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Abstract

We study the monotonicity of the ratios of two Abelian integrals
∮
γi(h) ydx \

∮
γi(h) xydx over

three period annuli {γi(h)}, for i = 1, 2, 3, defined by a seventh-degree hyperelliptic Hamiltonian
H(x, y) = y2 + Ψ(x) with a parameter. The parameter makes the problem more challenging to
analyze. To overcome the difficulty, we apply some criterion with the help of transformations,
tools in computer algebra such as boundary polynomial theory to determine the monotonicity
of the ratios. Our results establish the existence and uniqueness of limit cycle bifurcated from
each period annulus.
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1. Introduction and main description

A weak version of Hilbert’s 16th problem [1] asks for the maximal number of zeros of the
Abelian integral

I(h) =

∮
Γh

f(x, y)dx+ g(x, y)dy, h ∈ J,

along the closed curves Γh = {(x, y) : H(x, y) = h, h ∈ J}, where H(x, y), f(x, y) and g(x, y)
are polynomials, satisfying deg(H) = n + 1, max{deg f, deg g} = m. The weak version of the
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problem is still difficult. It has only been completely solved for n = 2. There are at most
two zeros of the corresponding Abelian integral for the generic quadratic Hamiltonian system,
and at most one zero for the degenerate quadratic Hamiltonian systems. When considering
f(x, y) = (a0 +a1x)y, g(x, y) = 0 and H(x, y) = y2 +Pn+1(x), where Pn+1(x) is a n+1th degree
polynomial, I(h) has a simper form

I(h) = a0

∮
Γh

ydx+ a1

∮
Γh

xydx
.
= a0I0(h) + a1I(h), h ∈ J. (1)

In this setting, I0(h) =
∮

Γh
ydx =

∮
Γh
dxdy > 0 by Green formula, and then the ratio is well

defined

r(h) =
I1(h)

I0(h)
. (2)

When r(h) is monotone, then we can claim that I(h) has at most one zero, and any zero can
be reached at h = h∗ by taking a0 = −r(h∗)a1. Therefore, studying the monotonicity of the
ratios of two Abelian integral is a much simper version of weak Hilbert’s problem, it has been
considered in a series papers [2, 3, 4, 5, 6]. We note that the monotonicity of the ratios of two
Abelian integrals has intensive application. It is an important topic for studying the existence
of periodic traveling waves [7, 8] and some reaction diffusion models with memory effect [10].
In addition, the monotonicity determines the number of negative eigenvalues when studying the
spectral stability of the periodic waves [11]. Applying the monotonicity criterion for studying the
spectral stability would be much more interesting for the periodic traveling waves in nonlinear
dispersion drinfel’d-sokolov D(m,n) system [12] and periodic ultra waves for in nanoscale optics
[13].

The study on the monotonicity of r(h) appeared in BT bifurcation study when determining
the limit cycle that emerges from a singularity and die in a homoclinic loop bifurcation, and
for studying weak Hilbert’s problem on degenerate quadratic Hamiltonian system perturbed by
quadratic polynomials [14]. Later, Li and Zhang [2] proposed a monotonicity criterion for the
ratio of two general Abelian integrals. Li-Zhang criterion has been successfully applied for ratios
of two Abelian integrals when studying three-dimensional linear space of three integrals by a
geometric method [15, 16, 17, 18]. This criterion has been generalized for studying Abelian inte-
grals with more generating elements [20]. Two improved criteria were proposed by Liu and Xiao
in [3] and [4], which has simper from and is convenient to use. Using those criteria combined
some skill analysis, the monotonicity of r(h) has been studied for quartic hyperelliptic Hamilto-
nian system [19], quintic hyperelliptic Hamiltonian system [5, 6] and higher order Hamiltonian
systems [21, 22, 23, 24], as well as for exploring the existence of solitary wave solution and
coexistence periodic waves and solitary waves [7, 8]. In [21, 22], the monotonicity concerned
on the sixth order hyperelliptic Hamiltonian systems have been partially determined. However,
there exist some problems left.
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In this paper, we solve partially the problems left in [21, 22], studying the monotonicity of r(h)
for sixth order hyperelliptic Hamiltonian systems by applying some new techniques including
polynomial boundary theory and bounding the possible roots on a cubic set. In detail, we study
r(h) on the Hamiltonian

H(x, y) =
y2

2
+

∫
x(x− α)(x− β)(x− γ)(x− λ)(x− 1)dx,

and the Hamiltonian system{
ẋ = y,

ẏ = −x(x− α)(x− β)(x− γ)(x− λ)(x− 1).
(3)

where 0 ≤ α ≤ β ≤ γ ≤ λ ≤ 1. We take the parameters within our interest in the three items.

1. When α = β = γ = 0 and 0 < λ < 1, (1, 0) is an elementary center, (λ, 0) is a hyperelliptic
saddle and (0, 0) is a cusp of order 2; The period annulus P1, see Figure 2(a), is defined
by

{γh} = {(x, y) : H(x, y) = h, h ∈ (hc, hs)}

with

hc = − 1

42
+

1

30
λ, hs = − 1

210
λ6(5λ− 7).

2. When α = 0 and 0 < β = γ = λ < 1, (1, 0) is an elementary center, (λ, 0) is a nilpotent
saddle and (0, 0) is a cusp; The period annulus P2, see Figure 2(b), is determined by the
Hamiltonian, at the saddle and center, respectively,

hc = − 1

42
+

1

10
λ− 3

20
λ2 +

1

12
λ3, hs = − 1

420
λ6(3λ− 7).

3. When α = β = 0, 0 < γ ≤ 4
7 and λ = 1, (γ, 0) is an elementary center, (0, 0) is a nilpotent

saddle and (1, 0) is a cusp of order one; The period annulus P3, see Figure 2(c) and (d),
is determined by the Hamiltonian, at the saddle and center, respectively,

hc = − 1

420
γ5(10γ2 − 28γ + 21), hs = 0.
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(a) (b) (c) (d)

Figure 1: The level set of H(x, y) = h: (a) for α = β = γ = 0 and 0 < λ < 1; (b) α = 0 and 0 < β = γ = λ < 1;
(c) and (d) for α = β = 0, 0 < γ ≤ 4

7
and λ = 1.

Our main results on the ratio of the two Abelian integrals

R(h) =

∮
γh
xydx∮

γh
ydx

are summarized as follows:

Theorem 1.1. If α = β = γ = 0 and 0<λ<1, then R(h) is monotonic in the open interval
(hc, hs), where hc = − 1

42 + 1
30λ, hs = − 1

210λ
6(5λ− 7).

Theorem 1.2. If α = 0 and 0 <β = γ = λ <1, then R(h) is monotonic in the open interval
(hc, hs), where hc = − 1

42 + 1
10λ−

3
20λ

2 + 1
12λ

3, hs = − 1
420λ

6(3λ− 7).

Theorem 1.3. When α = β = 0 , 0 <γ ≤ 4
7 and λ = 1, then R(h) is monotonic in the open

interval (hc, hs), where hc = − 1
420γ

5(10γ2 − 28γ + 21), hs = 0.

Based on the above results, we can conclude that the perturbed Hamiltonian system{
ẋ = y,

ẏ = −x(x− α)(x− β)(x− γ)(x− λ)(x− 1) + ε(a0 + a1x)y.

with ε sufficiently small and a0 and a1 are bounded parameters, has at most one limit cycle by
Poincaré bifurcation when the parameters are located in the region stated above.

We organize the paper as follows. In Section 2, we give an introduction on polynomial
boundary theory, which will be applied to determine whether or not the related parameter-
algebraic systems have roots when the parameter is located in a certain interval. In next three
sections, we prove the above theorems by verifying that R′(h) 6= 0 in the related intervals. A
conclusion is drawn in section 6.
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2. Preliminaries

Considering a Hamiltonian
H(x, y) = y2 + Ψ(x), (4)

where Ψ(x) is analytic on some open interval (α,A). Suppose there exists a value a ∈ (α,A)
such that

Ψ
′
(x)(x− α) > 0, x ∈ (α,A)\ {α} , (5)

implying the Hamiltonian has a local minimum at (a, 0), and there exist a family of continuous
closed curves defined by {Γh} = {(x, y) : H(x, y) = h, h ∈ (h1, h2)}, where h1 = Ψ(a) and
h2 = Ψ(A) = Ψ(α). For h ∈ (h1, h2), there exist two functions µ(h) and v(h) satisfying that
Ψ(µ(h)) = Ψ(v(h)) = h with α<µ(h)<a<v(h)<A. Introducing the function

U(h) , µ(h) + v(h).

Then there exists the following criterion for determining the monotonicity of r(h).

Theorem 2.1. ([3]) Assume that H(x, y) has the form given in (4). Then r(h) is increasing
(or decreasing) in (h1, h2) when U

′
(h) > 0 (or U

′
(h) < 0) in (h1, h2).

We will apply the criterion to study our problem, however, we do not apply the method
by a straightforward analysis. We transform the criterion in an algebraic version to determine
whether the related parameter-algebraic system have roots or not. Therefore, we first give
an introduction on a method to count roots of parameter-algebraic system. Consider κ be a
field, n ordered variables x1<x2< · · ·<xn and polynomial ring R = k[x1, · · · , xn] on κ. The main
variable is represented by mvar(f), which refers to the greatest variable xi in f(x1, · · · , xi). The
leading coefficient is represented by lc(f), which refers to the coefficient of the main variable of
f .

Definition 2.1. A semi-algebraic system (SAS for short) is a conjunctive polynomial formula
of the following form

p1(x1, x2, · · · , xn) = 0, · · · , ps(x1, x2, · · · , xn) = 0,

g1(x1, x2, · · · , xn) ≥ 0, · · · , gr(x1, x2, · · · , xn) ≥ 0,

gr+1(x1, x2, · · · , xn)>0, · · · , gt(x1, x2, · · · , xn)>0,

h1(x1, x2, · · · , xn) 6= 0, · · · , hm(x1, x2, · · · , xn) 6= 0,

where n, s ≥ 1, t ≥ r ≥ 0,m ≥ 0, all pi, gi, hi ∈ R(u, x) are polynomials with integer coefficients.
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An SAS is expressed as [F,N, P,H], and F = [p1, · · · , ps], N = [g1, · · · , gr], P = [gr+1, · · · , gt],
H = [h1, · · · , hm]. It is known as a parametric SAS if s<n (where the first s xis are variables
and the last n− s ones are parameters). One method for counting the roots of parameter-semi-
algebraic system is to triangulate SAS into one or more TSAs: T1, · · · , TL,

TSA, Tj :


f j1 (u, x1) = 0, f j2 (u, x1, x2) = 0, · · · , f js (x1, · · · , xs) = 0,

g1(x1, x2, · · · , xn) ≥ 0, · · · , gr(x1, x2, · · · , xn) ≥ 0,

gr+1(x1, x2, · · · , xn)>0, · · · , gt(x1, x2, · · · , xn)>0,

h1(x1, x2, · · · , xn) 6= 0, · · · , hm(x1, x2, · · · , xn) 6= 0,

where
{
f j1 , f

j
2 , · · · , f

j
s

}
represents a triangular set, or a normal ascending chain. Let dis(fi, xi)

represents the discriminant of the polynomial fi with respect to xi, res(·,∗,xj) represents the
Sylvester resultant between · and ∗ with respect to xj , and gcd(f1, · · · , fs) denotes the greatest
common factor of f1, · · · , fs.

Definition 2.2. For a parametric TSA T, we define

BTj =lc(f1, x1) · dis(f1, x1)·
Π2≤i≤sres(lc(fi, xi) · dis(fi, xi); fi−1, · · · , f1)·
Π1≤j≤tres(gj ; fs, · · · , f1)·
Π1≤k≤mres(hk; fs, · · · , f1),

the above equation is the boundary polynomial of TSA.

For parametric semi-lgebraic systems TSA: Tj and Tj̃ , we introduce the notations:

rjj̃i = gcd(res(f ji ; f j̃i , f
j̃
i−1, · · · , f

j̃
1 ), res(f j̃i ; f ji , f

j
i−1, · · · , f

j
1 )), 1 ≤ i ≤ s,

Cjj̃ = gcd(rjj̃i , · · · , r
jj̃
s ).

Definition 2.3. If a parametric semi-algebraic system S is equivalentally transformed to a
regular TSAs {T1, T2, · · · , Tl}, then

Bs = Π1≤j≤j̃≤lCjj̃ ·Π1≤j≤lBTj

is called the boundary polynomial of SAS.

Lemma 2.1. ([25, 26]) The number of distinct real solutions of the semi-algebraic system S is
invariant in each connected component of the complement of BS = 0 in Rn−s.
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Remark 2.1. When the parameters are located in the boundary set of Bs = 0, i.e. the zero set
of Bs, we need have a further analysis.

In the next three sections, we mainly apply these methodologies combined with other tech-
niques to prove our results.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Taking α = β = γ = 0 and 0<λ<1, system (3) becomes{
ẋ = y,

ẏ = −x4(x− λ)(x− 1),
(6)

which has a Hamiltonian function

H1(x, y) =
1

2
y2 +

1

5
λx5 − 1

6
(1 + λ)x6 +

1

7
x7.

The ovals γ1(h) surrounds the center (1, 0). We take a transform x = x̃+ 1, y = y to move the
center to the origin without any other change of the period annulus P1 and ovals γ1(h), and the
outer boundary is homoclinic to a saddle (−a, 0). Then system (6) becomes{

ẋ = y,

ẏ = −x(x+ 1)4(x+ a),
(7)

where a = 1− λ, and the related Hamiltonian has the form

H1(x, y) = hc +
1

2
y2 +

1

2
ax2 +

1

3
(1 + 4a)x3 +

1

4
(4 + 6a)x4 +

1

5
(6 + 4a)x5 +

1

6
(4 + a)x6 +

1

7
x7.

And the Abelian integrals I0(h) and I1(h) have new expressions

I0(h) =

∮
γ1(h)

ydx =

∮
γ1(h)

ydx̃ , I01(h),

I1(h) =

∮
γ1(h)

xydx =

∮
γ1(h)

(x̃+ 1)ydx̃
.
= I01(h) + I11(h).

Then we need only prove I11(h)
I01(h) is monotonic in the interval (hc, hs) to prove Theorem 1.1.

Introducing

Ψ1(x) =
1

2
ax2 +

1

3
(1 + 4a)x3 +

1

4
(4 + 6a)x4 +

1

5
(6 + 4a)x5 +

1

6
(4 + a)x6 +

1

7
x7,
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and the notations for the involutions x(h) and z1(x), satisfying

Ψ1(x(h)) = Ψ1(z1(h)) = h, −a<x(h) < 0<z1(h)<κa,

where Ψ1(−a) = Ψ1(κa). Introducing

U1(h) = x(h) + z1(h),

we need only prove U ′1(h) 6= 0 when the parameter a ∈ (0, 1) by Theorem 2.1. Since Φ1(z1(h)) =
h and Φ

′
1(z1(h)) > 0, then z

′
1(h) > 0 in (hc, hs). Thus, z1(h) has an inverse function in the form

of h = h−1(z1), which is substituted into x(h) to get x(h) = x(z1(h)), where x(z1) is defined by
φ(x)− φ(z1) = 0, and implicitly defined by

q(z1, x, a) =− 30x6 + (−35a− 140− 30z1)x5 + (−30z2
1 + (−35a− 140)z1 − 168a− 252)x4

+ (−30z3
1 + (−35a− 140)z2

1 + (−168a− 252)z1 − 315a− 210)x3 + (−30z4
1 + (

− 35a− 140)z3
1 + (−168a− 252)z2

1 + (−315a− 210)z1 − 280a− 70)x2(−30z5
1

+ (−35a− 140)z4
1 + (−168a− 252)z3

1 + (−315a− 210)z2
1 + (−280a− 70)z1

− 105a)x− 30z6
1 + (−35a− 140)z5

1 + (−168a− 252)z4
1 + (−315a− 210)z3

1

+ (−280a− 70)z2
1 − 105az1.

We know that z1(x) is implicitly defined by q(z1, x, a). Therefore

U ′1(h) =
( dx
dz1

+ 1
)
x′(h) =

(
− qx
qz1

+ 1
)
x′(h) = −2(x− z1)

U11(z1, x, a)

U12(z1, x, a)
x′(h),

where

U11(z1, x, a) =70ax3 + 105ax2z1 + 105axz2
1 + 70az3

1 + 75x4 + 120x3z1 + 135x2z2
1 + 120xz3

1

+ 75z4
1 + 252ax2 + 336axz1 + 252az2

1 + 280x3 + 420x2z1 + 420xz2
1 + 280z3

1

+ 315ax+ 315az1 + 378x2 + 378z2
1 + 504xz1 + 140a+ 210x+ 210z1 + 35,

U12(z1, x, a) =35ax4 + 70ax3z1 + 105ax2z2
1 + 140axz3

1 + 175az4
1 + 30x5 + 60x4z1 + 90x3z2

1

+ 120x2z3
1 + 150xz4

1 + 180z5
1 + 168ax3 + 336ax2z1 + 504axz2

1 + 672az3
1

+ 140x4 + 280x3z1 + 420x2z2
1 + 560xz3

1 + 700z4
1 + 315ax2 + 630axz1

+ 945az2
1 + 252x3 + 504x2z1 + 756xz2

1 + 1008z3
1 + 280ax+ 560az1

+ 210x2 + 420xz1 + 630z2
1 + 105a+ 70x+ 140z1.
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It is sufficient to prove that U1i(z1, x, λ) 6= 0 on D when i = 1, 2, where

D = {(z1, x, a)| − a<x<0<z1<κa, 0<a<1} .

First, we get the resultant between U12(z1, x, a) and q(z1, x, a) with respect to x,

r0(z1) = −297730962900000000000z1
5 (z1 + 1)20 (z1 + a)5 .

Obviously, r0(z1) has no zero in the interval (0, κa). So U12(z1, x, a) and q(z1, x, a) have no
common roots on D, which means U12(z1, x, a) 6= 0 on D and the ratio U11

U12
is well defined.

Similarly, we can calculate the resultant of U11(z1, x, a) and q(z1, x, a) with respect to x and
z1, respectively, we obtain

R1(z1, a) = g(z1, a), R2(x, a) = g(x, a), (8)

where g(w, a) is a polynomial with a little long expression

g(w, a) = 121550625(w+1)8(112546875 a8w8+321562500 a7w9+493062500 a6w10+· · ·+19600).

Taking x = − a
1+t and a = 1

5(1+s) with t, s > 0, then a ∈ (0, 1
5), and g(x, a) has the form

g(x, a) =
194481(5st+ 5s+ 5t+ 4)8

6103515625(1 + t)24(1 + s)24
g∗(t, s),

where all coefficients of g∗(t, s) are greater than zero, and g̃∗(t, 0) > 0, we here include a = 1
5 ,

similar problems in other systems, g∗(0, 0) = 0. Hence, g∗(t, s)>0 for t > 0, s > 0, implying that
the resultant g(x, a) does not vanish for x ∈ (−a, 0). Therefore, U11(z1, x, a) and q(z1, x, a) have
no common roots on D1, where

D1 =

{
(z1, x, a)| − a<x<0<z1<κa, 0<a ≤

1

5

}
.

Hence, U11(z1, x, a) 6= 0 on D1. We can claim the result given below.

Proposition 3.1. I11(h)
I01(h) is monotonic in (hc, hs) when a ∈ (0, 1

5 ].

Next, we study the algebraic problem on the region

D \D1 =

{
(z1, x, a)| − a<x<0<z1<κa,

1

5
<a<1

}
,
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on which the methodology above deficits. We construct a semi-algebraic system,

SA :

{
q1(z1, x, a) = 0, q1(a, κ, a) = 0, U11(z1, x, a) = 0,

z1>0, x>0, x+ a>0, κ− z1>0, κ>0.
(9)

We compute the boundary polynomials with the help of Maple software (2021),

BSA
=a×

(
a− 1

)(
a− 2

7

)(
a− 1

5

)(
a+

1

4

)(
a+

2

5

)(
a4 − 28

5
a3 +

63

5
a2 − 14a+ 7

)
×(

a6 − 732

625
a5 +

117228

153125
a4 +

597248

765625
a3 − 238944

765625
a2 − 71616

765625
a+

23872

765625

)
×G1(a)×G2(a),

where G1(a) and G2(a) are polynomials in a with degree 18 and 44, respectively. BSA
= 0 has

two zeros a∗1 = 2
7 and a∗2 = 0.36172 · · · in (1

5 , 1), where a∗2 is the root of G1(a). The degenerate
point in BSA

a∗1 and a∗2 divide (1
5 , 1) into five sets(

1

5
, a∗1

)
∪ {a∗1} ∪ (a∗1, a

∗
2) ∪ {a∗2} ∪ (a∗2, 1).

Correspondingly, we have five regions

D2 =
{

(z1, x, a)| − a<x<0<z1<κa,
1
5 < a < a∗1

}
,

D3 =
{

(z1, x, a)| − a<x<0<z1<κa, a = a∗1 = 2
7

}
,

D4 = {(z1, x, a)| − a<x<0<z1<κa, a
∗
1<a<a

∗
2} ,

D5 = {(z1, x, a)| − a<x<0<z1<κa, a = a∗2} ,

D6 = {(z1, x, a)| − a<x<0<z1<κa, a
∗
2<a<1} .

By applying Theorem 2.1, the number of roots of SAS (9) is invariant in each D2, D4 and D6.
We can choose any sample point in each interval (1

5 ,
2
7), (2

7 , a
∗
2) and (a∗2, 1) to determine the

number of roots of (9), and obtain that, there exist no root of (9) on D2, D3, D4 and D6 (where
we take a = 2

7 for D3). Hence, we claim that

Proposition 3.2. I11(h)
I01(h) is monotonic when a ∈

(
1
5 , a
∗
1

)
∪ {a∗1} ∪ (a∗1, a

∗
2) ∪ (a∗2, 1).

Proof. We only prove the case when a ∈ (1
5 ,

2
7), and other cases can be proved similarly. We fix

a value of a in (1
5 ,

2
7) to investigate whether U11(z1, x, a) and q(z1, x, a) have common roots on

10



D2. Take a = 3
14 ∈ (1

5 ,
2
7) and substitute it into (8) yields

R1

(
z1,

3

14

)
=121550625

(
z1 + 1

)8(
182250000z16

1 +
11299500000

7
z15

1 +
313743375000

49
z14

1

+
5115120046875

343
z13

1 +
215670583546875

9604
z12

1 +
435693574265625

19208
z11

1

+
84787385421875

5488
z10

1 +
1279390596046875

76832
z9

1 +
66027538509375

153664
z7

1

+
41092975003875

614656
z6

1 +
104159365125

38416
z5

1 −
240012697607

307328
z4

1 +
18025490111

153664
z3

1

+
4735667889

614656
z2

1 −
56502745

76832
z1 +

56502745

614656

)
.

By applying Sturm’s Theorem, we know that R1

(
z1,

3
14

)
6= 0 in the interval z1 ∈ (0, 1), while

κa = κ 3
14
∈
[ 83845

1048576
,

41923

524288

]
≈
[
0.07996082306, 0.07996177673

]
⊂ (0, 1),

so R1

(
z1,

3
14

)
6= 0 in the interval

(
0, κ 3

14

)
. This implies that U11(z1, x,

3
14) and q(z1, x,

3
14) have

no common zero. Therefore, U11(z1, x, a) and q(z1, x, a) have no root on D2 by Theorem 2.1, so
U11(z1, x, a) 6= 0 when a is located in (1

5 ,
2
7). This completes the proof.

The remainder of this part is to investigate whether U11(z1, x, a) 6= 0 on D5, where by taking
a = a∗2. As a∗2 is the root of G1(a) given by below in boundary polynomial sets BSA

,

G1(a) =a18 − 78

5
a17 +

145740264603

1290427321
a16 − 16250513677416

32260683025
a15 +

49984100828991

32260683025
a14

− 112334770109478

32260683025
a13 +

951760584025461

161303415125
a12 − 154457666571279156

20162926890625
a11

+
773677792766606148

100814634453125
a10 − 3001540898662649152

504073172265625
a9 +

45360914633493055872

12601829306640625
a8

− 107632344261462470016

63009146533203125
a7 +

7819125046431334272

12601829306640625
a6 − 1782203864297278464

12601829306640625
a5

+
20881191445320192

12601829306640625
a4 +

135839936479629312

12601829306640625
a3 − 218084523882000384

63009146533203125
a2

+
3108111445008384

12601829306640625
a− 339339524722688

12601829306640625
,

and we have a∗2 ∈
[

11853
32768 ,

94825
262144

]
by real root isolation. We calculate the resultant with respect

to a between R1 and G1(a), then calculate the resultant with respect to a between R2 and G(a).
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By applying Sturm’s Theorem to res(R1, G1, a) and res(R2, G1, a), res(R1, G1, a) has a unique

root z∗1 ∈
[

61923
1048576 ,

123847
2097152

]
, and res(R2, G1, a) = 0 has two roots x∗ ∈

[
− 15621

131072 ,−
124967
1048576

]
,

x† ∈
[
− 124047

2097152 ,−
62023

1048576

]
. Thus, if U11(z1, x, a) and q1(z1, x, a) have common roots for

−a<x<0<z1<κa∗2 , then the common roots must be located on the following two regions:

C1 :
[ 61923

1048576
,

123847

2097152

]
×
[
− 15621

131072
,− 124967

1048576

]
×
[11853

32768
,

94825

262144

]
,

C2 :
[ 61923

1048576
,

123847

2097152

]
×
[
− 124047

2097152
,− 62023

1048576

]
×
[11853

32768
,

94825

262144

]
.

Now we prove that q(z1, x, a) has no zeros on the above two cubes. We apply tools in
polynomial optimization to compute the maximum and the minimum values of q(z1, x, a) on each
region C1 and C2, and obtain that the maximum q(z1, x, a) = 506705863123399793625830275060473279

664613997892457936451903530140172288
and minimum q(z1, x, a) = 32427092325507024386448813961220173195

42535295865117307932921825928971026432 of C1 are all positive. Therefore,
we have no root of q(z1, x, a), and U11(z1, x, a) and q(z1, x, a) have no common roots on C1

and C2. Hence, U11(z1, x, a) 6= 0 on D5. We note that the tools Maximize and Minimize in
polynomial optimization package get exact values at the vertices, therefore, the algorithm is
accurate even though it is based on numerical analysis, as there are no critical points in the
two cubes. We can also use a standard analysis to prove q(z1, x, a) 6= 0, which will be given in
Appendix A. We can now claim that

Proposition 3.3. I11(h)
I01(h) is monotonic when a = a∗2.

Combining Proposition 3.1, 3.2 and 3.3 proves Theorem 1.1.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Taking α = 0 and 0<β = λ = γ<1, system (3)
becomes {

ẋ = y,

ẏ = −x2(x− λ)3(x− 1),
(10)

which has a Hamiltonian function

H2(x, y) =
1

2
y2 +

1

3
λ3x3 − 1

4

(
λ3 + 3λ2

)
x4 +

1

5

(
3λ2 + 3λ

)
x5 − 1

6
(1 + 3λ)x6 +

1

7
x7.

The ovals γ2(h) surrounds the center (1, 0). We move the center (1, 0) to the origin (0, 0) and
take a flip with respect to y−axis, x = −x̃+ 1. Then the system (10) becomes by dropping the

12



tilde, {
ẋ = y,

ẏ = x(−x+ 1)2(x− b)3,
(11)

where b = 1− λ ∈ (0, 1), and the associated Hamiltonian has the form

H2(x, y) =
1

2
y2 + Ψ2(x)

with

Ψ2(x) = hc +
1

2
b3x2− 1

3

(
2b3 + 3b2

)
x3 +

1

4

(
b3 + 6a2 + 3b

)
x4− 1

5

(
3b2 + 6b+ 1

)
x5 +

1

6
(2 + 3b)x6− 1

7
x7.

The ovals γ2(h) surrounds the elementary center (0, 0). And the Abelian integrals I0(h) and
I1(h) have new expressions

I0(h) =

∮
γ2(h)

ydx =

∮
γ2(h)

ydx̃ , I02(h),

I1(h) =

∮
γ2(h)

xydx =

∮
γ2(h)

(−x̃+ 1)ydx̃
.
= −I02(h) + I12(h).

Then we need only prove I12(h)
I02(h) is monotonic in the interval (hc, hs) to prove Theorem 1.2.

Similar to above analysis, there exist a pair of analytic involutions x(h) and z2(h) defined by

Ψ2(x(h)) = Ψ2(z2(h)) = h, κb<x(h)<0<z2(h)<b,

where Ψ2(κb) = Ψ2(b), they are implicitly determined by

q̃(z2, x, b) =60x6 + (−210b+ 60z2 − 140)x5 + · · · − 105z2(−4z5
2

7
+

1

3
(6b+ 4)z4

2

+
1

5
(−12b2 − 24b− 4)z3

2 + (b3 + 6b2 + 3b)z2
2 +

1

3
(−8b3 − 12b2)z2 + 2b3).

Introducing
U2(h) = x(h) + z2(h),

we have

U ′2(h) =
(dz2

dx
+ 1
)
x′(h) =

(
− q̃x
q̃z2

+ 1
)
x′(h) = 2(z2 − x)

U21(z2, x, b)

U22(z2, x, b)
x′(h),

13



where

U21(z2, x, b) =105b3x+ 105b3z2 − 378b2x2 +−504b2xz2 − 378b2z2
2 + 420bx3 + 630bx2z2 + 630bxz2

2

+ 420bz3
2 − 150x4 − 240x3z2 − 270x2z2

2 − 240xz3
2 − 150z4

2 − 140b3 + 630b2x+ 630b2z2

− 756bx2 − 1008bxz2 − 756bz2
2 + 280x3 + 420x2z2 + 420xz2

2 + 280z3
2 − 210b2 + 315bx

+ 315bz2 − 126x2 − 168xz2 − 126z2
2 ,

U22(z2, x, b) =105b3x2 + 210b3xz2 + 315b3z2
2 +−252b2x3 − 504b2x2z2 − 756b2xz2

2 − 1008b2z3
2

+ 210bx4 + 420bx3z2 + 630bx2z2
2 + 840bxz3

2 + 1050bz4
2 − 60x5 − 120x4z2 − 180x3z2

2

− 240x2z3
2 − 300xz4

2 − 360z5
2 − 280b3x− 560b3z2 + 630b2x2 + 1260b2xz2 + 1890b2z2

2

− 504bx3 + 210b3 − 1008bx2z2 − 1512bxz2
2 − 2016bz3

2 + 140x4 + 280x3z2 + 420x2z2
2

+ 560xz3
2 + 700z4

2 − 420b2x− 840b2z2 + 315bx2 + 630bxz2 + 945bz2
2 − 84x3

− 168x2z2 − 252xz2
2 − 336z3

2 .

It is sufficient to prove U2i(z2, x, b) 6= 0 on D̃ when i = 1, 2, where

D̃ = {(z2, x, b)|κb<x<0<z2<b, 0<b < 1} .

First, we get the resultant between U22(z2, x, b) and q̃(z2, x, b) with respect to x,

r0(z2) = −609753012019200000000000z2
5 (z2 − 1)10 (b− z2)15 .

Obviously, r0(z2) has no zero in the interval (0, b). So U22(z2, x, b) and q̃(z2, x, b) have no common
roots on D̃, which means U22(z2, x, b) 6= 0 on D̃ and the ratio U21

U22
is well defined.

Similarly, we can calculate the resultant of U21(z2, x, b) and q̃(z2, x, b) with respect to x and
z2, respectively, we obtain

R̃1(z2, b) = g̃(z2, b), R̃2(x, b) = g̃(x, b), (12)

where g̃(w, b) is a polynomial with a little long expression

g̃(w, b) = 3889620000(b−w)4(18753525 b16w4+30005640 b15w5+119951118 b14w6+· · ·+99574272w4).

Taking z2 = b
1+t and b = 1

3(1+s) with t, s > 0, ensuring b ∈ (0, 1
3) and z2 ∈ (0, b), and we have

the form,

R̃1(z2, b) =
1

4782969(1 + s)24(1 + t)24
g̃∗(t, s),

where all coefficients of g̃∗(t, s) are greater than zero, and g̃∗(t, 0) > 0, we here include b = 1
3 ,

similar problems in other systems, g̃∗(0, 0) = 0. Hence, g̃∗(t, s)>0 for t > 0, s > 0, implying
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that the resultant R̃1(z2, b) does not vanish for z2 ∈ (0, b). Therefore, U21(z2, x, b) and q̃(z2, x, b)
have no common roots on D̃1, where

D̃1 =

{
(z2, x, b)|κb<x<0<z2<b, 0<b ≤

1

3

}
.

Hence, U21(z2, x, b) 6= 0 on D̃1, we can claim the result given below.

Proposition 4.1. I12(h)
I02(h) is monotonic in (hc, hs) when b ∈ (0, 1

3 ].

Next, we study the algebraic problem on the region

D̃ \ D̃1 =

{
(z2, x, b)|κb<x<0<z2<b,

1

3
<b<1

}
,

on which the methodology above deficits. We construct a semi-algebraic system,

S̃A :

{
q̃(z2, x, b) = 0, q̃(b, κb, b) = 0, U21(z2, x, b) = 0,

z2>0, −x>0, b− z2>0, x− κb>0, −κb>0.
(13)

We compute the boundary polynomials with the help of Maple software (2021),

B̃S̃A
=b×

(
b− 1

)
×
(
b− 1

3

)
×
(
b+

3

2

)
×
(
b+

4

3

)
×
(
b2 − 14

3
b+ 7

)
×
(
b3 − 6

5
b2 +

3

5
b− 4

35

)
×(

b9 − 10b8 +
904

21
b7 − 130916

1323
b6 +

166256

1323
b5 − 325288

3969
b4 +

14720

567
b3 − 32624

5103
b2 +

5968

2187
b

− 23872

19683

)
×
(
b9 − 5b8 +

3366028

382107
b7 +

1007656

382107
b6 − 22502048

1146321
b5 +

267457472

10316889
b4

− 1657174400

567
b3 +

697125632

92852001
b2 − 507179008

278556003
b+

18113536

92852001

)
× G̃(b),

where G̃(b) is a polynomial in b of degree 74. B̃S̃A
= 0 has a zero b∗ = 0.4189 · · · in (1

3 , 1), where

b∗ is the root of
(
b3 − 6

5b
2 + 3

5b−
4
35

)
. The degenerate point b∗ divides (1

3 , 1) into three sets

(
1

3
, b∗) ∪ {b∗} ∪ (b∗, 1).

Correspondingly, we have three regions
D̃2 =

{
(z2, x, b)|κb<x<0<z2<b,

1
3 < b < b∗

}
,

D̃3 = {(z2, x, b)|κb<x<0<z2<b, b = b∗} ,

D̃4 = {(z2, x, b)|κb<x<0<z2<b, b
∗<b<1} .
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By applying Theorem 2.1, the number of roots of SAS (13) is invariant in each D̃2 and D̃4. We
can choose any sample point in each interval (1

3 , b
∗) and (b∗, 1) to determine the number of roots

of (13), and obtain that, there exist no root of (13) on D̃2 and D̃4. Hence, we claim that

Proposition 4.2. I12(h)
I02(h) is monotonic when b ∈ (1

3 , b
∗) ∪ (b∗, 1).

Proof. We only prove the case when b ∈ (1
3 , b
∗), and the other case can be proved similarly. We

fix a value of b in (1
3 , b
∗) to investigate whether U21(z1, x, b) and q̃(z2, x, b) have common roots

on D̃2. Take b = 4
10 ∈ (1

3 , b
∗) and substitute it into (12) yields

R̃2

(
x,

4

10

)
=3889620000(

2

5
− x)4(5382000000 x20 − 65318400000 x19 + 338722560000 x18

− 1079362368000x17 + 2365469568000x16 − 3780692858880x15 + 4558780930816x14

− 4229357511680x13 + 3047887376128x12 − 1067078495254912

625
x11

+
57546797138631808

78125
x10 − 93442558322608768

390625
x9 +

13624194872004991008

244140625
x8

− 10319709812193624192

1220703125
x7 +

3769156189960936512

6103515625
x6 +

72765292363801856

6103515625
x5

− 8354072519376832

6103515625
x4 − 3926231230668544

6103515625
x3 − 19732202973056

6103515625
x2 +

1065204839552

1220703125
x

+
532602419776

6103515625
).

By applying Sturm’s Theorem, we know that R̃2

(
x, 4

10

)
6= 0 in the interval x ∈ (−1, 0), while

κb = κ 4
10
∈
[
− 44511

524288
,− 89021

1048576

]
≈
[
− 0.08489799500,−0.08489704132

]
⊂ (−1, 0),

so R̃2

(
x, 4

10

)
6= 0 in the interval

(
κ 4

10
, 0
)

. This implies that U21(z2, x,
4
10) and q̃(z2, x,

4
10) have

no common zero. Therefore, U21(z2, x, b) and q̃(z2, x, b) have no root on D̃2 by Theorem 2.1, so
U ′(h) 6= 0 when b is located in (1

3 , b
∗). This completes the proof.

The remainder of this part is to investigate whether U21(z2, x, b) 6= 0 on D̃3, where taking
b = b∗. As b∗ is the root of the factor in B̃S̃A

,

p(b) = b3 − 6

5
b2 +

3

5
b− 4

35
,
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and we have b∗ = 0.4189 · · · . By calculation we know that res(R̃2, p(b), b) has no zero in
(κb∗ , 0) ∈ (κb=1, 0), where κb∗ = −0.0882 · · · , κb=1 = −0.1666 · · · . Therefore, U21(z2, x, b

∗) 6= 0
on D̃3. Thus, we claim that

Proposition 4.3. I12(h)
I02(h) is monotonic when b = b∗.

Combining Proposition 4.1, 4.2 and 4.3 proves Theorem 1.2.

5. Proof of Theorem 1.3

When α = β = 0 , 0<γ ≤ 4
7 and λ = 1, system (3) becomes{

ẋ = y,

ẏ = −x3(x− γ)(x− 1)2,
(14)

with a Hamiltonian

H3(x, y) =
1

2
y2 − 1

4
γx4 +

1

5
(1 + 2γ)x5 − 1

6
(2 + γ)x6 +

1

7
x7,

The continuous family of ovals γ3(h) surrounds the center (γ, 0). We make the transformation
x = x̃+ γ to move the center (γ, 0) to the origin (0, 0). Then system (14) becomes by dropping
the tilde, {

ẋ = y,

ẏ = −x(x+ γ)3(x− 1 + γ)2,

with the Hamiltonian

H3(x, y) =
y2

2
+ Ψ3(x),

where

Ψ3(x) = hc +
1

2
γ3 (γ − 1)2 x2 +

1

3

(
5γ4 − 8γ3 + 3γ2

)
x3 +

1

4

(
10γ3 + 12γ2 + 3γ

)
x4

+
1

5

(
10γ2 − 8γ + 1

)
x5 +

1

6
(5γ − 2)x6 +

1

7
x7,

The ovals γ3(h) surround (0, 0) and the Abelian integrals have the forms,

I0(h) =

∮
γ3(h)

ydx =

∮
γ03(h)

ydx̃ , I03(h),
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I1(h) =

∮
γ3(h)

xydx =

∮
γ03(h)

(x̃+ γ)ydx̃ , I03(h) + I13(h).

Now we’re going to study the monotonicity of I13(h)
I03(h) for the proof of Theorem 1.3. Similar to

above analysis, there are two analytical involutions x(h) and z3(h) satisfying

Ψ3(x(h)) = Ψ3(z3(h)) = h, −γ<x(h)<0<z3(h)<κγ , 0<γ ≤
4

7

where Ψ3(−γ) = Ψ3(κγ), x(h) and z3(h) are implicitly determined by

q̂(z3, x, γ) =− 60x6 + (−350γ + 140− 60z3)x5 + · · · − 60z3(z5
3 +

1

6
(35γ − 14)z4

3

+
1

5
(70γ2 − 56γ + 7)z3

3 +
1

4
(70γ3 − 84γ2 + 21γ)z2

3 +
1

3
(35γ4 − 56γ3

+ 21γ2)z3 +
7

2
γ3(γ − 1)2).

Define the function
U3(h) = x(h) + z3(h),

and we have

U ′3(h) =
(
− q̄x
q̄z3

+ 1
)
x′(h) = 2(z3 − x)

U31(z3, x, γ)

U32(z3, x, γ)
x′(h),

where

U31(z3, x, γ) =350γ4 + 1050γ3x+ 1050γ3z3 + 1260γ2x2 + 1680γ2xz3 + 1260γ2z2
3 + 700γx3

+ 1050γx2z3 + 1050γxz2
3 + 700γz3

3 + 150x4 + 240x3z3 + 270x2z2
3 + 240xz3

3

+ 150z4
3 − 560γ3 − 1260γ2x− 1260z3γ

2 − 1008γz2
3 − 1344γxz3 − 1008γz2

3

− 280x3 − 420x2z3 − 420xz2
3 − 280z3

3 + 210γ2 + 315γz3 + 315γx+ 126x2

+ 168xz3 + 126z2
3 ,

U32(z3, x, γ) =210γ5 + 700γ4x+ 1400γ4z3 + 1050γ3x2 + 2100γ3xz3 + 3150γ3z2
3 + 840γ2x3

+ 1680γ2x2z3 + 2520γ2xz2
3 + 3360γ2z3

3 + 350γx4 + 700γx3z3 + 1050γx2z2
3

+ 1400γxz3
3 + 1750γz4

3 + 60x5 + 120x4z3 + 180x3z2
3 + 240x2z3

3 + 300xz4
3

+ 360z5
3 − 420γ4 − 1120γ3z3 − 2240γ3z3 − 1260γ2x2 − 2520γ2xz3 − 3780γ2z2

3

− 672γx3 − 1344γx2z3 − 2016γxz2
3 − 2688γz3

3 − 140x4 − 280x3z3 − 420x2z2
3

− 560xz3
3 − 700z4

3 + 210γ3 + 420γ2x+ 840γ2z3 + 315γx2 + 630γxz3 + 945γz2
3

+ 84x3 + 168x2z3 + 252xz2
3 + 336z3

3 .
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It is suffice to prove that U3i(z3, x, γ) 6= 0 for i = 1, 2 on D̂1 ∪ D̂2, where

D̂1 =
{

(z3, x, γ)| − γ<x<0<z3<κγ , 0<γ<
4
7

}
,

D̂2 =
{

(z3, x, γ)| − 4
7<x<0<z3<

3
7 , γ = 4

7

}
.

Caculating the resultant between U32(z3, x, γ) and q̂(z3, x, γ) with respect to x, we have

r̂0(z3) = −609753012019200000000000z3
5 (γ + z3 − 1)10 (γ + z3)15 .

Obviously, r̂0(z3) 6= 0 on (0, κγ), which means that U32(z3, x, γ) and q3(z3, x, γ) have no common
root on D̂1 ∪ D̂2. So U32(z3, x, γ) 6= 0 on D̂1 ∪ D̂2.

Similarly, we can calculate the resultant of U31(z3, x, γ) and q3(z3, x, γ) with respect to x and
z3, respectively, and obtain as follows

R̂1(z3, γ) = ĝ(z3, γ), R̂2(x, γ) = ĝ(x, γ), (15)

where ĝ(w, γ) is a polynomial and has the following expression

ĝ(w, γ) = 3889620000(γ+w)4(17500000 γ20−70000000 γ19w−413000000 γ18w2+· · ·+99574272 w4).

Because the expression for ĝ(w, b) is too long, it’s not given in detail here. Taking x = − γ
1+t

and γ = 4
7(1+s) with s > 0, t > 0 (satisfying −γ < x < 0 and 0 < γ < 4

7) yields

ĝ(x, γ) =
1

79792266297612001(1 + s)24(1 + t)24
ĝ∗(t, s),

where all coefficients of ĝ∗(t, s) are greater than zero, and ĝ∗(t, 0) > 0, we here include γ =
4
7 , ĝ∗(0, 0) = 0. Hence, ĝ∗(t, s)>0 on {(t, s) : t ∈ (0,+∞), s ∈ [0,+∞)}, which means that

U31(z3, x, γ) and q̂(z3, x, γ) have no common roots on D̂1 ∪ D̂2. Hence, Û1(z3, x, γ) 6= 0 on
D̂1 as well as U ′(h) 6= 0. Therefore we can claim that

Proposition 5.1. I13(h)
I03(h) is monotonic in the interval (hc, 0) when γ ∈ (0, 4

7 ].

This completes the proof of Theorem 1.3.

6. Conclusion

In this work, we determine the monotonicity of the ratios of two Abelian integrals along
different topological period annuli. We use a criterion in an algebraic way, and fully apply some
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techniques in polynomial boundary theory and bounding roots of algebraic system to overcome
the difficulty arising from the parametric Hamiltonian. However, there still exist some problems
left, for example, how can we determine the monotonicity when the Hamiltonian has two or
more parameters and how can we get a monotonicity criterion for the ratio of two general
integral integrals Ii(h) and Ij(h), i, j ∈ N+. We have also found that the monotonicity of r(h)
is determined by the sign of qx − qz. The monotonicity of other ratios Ii(h) \ Ij(h) may also
depend the signs of a certain combination of qx and qz. We have utilized symbolic computations
to verify the non-vanishing property of related algebraic system, some analytic methods [27, 28]
may be helpful to reduce the related computational analysis. The related studies need further
analysis and more techniques.

Acknowledgements The authors express their gratitude to the referee for their comments
and suggestions.

Appendix A. In this section, we show q(z1, x, a) > 0 on C1 and q(z1, x, a) < 0 on C2.
However, we only prove the former claim and the later one can be proved similarly. We note
that the proof is based on computational analysis. Firstly, we have
Theorem A. q(z1, x, a) has no critical points inside the cube C1.

We note that, when we say “inside” a set, implying taking points in the open set of the cube C1

excluding the six surfaces or a set excluding the boundaries. When we use ”on” a set, implying
taking points in the closed set of the cube C1 including the six surfaces or a set including the

boundaries. For convenience, we denote the surface
[

61923
1048576 ,

123847
2097152

]
×
[
− 15621

131072 ,−
124967
1048576

]
with

a = 11853
32768 by AA′B′B, see Figure 2.

Proof. We compute the partial derivatives of q(z1, x, a) with respect to the three variables as
follows,

qz1 =− 30x5 + (−60z1 − 35a− 140)x4 + (−90z2
1 + 2(−35a− 140)z1 − 168a− 252)x3

+ 3(−30z3
1 + (−35a− 140)z2

1 + (−168a− 252)z1 − 315a− 210)x2 + 2(−30z4
1 + (

− 35a− 140)z3
1 + (−168a− 252)z2

1 + (−315a− 210)z1 − 280a− 70)x− 30z5
1 + (

− 35a− 140)z4
1 + (−168a− 252)z3

1 + (−315a− 210)z2
1 + (−280a− 70)z1 − 105a,

qx =− 180x5 + 5(−35a− 140− 30z1)x4 + 4(−30z2
1 + (−35a− 140)z1 − 168a− 252)x3

+ 3(−30z3
1 + (−35a− 140)z2

1 + (−168a− 252)z1 − 315a− 210)x2 + 2(−30z4
1 + (

− 35a− 140)z3
1 + (−168a− 252)z2

1 + (−315a− 210)z1 − 280a− 70)x− 30z5
1 + (

− 35a− 140)z4
1 + (−168a− 252)z3

1 + (−315a− 210)z2
1 + (−280a− 70)z1 − 105a,
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qa =− 35x5 + (−35z1 − 168)x4 + (−35z2
1 − 168z1 − 315)x3 + (−35z3

1 − 168z2
1 − 315z1

− 280)x2 + (−35z4
1 − 168z3

1 − 315z2
1 − 280z − 105)x− 35z5

1 − 168z4
1 − 315z3

1

− 280z2
1 − 105z1.

We calculate the resultant of qz1 and qx with respect to a, and obtain that

resultant(qz1 , qx, a) = 1050x9 + 3150x8z + 6300x7z2 + · · · − 7350z
.
= Q∗(z1, x).

We will show that Q∗(z1, x) < 0 on
[

61923
1048576 ,

123847
2097152

]
×
[
− 15621

131072 ,−
124967
1048576

]
. In fact, the resultant

between Q∗z1 and Q∗x with respect to x has no zero in
[

61923
1048576 ,

123847
2097152

]
by a straightforward

computation. Therefore, the maximum and minimum values of Q∗(z1, x) are taken on the four

boundaries of
[

61923
1048576 ,

123847
2097152

]
×
[
− 15621

131072 ,−
124967
1048576

]
. However, there exist no critical points of

Q∗(z1, x) on the four boundaries by a computational analysis. Then the maximum and minimum
values of Q∗(z1, x) are taken on the four vertexes. By comparing the values of Q∗(z1, x) on the
four vertexs

maxQ∗(z1, x) = −676540447853393114576826593460299826990238307628714907215

766247770432944429179173513575154591809369561091801088
,

and

minQ∗(z1, x) = −346390951213673432577595555995660615047735705588088024554625

392318858461667547739736838950479151006397215279002157056
.

Therefore, Q∗(z1, x) < 0 on
[

61923
1048576 ,

123847
2097152

]
×
[
− 15621

131072 ,−
124967
1048576

]
. Hence, qz1 6= qx on[

61923
1048576 ,

123847
2097152

]
×
[
− 15621

131072 ,−
124967
1048576

]
, this implies that there exists no critical points inside

the cube C1.

Figure 2: Cube C1.
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Theorem B. When one variable is fixed, the two-variable polynomial q(z1, x, a) has no critical
points inside the six open surfaces of C1.

Proof. We only prove the claim for the surface AA′B′B, where we fix a = 11853
32768 on C1, and

the other case can be proved similarly. We calculate the resultant between qz1(z1, x,
11853
32768) and

qx(z1, x,
11853
32768) with respect to z1, and denote it as Q†(x),

Q†(x) =12861977597280000000000x25 +
935006789190289306640625

4
x24 + · · ·

+
268864002468477957159942812550681105249962666015625

1361129467683753853853498429727072845824
.

According to Sturm’s Theory, Q†(x) have no zero for x ∈
[
− 15621

131072 ,−
124967
1048576

]
. This implies

that q(z1, x,
11853
32768) has no critical points inside the surface AA

′
B
′
B.

Theorem C. The maximum and minimum values of q(z1, x, a) on C1 are taken at the vertex

D
(

61923
1048576 ,−

15621
131072 ,

94825
262144

)
and B

′
(

123847
2097152 ,−

124967
1048576 ,

11853
32768

)
.

Proof. From Theorems A and B, the maximum and minimum values of q(z1, x, a) on C1 may
be taken on the twelve edges. Inside the edge AB excluding the two endpoints, where we fix
z1 = 61923

1048576 and a = 11853
32768 and have

qx

( 61923

1048576
, x,

11853

32768

)
= −180x5 − 404834225

524288
x4 + · · · − 31242602993863233862687812364365

633825300114114700748351602688
.

According Sturm’s theorem reveals that

qx

( 61923

1048576
, x,

11853

32768

)
6= 0, x ∈

(
− 15621

131072
,− 124967

1048576

)
.

Similarly, we can prove that the one-variable polynomial q(z1, x, a) (q(z1, x, a) restricted on one
edge) has no critical points inside other edges. Therefore, the maximum and minimum values
of q(z1, x, a) can be taken at two of eight vertices of C1.

By direct computation, we get the values of the polynomial q(z1, x, a) at the eight vertices of
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C1 as follows

q
( 61923

1048576
,− 15621

131072
,
11853

32768

)
=

506696628295315552959493905056378625

664613997892457936451903530140172288
,

q
( 61923

1048576
,− 124967

1048576
,
11853

32768

)
=

506686345373054602000436536620432765

664613997892457936451903530140172288
,

q
( 61923

1048576
,− 15621

131072
,

94825

262144

)
=

506705863123399793625830275060473279

664613997892457936451903530140172288
,

q
( 61923

1048576
,− 124967

1048576
,

94825

262144

)
=

506695580046184441260018365157011205

664613997892457936451903530140172288
,

q
( 123847

2097152
,− 15621

131072
,
11853

32768

)
=

32427750435232355592813200679522361265

42535295865117307932921825928971026432
,

q
( 123847

2097152
,− 124967

1048576
,
11853

32768

)
=

32427092325507024386448813961220173195

42535295865117307932921825928971026432
,

q
( 123847

2097152
,− 15621

131072
,

94825

262144

)
=

32428341455876232646559595333766084381

42535295865117307932921825928971026432
,

q
( 123847

2097152
,− 124967

1048576
,

94825

262144

)
=

32427683336233801584587332883715472751

42535295865117307932921825928971026432
.

Comparing the above values, we have

max q(z1, x, a) =
506705863123399793625830275060473279

664613997892457936451903530140172288
> 0,

and

min q(z1, x, a) =
32427092325507024386448813961220173195

42535295865117307932921825928971026432
> 0,

which have a same sign. Therefore q(z1, x, a) > 0 on C1. This completes the proof.
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