C([t0 − ρ,+∞),An) is called a mild
solution of system (2.1), if it meetsxp(t) =Up(t− t0)x0 +

∫ t

t0

(t− s)α−1ϕp(t− s)[Θp(s, x) + Ip(s)]ds, t > t0,

xp(t) =ψp(t), t ∈ [t0 − ρ, t0],
(3.1)

where

Θp(s, x) =
n∑
q=1

[
apq(s)fq(xq(s− τpq(s))) +

n∑
l=1

bpql(s)gq(xq(s− σpql(s)))gl(xl(s− νpql(s)))
]
,

xp(t0) = ψp(t0) = x0, %α(γ) =
1

α
γ−1−

1
αϑα(γ

−1
α ),

Up(t) =

∫ +∞

0

%α(γ)e−apt
αγdγ, ϕp(t) = α

∫ +∞

0

γ%α(γ)e−apt
αγdγ,

ϑα(γ) =
1

π

∞∑
n=1

(−1)n−1γ−nα−1
Γ(nα + 1)

n!
sin(nπα), γ ∈ (0,+∞),

and %α satisfies

%α(γ) ≥ 0, γ ∈ (0,+∞),

∫ +∞

0

%α(γ)dγ = 1,

∫ +∞

0

γ%α(γ)dγ =
1

Γ(α + 1)
.

Letting t0 −→ −∞, we gain

xp(t) =

∫ t

−∞
(t− s)α−1ϕp(t− s)[Θp(s, x) + Ip(s)]ds,

which is a solution of system (2.1).

Let B = {x = (x1, x2, . . . , xn)T ∈ BC(R,An) : xp ∈ PAP (R,A), p = 1, 2, . . . , n}, then
(B, ‖ · ‖∞) is a Banach space.

Theorem 3.1. Let (S1)-(S3) be fulfilled, then system (2.1) possesses unique one pseudo almost
periodic mild solution in Br = {x | x ∈ B, ‖x‖∞ ≤ r}.

Proof. Define a mapping Φ : B→ BC(R,An) as follow:

Φx = ((Φx)1, (Φx)2, · · · , (Φx)n)T ,

where for p = 1, 2, . . . , n, t ∈ R,

(Φx)p(t) =

∫ t

−∞
(t− s)α−1ϕp(t− s)(Θp(s, x) + Ip(s))ds.
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Firstly, we will show that Φ : B→ B. For every x = (x1, x2, . . . , xn)T ∈ Br, from (S1)-(S3) it
follows that fq, gq, τpq, σpql, νpql meet all the conditions of Lemma 2.3, and hence, by Lemmas
2.2 and 2.3, we can derive that

φp(·) = Θp(·, x) + Ip(·) ∈ PAP (R,A).

So, there are φ1
p ∈ AP (R,A) and φ0

p ∈ PAP0(R,A) such that φp = φ1
p + φ0

p where p =
1, 2, . . . , n. Consequently, we have

(Φx)p(t) =

∫ t

−∞
(t− s)α−1ϕp(t− s)φp(s)ds

=

∫ t

−∞
(t− s)α−1ϕp(t− s)φ1

p(s)ds+

∫ t

−∞
(t− s)α−1ϕp(t− s)φ0

p(s)ds

:=(Φx)1p(t) + (Φx)0p(t), p = 1, 2, . . . , n. (3.2)

We will prove that (Φx)1p ∈ AP (R,A) and (Φx)0p ∈ PAP0(R,A), for p = 1, 2, . . . , n.
Since φ1

p ∈ AP (R,A), for given ε > 0, there corresponds an l = l(ε) > 0 such that every
interval of length l contains a point ζ ∈ (a, a+ l) such that

|φ1
p(t+ ζ)− φ1

p(t)|A < ε, t ∈ R, p = 1, 2, . . . , n.

From this and (3.2) it follows that

|(Φx)1p(t+ ζ)− (Φx)1p(t)|A =

∣∣∣∣ ∫ t

−∞
(t− s)α−1ϕp(t− s)φ1

p(s+ ζ)ds

−
∫ t

−∞
(t− s)α−1ϕp(t− s)φ1

p(s)ds

∣∣∣∣
A

≤ sup
t∈R

∣∣∣∣ ∫ t

−∞
(t− s)α−1ϕp(t− s)(φ1

p(s+ ζ)− φ1
p(s))ds

∣∣∣∣
A

≤ε
∫ t

−∞
(t− s)α−1α

∫ +∞

0

γ%α(γ)e−ap(t−s)
αγdγds

≤ε
∫ +∞

0

∫ +∞

0

αγ%ασ
α−1e−apσ

αγdσdγ =
ε

ap
, t ∈ R,

which implies (Φx)1p ∈ AP (R,A) for p = 1, 2, . . . , n.
Noting that

lim
L→∞

1

2L

∫ L

−L

∣∣∣∣ ∫ t

−∞
(t− s)α−1ϕp(t− s)φ0

p(s)ds

∣∣∣∣
A
dt

= lim
L→∞

1

2L

∫ L

−L

∣∣∣∣ ∫ ∞
0

σα−1ϕp(σ)φ0
p(t− σ)dσ

∣∣∣∣
A
dt

≤ 1

ap
lim
L→∞

1

2L

∫ L

−L
|φ0
p(t− σ)|Adt
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=0, p = 1, 2, . . . , n,

we have (Φx)0p ∈ PAP0(R,A). Hence, for p = 1, 2, . . . , n, (Φx)p ∈ PAP (R,A), this yields
that Φ : B→ B.

Next, we show that Φ : Br → Br.
For any x ∈ Br, we have

|Θp(t, x)|A ≤
n∑
q=1

âpq
(
|fq(xq(t− τpq(t)))− fq(0)|A + |fq(0)|A

)
+

n∑
q=1

n∑
l=1

b̂pql(|gq(xq(t− σpql(t)))− gq(0)|A + |gq(0)|A)M g
l

≤
( n∑

q=1

âpqL
f
q +

n∑
q=1

n∑
l=1

b̂pqlL
g
qM

g
l

)
‖x‖∞ ≤ Cp, p = 1, 2, . . . , n, (3.3)

which combined with (3.3) and (S3) leads to

|(Φx)p(t)|A ≤
∫ t

−∞
(t− s)α−1ϕp(t− s)

(
Cp + Îp

)
ds

≤Cp
ap

+
Îp
ap
≤ r, p = 1, 2, . . . , n.

Hence,

‖Φx‖∞ = sup
t∈R
{‖(Φx)(t)‖An} ≤ r,

that is, Φx ∈ Br. Therefore, Φ : Br → Br.
Finally, we prove that Φ is a contraction mapping. For any x, y ∈ Br, we find

|(Φx)p(t)− (Φy)p(t)|A

≤‖x− y‖∞
∫ t

−∞
(t− s)α−1ϕp(t− s)

n∑
q=1

[
âpqL

f
q +

n∑
l=1

b̂pql

(
LgqM

g
l + LglM

g
q

)]
ds

≤Dp

ap
‖x− y‖∞ ≤ ξ‖x− y‖∞, p = 1, 2, . . . , n,

which implies that Φ is a contraction.
Consequently, Φ possesses a unique fixed point in Br. The proof is completed.

Remark 3.1. From the proof process of Theorem 3.1, it is easy to see that the proof method
of Theorem 3.1 is also applicable to studying the existence of pseudo almost automorphic
solutions for system (2.1).
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In the following, we take the initial moment t0 = 0 to discuss the finite-time stability
of system (2.1), that is, we consider system (2.1) supplemented with the following initial
condition:

xp(θ) = ψp(θ), θ ∈ [−ρ, 0], p = 1, 2, . . . , n,

where ψp ∈ C([−ρ, 0],A).

Definition 3.2. A mild solution x∗ of system (2.1) with initial value ψ∗ is called finite-time
stable with respect to {δ, ε, T}, here 0 < δ < ε and T > 0, if every mild solution x of system
(2.1) with initial value ψ satisfies that if ‖ψ − ψ∗‖ ≤ δ, then, for t ∈ [0, T ],

‖x(t)− x∗(t)‖An ≤ ε,

where ‖ψ − ψ∗‖ρ = sup
t∈[−ρ,0]

‖ψ(t)− ψ∗(t)‖An.

Theorem 3.2. Assume (S1)-(S3) hold. If

δEα
(
MTα

)
≤ ε, (3.4)

where M = max
1≤p≤n

{Dp} and Eα(·) is the Mittag-Leffler function of one parameter, then system

(2.1) possesses exactly one pseudo almost periodic mild solution that is finite-time stable with
respect to {δ, ε, T}.

Proof. Denote by x∗ the pseudo almost periodic mild solution of system (2.1) with initial
value ψ∗ and let x be any mild solution to system (2.1) with initial value ψ. Set z = x− x∗,
invoking (3.1), one gets

zp(t) =Up(t)(ψp(0)− ψ∗p(0)) +

∫ t

0

(t− s)α−1ϕp(t− s)
[ n∑
q=1

apq(s)

×
(
fq(xq(s− τpq(s)))− fq(x∗q(s− τpq(s))

)
+

n∑
q=1

n∑
l=1

bpql(s)
(
gq(xq(s− σpql(s)))

× gl(xl(s− νpql(s)))− gq(x∗q(s− σpql(s)))gl(x∗l (s− νpql(s)))
)]
ds, t ≥ 0

and

|Up(t)(ψp(0)− ψ∗p(0))|A ≤
∫ +∞

0

%α(γ)e−a
−
p (t)αγdγ|ψp(0)− ψ∗p(0)|A

≤
∫ +∞

0

%α(γ)dγ|ψp − ψ∗p|A

≤|ψp − ψ∗p|A.
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Denote λ(t) = max
1≤p≤n

sup
s∈[−ρ,t]

|zp(s)|A, then for t ∈ [0, T ] and p = 1, 2, . . . , n, we find

|zp(t)|A ≤‖ψ − ψ∗‖ρ +

∫ t

0

(t− s)α−1ϕp(t− s)
[ n∑
q=1

âpqL
f
q

+
n∑
q=1

n∑
l=1

b̂pql

(
M g

l L
g
q +M g

qL
g
l

)]
λ(s)ds

≤‖ψ − ψ∗‖ρ +M

∫ t

0

(t− s)α−1α
∫ +∞

0

γ%α(γ)e−ap(t−s)
αγdγλ(s)ds

≤‖ψ − ψ∗‖ρ +
αM

Γ(α + 1)

∫ t

0

(t− s)α−1λ(s)ds

≤‖ψ − ψ∗‖ρ +
M

Γ(α)

∫ t

0

(t− s)α−1λ(s)ds,

which combined with the fact that |zp(s)|A ≤ ‖ψ − ψ∗‖ρ for s ∈ [−ρ, 0] yields

λ(t) ≤ ‖ψ − ψ∗‖ρ +
M

Γ(α)

∫ t

0

(t− s)α−1λ(s)ds,

for t ∈ [0, T ] and p = 1, 2, . . . , n.
Further, invoking Corollary 2 in [43], we infer that

λ(t) ≤ ‖ψ − ψ∗‖ρEα(Mtα), t ∈ [0, T ].

Since the function Eα(θ) is nondecreasing for θ ∈ R+, we conclude that

|zp(t)|A ≤ λ(t) ≤ ‖ψ − ψ∗‖ρEα(MTα), t ∈ [0, T ].

By (3.4), for all t ∈ [0, T ], one has

‖x(t)− x∗(t)‖ < ε,

which gives the conclusion of the theorem. The proof is complete.

4 An example

Our example is as follows.

Example 4.1. In system (2.1), take n = m = 2, and for p = 1, 2, let

xp(t) = e0x
0
p(t) + e1x

1
p(t) + e2x

2
p(t) + e12x

12
p (t) ∈ A, a1 = 12, a2 = 8,
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a11(t) = a12(t) = e0
1

80
cos t+ e2

1

80
sin t,

a21(t) = a22(t) = e0
3

400
sin t+ e1

1

80
cos t+ e2

1

80
sin t+ e12

3

400
cos t,

b111(t) = b112(t) = b121(t) = b122(t) = e0
1

100
+ e2

7

400
sin t+ e12

7

400
cos t,

b211(t) = b212(t) = b221(t) = b222(t) = e0
1

80
+ e1

3

200
cos
√

2t+ e2
3

200
sin
√

2t,

fp(x) = e00.5 sinx0 + e10.5 sinx1 + e10.5 sinx2 + e120.5 sinx12,

gp(x) = e0
1

3
| sinx0|+ e1

1

4
| sinx1|+ e2

1

5
| sinx2|+ e12

1

6
| sinx12|,

τpq(t) = 0.1 sin 3t+ 0.3, σpql(t) = 0.1 sin2 t, νpql(t) = 0.3 sin 3t+ 0.5,

Ip(t) = e0
√

20.01 cos
√

5t+ e12
√

20.01 sin
√

5t+
1

1 + t2
.

It is easy to get that

Lfq = 0.5, Lgq =
1

3
, M f

q = 1, M g
q = 0.5, â11 = â12 = 0.0125, â21 = â22 = 0.0146,

b̂111 = b̂112 = b̂121 = b̂122 = 0.0216, b̂211 = b̂212 = b̂221 = b̂222 = 0.0195, Î1 = Î2 = 4.5837.

Let r = 10, δ = 0.1, ε = 0.5, t0 = 0. Choose α = 0.3, 0.5 and 0.7, T = 10, one has

max
1≤p≤2

{
Cp
ap

+
Îp
ap

}
= 0.6075 < 10 = r, ξ = max

1≤p≤2

{
Dp

ap

}
= 0.0051 < 1, M = max

1≤p≤2
Dp = 0.0406.

Using the MATLAB program, to compute the Mittag-Leffler function, we obtain

E0.3(MT 0.3) = E0.3(0.081) ≈ 1.0982,

E0.5(MT 0.5) = E0.5(0.1284) ≈ 1.1631,

E0.7(MT 0.7) = E0.7(0.2035) ≈ 1.2615,

then

δE0.3(MT 0.3) = 0.10982 < ε, δE0.5(MT 0.5) = 0.11631 < ε, δE0.7(MT 0.7) = 0.12615 < ε.

Therefore, according to Theorem 3.2, system (2.1) possesses a unique pseudo almost peri-
odic mild solution, which is finite-time stable (see Figures 1-9).

Remark 4.1. Figures 1-3 show that when α = 0.3, 0.5 and 0.7, each state variable of system
(2.1) exhibits almost periodic oscillations over time. Figures 4-9 show that when α = 0.3, 0.5
and 0.7, the same state variable with different initial values of system (2.1) exhibits finite time
stability over time.

Remark 4.2. The results of Example 4.1 can not be obtained by Refs. [24,25] and any other
known results.
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Figure 1: Curves of xl1(t) and xl2(t) of system (2.1) for α = 0.3, l = 0, 1, 2, 12.
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Figure 2: Curves of xl1(t) and xl2(t) of system (2.1) for α = 0.5, l = 0, 1, 2, 12.
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Figure 3: Curves of xl1(t) and xl2(t) of system (2.1) for α = 0.7, l = 0, 1, 2, 12.
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1
2(t), x

2
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Figure 9: Finite-time stability of x02(t), x

1
2(t), x

2
2(t) and x122 (t) of system (2.1) for α = 0.7.

5 Conclusions

In this paper, we have obtained the existence and finite-time stability of the pseudo al-
most periodic mild solutions of FCHHNN (2.1). This is the first article to investigate the
almost periodic mild solutions of fractional-order Clifford-valued differential equations via di-
rect approach. The results and methods of this paper are new. And the methods used in this
paper can be applied to study the existence of almost periodic or almost automorphic mild
solutions to other types of fractional-order neural networks. The research on almost periodic
synchronization and almost automorphic synchronization of fractional-order complex neural
network systems is our future direction.

Abbreviations

FCHHNN fractional-order Clifford-valued high-order Hopfield neural network
CVNN Clifford valued neural network
HHNN high-order Hopfield neural network
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