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Abstract This paper is devoted to investigate the following second-order
nonlinear differential equation with singularity of attractive type

x′′ − a(t)x = f(t, x) + e(t),

where the nonlinear term f has a singularity at the origin. By using the
Green’s function of the linear differential equation with constant coefficient
and Schauder’s fixed point theorem, we establish some existence results of
positive periodic solutions.
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1. Introduction
In this paper, we discuss the existence of positive periodic solutions of the following
nonlinear differential equation with singularity

x′′ − a(t)x = f(t, x) + e(t), (1.1)

where a(t) ∈ C(R,R+) and e(t) ∈ L1(R) are ω-periodic functions, f(t, x) ∈ C(R×
R+,R) is an ω-periodic function on t. The nonlinear term f of equation (1.1) can
be with a singularity at the origin, i.e.,

lim
x→0+

f(t, x) = −∞, (or lim
x→0+

f(t, x) = +∞), uniformly in t.
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It is said that equation (1.1) is of attractive type (resp. repulsive type) if f(t, x) →
−∞ (resp. f(t, x) → +∞) as x → 0+.

Since 1980s, there have been published many works in which singularity of dif-
ferential equations is discussed. More concretely, in 1987, Lazer and Solimini [10]
investigated the model equations with singularity

x′′ = − ν

xλ
+ f(t) (1.2)

and
x′′ =

µ

xλ
+ f(t), (1.3)

where λ, ν, µ are positive constants and f is a continuous periodic functions with
period ω. It is said that equation (1.2) has an attractive singularity, whereas equa-
tion (1.3) has a repulsive singularity. The authors provided the necessary and
sufficient conditions for the existence of periodic solutions of equations (1.2) and
(1.3). One of the common conditions to guarantee the existence of positive peri-
odic solution is a so-called strong force condition (corresponds to the case λ ≥ 1 in
equation (1.2)), see [1,6,7,17,18,20,23] and references therein. On the other hand,
the existence of positive periodic solution of the singular differential equations has
been established with a weak force condition (corresponds to the case 0 < λ < 1 in
equation (1.2)), see [2, 5, 11,14].

During the last two decades, the study of the existence of positive periodic so-
lutions for second-order differential equations with singularity of repulsive type has
attracted the attention of many researchers (see [1,2,4–9,11–19,23]). For example,
Torres [14] in 2007 investigated a kind of second order non-autonomous singular
differential equation

x′′ + a(t)x = f(t, x) + e(t). (1.4)
Applying Schauder’s fixed point theorem, the author showed that the additional
assumption of a weak singularity enabled the obtention of new criteria for the exis-
tence of positive periodic solutions. In 2010, Wang [17] discussed the existence and
multiplicity of positive periodic solutions of singular systems (1.4) with superlin-
earity or sublinearity assumptions at infinity for an appropriately chosen parameter
e(t). The proofs of their results are based on the Krasnoselskii fixed point theorem
in cones. In 2014, Ma, Chen and He [11] improved above results and presented a
new assumption which was weaker than the singular condition in [14].

All the aforementioned results are related to second-order differential equations
with singularity of repulsive type. Naturally, a new question arises: how second-
order differential equation works on singularity of attractive type? In this paper, we
try to establish the existence of a positive periodic solution of equation (1.1) by using
the Green’s function of the linear differential equation with constant coefficient and
Schauder’s fixed point theorem. This trick has been used to investigate a third-order
singular differential equation with variable coefficients in [21].

Remark 1.1. As far as we know, the calculation of the Green’s function of the
second-order linear differential equation with variable coefficient

x′′ − a(t)x = h(t), h ∈ C(R,R−) is an ω-periodic function,

is very complicated. In this paper, we will discuss the Green’s function G(t, s) of
the second-order linear differential equation with constant coefficient

x′′ −Mx = h(t), (1.5)
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where M = max
t∈[0,ω]

a(t).

Remark 1.2. It is worth noting that the nonlinear term f of equation (1.1) satisfies
singularity of attractive type, i.e., lim

x→0+
f(t, x) = −∞, uniformly in t. Obviously,

attractive condition and repulsive condition are contradiction. Therefore, the above
conditions in [11, 14, 17] are no long applicable to the proof of existence of positive
periodic solution for equation (1.1) with singularity of attractive type. In this paper,
we need find another conditions to overcome this problems.

From now on, we denote the essential supremum and infimum of the external
force e(t) ∈ C[0, ω] by e∗ and e∗. We define the function γ : R → R by

γ(t) =

∫ ω

0

G(t, s)e(s)ds,

which is the unique ω-periodic solution of equation

x′′(t)−Mx(t) = e(t). (1.6)

Obviously, γ(t) is closely depending on the external force e(t). We would like to
emphasize that the value of γ(t) can influence the existence of a positive periodic
solution of equation (1.1) with strong singularity or weak singularity. Specifically,
the existence of a positive periodic solution of equation (1.1) with weak and strong
singularities of attractive type if the following conditions satisfies:

γ∗ > 0.

The existence of a positive periodic solution to equation (1.1) with weak singularity
of attractive type if the following conditions satisfies:

γ∗ = 0 or γ∗ ≤ 0.

Moreover, we consider the existence of a positive periodic solution for equation (1.1)
with attractive-repulsive singularities.

The paper is organized as follows: In Section2, the Green’s function for constant
coefficients differential equation (1.5) will be given. Some useful properties for the
Green’s function are shown also. In Section 3, we consider the positive periodic
solution of (1.1) with attractive singularities in three cases: γ∗ > 0, γ∗ = 0 and
γ∗ < 0. Moreover, we also proved the existence of a positive periodic solution when
(1.1) has an attractive-repulsive singularity. To conclude this introduction, we write
d(t) ≺ 0 if d(t) ≤ 0 for a.e. t ∈ [0, ω] and it is negative in a set of negative measure.

2. Preparation
2.1. Constant coefficients differential equation
In this section, we discuss the Green’s function of the differential equation with
constant coefficients {

x′′ −Mx = h(t),

x(0) = x(ω), x′(0) = x′(ω).
(2.1)
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Let M := ϱ2, then equation (2.1) is transformed into{
y′(t) + ϱy(t) = h(t),

y(0) = y(ω),
(2.2)

and {
x′(t)− ϱx(t) = y(t),

x(0) = x(ω).
(2.3)

Solution of equation (2.2) is written as

y(t) =

∫ ω

0

G1(t, s)h(s)ds, (2.4)

where

G1(t, s) =


e−ϱ(t−s)

1− e−ωϱ
, 0 ≤ s ≤ t ≤ ω,

e−ϱ(ω+t−s)

1− e−ωϱ
, 0 ≤ t < s ≤ ω.

Solution of equation (2.3) is written as

x(t) =

∫ ω

0

G2(t, s)y(s)ds, (2.5)

where

G2(t, s) =


eϱ(t−s)

1− eωϱ
, 0 ≤ s ≤ t ≤ ω,

eϱ(ω+t−s)

1− eωϱ
, 0 ≤ t < s ≤ ω.

Therefore, we know that the solution of equation (2.1) is written as

x(t) =

∫ ω

0

G2(t, τ)

∫ ω

0

G1(τ, s)h(s)dsdτ =

∫ ω

0

[∫ ω

0

G2(t, τ)G1(τ, s)dτ

]
h(s)ds.

Denote

G(t, s) =

∫ ω

0

G2(t, τ)G1(τ, s)dτ, (2.6)

then we can get

x(t) =

∫ ω

0

G(t, s)h(s)ds. (2.7)

Lemma 2.1. The Green function G(t, s) < 0 for all (t, s) ∈ [0, ω]× [0, ω].

Proof. Since G1(t, s) > 0 and G2(t, s) < 0 for all (t, s) ∈ [0, ω] × [0, ω], then we
know G(t, s) < 0 for all (t, s) ∈ [0, ω]× [0, ω] from (2.6).
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2.2. Variable coefficients differential equation
In this section, we consider variable coefficients differential equations{

x′′ − a(t)x = h(t),

x(0) = x(ω), x′(0) = x′(ω),
(2.8)

where h(t) ∈ C(R,R−) is an ω-periodic function. Obviously, the calculation of the
Green’s function of equation (2.8) is very complicated. To overcome this difficuly,
we will make a shift on the linear term.

Let X := {ϕ ∈ C(R,R) : ϕ(t + ω) = ϕ(t)} with the maximum norm ∥ϕ∥ =
max
t∈[0,ω]

|ϕ(t)|. Obviously, X is a Banach space. Denote

M := max
t∈[0,ω]

a(t) and m := min
t∈[0,ω]

a(t),

then equation (2.8) can be rewritten as

x′′ −Mx = (a(t)−M)x+ h(t). (2.9)

Define operators T, H : X → X by

(Th)(t) :=

∫ ω

0

G(t, s)h(s)ds and (Hx)(t) := (a(t)−M)x(t). (2.10)

Since h(t) ∈ (R,R−), we have (Th)(t) > 0 for any t ∈ R by Lemma 2.1. At the
same time, we know ∥H∥ ≤ M − m. By equation (2.7), the solution of equation
(2.9) can be written in the form

x(t) = (Th)(t) + (THx)(t).

Since
∥TH∥ ≤ ∥T∥∥H∥ ≤ M −m

M
= 1− m

M
< 1,

where we used the fact
∫ ω

0
G(t, s)ds = − 1

M (see Lemma 2.2 in [3]), hence we have

x(t) = (I − TH)−1(Th)(t).

Define an operator P : X → X by

(Ph)(t) = (I − TH)−1(Th)(t), (2.11)

it is obvious that x(t) = (Ph)(t) is the unique periodic solution of equation (2.8)
for any h(t). Moveover, we arrive at

Lemma 2.2. P satisfies

(Th)(t) ≤ (Ph)(t), ∀ t ∈ R and ∥Ph∥ ≤ M

m
∥Th∥. (2.12)

Proof. By the Neumann expansion of P , we have

Ph =(I − TH)−1Th

=(I + TH + (TH)2 + · · ·+ (TH)n + · · · )Th.
(2.13)
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Since Th(t) > 0 for any t, we get

(Th)(t) ≤ (Ph)(t).

Noting that ∥TH∥ < 1, we get

∥Ph∥ ≤ M

m
∥Th∥.

3. Singularity of attractive type
In this section, we establish the existence of a positive periodic solution of equation
(1.1) by applications of Schauder’s fixed point theorem. Define an operator Q :
X → X by

(Qx)(t) = P (f(t, x(t)) + e(t)). (3.1)

3.1. Case (I) γ∗ > 0.
Theorem 3.1. Assume that the following conditions hold:

(H1) There exist continuous, non-negative functions g(x), p(x) and continuous,
non-positive ζ(t) such that

ζ(t)(g(x) + p(x)) ≤ f(t, x) ≤ 0 for all (t, x) ∈ [0, ω]× (0,∞),

and g(x) > 0 is non-increasing and p(x) is non-decreasing in x ∈ (0,∞).
(H2) There exists a constant R > 0 such that

M

m

(
g(γ∗)

(
1 +

p(R)

g(R)

)
Λ∗ + γ∗

)
≤ R,

where Λ(t) =
∫ ω

0
G(t, s)ζ(s)ds and Λ∗ = sup

t∈[0,ω]

Λ(t).

If γ∗ > 0, then equation (1.1) has at least one positive periodic solution.

Proof. Obviously, an ω-periodic solution of equation (1.1) is just a fixed point of
operator equation

(Qx)(t) = P (f(t, x) + e(t)). (3.2)
Let R be the positive constant and r := γ∗, then we have R > r > 0, since R > γ∗.
Define

Ω = {x ∈ X : r ≤ x(t) ≤ R for all t}, (3.3)
then, Ω is a closed convex set. For any x ∈ Ω, t ∈ R, from equation (3.1), we deduce

(Qx)(t+ ω) = P (f(t+ ω, x(t+ ω) + e(t+ ω)) = P (f(t, x(t) + e(t)) = (Qx)(t),

which show that (Qx)(t) is ω-periodic.
Next we will prove Q(Ω) ⊂ Ω. In fact, for each x ∈ Ω and for all t ∈ [0, ω],

from Lemma 2.1 and condition (H1), we know that non-positive sign of the Green’s
function G(t, s) and the nonlinear term f(t, x) for all (t, s) ∈ [0, ω] × [0, ω] and
(t, x) ∈ [0, ω]× (0,∞). Together Lemma 2.2, we arrive at

(Qx)(t) = P (f(t, x(t) + e(t))
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≥ T (f(t, x(t)) + e(t))

=

∫ ω

0

G(t, s)f(s, x(s))ds+ γ(t)

=

∫ ω

0

G(t, s)f−(s, x(s))ds+ γ(t)

≥ γ∗ := r > 0,

where f−(t, x) := min{0, f(t, x)}. On the other hand, by Lemma 2.2, we see that

(Qx)(t) = P (f(t, x(t)) + e(t))

≤ M

m
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)f(s, x(s))ds+ γ(t)

∣∣∣∣
≤ M

m

{
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)f(s, x(s))ds

∣∣∣∣+ γ∗
}
,

since γ∗ > 0, we know γ(t) > 0, then ∥γ∥ = γ∗. Therefore, by conditions (H1) and
(H2), we get

(Qx)(t) ≤ M

m

{
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)f−(s, x(s))ds

∣∣∣∣+ γ∗
}

≤ M

m

{
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)ζ(s)(g(x(s)) + p(x(s)))ds

∣∣∣∣+ γ∗
}

≤ M

m

(
g(r)

(
1 +

p(R)

g(R)

)
Λ∗ + γ∗

)
≤ R.

In conclusion, we see that Q(Ω) ⊂ Ω.
Next, we show that Q is completely continuous. According to equations (2.11),

(2.13) and (3.1), we shall prove that T is completely continuous and H is a contin-
uous bounded operator.

Firstly, we show that T is completely continuous. Let {hk} ∈ Ω be a convergent
sequence of functions, such that hk(t) → h(t) as k → ∞. Since Ω is closed, for
h ∈ Ω and t ∈ [0, ω], it is clear that

|(Thk)(t)− (Th)(t)| =
∣∣∣∣∫ ω

0

G(t, s)hk(s)ds−
∫ ω

0

G(t, s)h(s)ds

∣∣∣∣
≤
∫ ω

0

|G(t, s)||hk(s)− h(s)|ds.

Since |hk(t)− h(t)| → 0 as k → ∞, we obtain

lim
k→∞

∥(Thk)(t)− (Th)(t)∥ = 0. (3.4)

Therefore, T is continuous. On the other hand, we deduce

|(Th)(t)| =
∣∣∣∣∫ ω

0

G(t, s)h(s)ds

∣∣∣∣ ≤ ∥h∥
∫ ω

0

|G(t, s)|ds ≤ ∥h∥
M

,

where ∥h∥ := max
t∈[0,ω]

|h(t)|. From Lemma 2.1, it is easy to see that

|(T ′h)(t)| =
∣∣∣∣∫ ω

0

∂G(t, s)

∂t
h(s)ds

∣∣∣∣ ≤ ∥h∥
∫ ω

0

∣∣∣∣∂G(t, s)

∂t

∣∣∣∣ ds ≤ ∥h∥G0ω,
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where G0 := max
s,t∈[0,ω]

∣∣∣∂G(t,s)
∂t

∣∣∣ . By above two inequalities, we conclude that {Th :

h ∈ Ω} is uniformly bounded and equi-continuous on t ∈ [0, ω]. Therefore, T (Ω) is
relatively compact. T is compact operator. In conclusion, T is completely continu-
ous.

Secondly, we show that H is a continuous bounded operator. By using similar
argument, it is clearly that H is continuous. From equation (2.10), we obtain

|(Hy)(t)| = |(a(t)−M)y(t)| ≤ (M −m)∥y∥,

where ∥y∥ := max
t∈[0,ω]

|y(t)|. Therefore, H is a bounded operator.

From above analysis, we conclude that TH is completely continuous. From
equation (3.1), we have Q is completely continuous. Therefore, the proof is finished
by Schauder’s fixed point theorem.

Corollary 3.1. Assume the following condition holds:
(F1) There exist a continuous function d(t) ≺ 0 and a constant ρ > 0 such that

satisfy
d(t)

xρ
≤ f(t, x) ≤ 0, for all x > 0 and a.e. t.

If γ∗ > 0, then equation (1.1) has at least one positive periodic solution.

Proof. Take
ζ(t) = d(t), g(x) =

1

xρ
and p(x) = 0.

Then condition (H1) is satisfied and the existence condition (H2) is also satisfied if
we take R > 0 with

M

m

(
Ψ∗

(γ∗)ρ
+ γ∗

)
≤ R,

where Ψ(t) =
∫ ω

0
G(t, s)d(s)dt and Ψ∗ = sup

t∈[0,ω]

Ψ(t).

Corollary 3.2. Assume the following condition holds:
(F2) There exist a continuous function d(t) ≺ 0 and constants ρ > 0, 0 ≤ η < 1

such that
d(t)

xρ
+ d(t)xη ≤ f(t, x) ≤ 0, for all x > 0, and a.e. t.

If γ∗ > 0, then equation (1.1) has at least one positive periodic solution.

Proof. Take
ζ(t) = d(t), g(x) =

1

xρ
and p(x) = xη.

Then condition (H1) is satisfied and the existence condition (H2) is also satisfied if
we take R > 0 with

M

m

(
Ψ∗
(

1

(γ∗)ρ
+ (R)η

)
+ γ∗

)
≤ R.

In the following, we investigate equation (1.1) with attractive-repulsive singu-
larities.
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Corollary 3.3. Assume the following condition holds:
(F3) There exists continuous function d(t) ≺ 0, α > β > 0 and µ > 0 such that

d(t)

xα
− µd(t)

xβ
≤ f(t, x), for all x > 0 and a.e. t.

If γ∗ > 0, then there exists a positive constant µ1 such that equation (1.1) has at
least one positive periodic solution for each 0 ≤ µ ≤ µ1.

Proof. Take
g(x) =

1

xα
and ζ(t) = d(t),

and choose R > 0 with
Ψ∗

(γ∗)α
+ γ∗ < R,

then the condition (H2) is satisfied. Next, we consider condition (H1). In fact,
f(t, x) ≤ 0 if and only if µ ≤ xβ−α. In view of β < α, then we have µ < Rβ−α. As
a consequence, the result holds for

µ1 :=

(
Ψ∗

(γ∗)ρ
+ γ∗

)β−α

.

3.2. Case (II) γ∗ = 0

Theorem 3.2. Assume that the condition (H1) holds. Furthermore, suppose that
the following conditions hold:

(H3) For each L > 0, there exists a continuous function ϕL ≺ 0 such that
f(t, x) ≤ ϕL(t) for all (t, x) ∈ [0, ω]× (0, L].

(H4) There exists a positive constant R > 0 such that R > (ΦR)∗ and

M

m

((
g((ΦR)∗))

(
1 +

p(R)

g(R)

))
Λ∗ + ∥γ∥

)
≤ R,

where ΦR(t) =
∫ ω

0
G(t, s)ϕR(s)ds and ∥γ∥ = max

t∈[0,ω]
|γ(t)|.

If γ∗ = 0, then equation (1.1) has at least one positive periodic solution.

Proof. We follow the same strategy and notation as in the proof of Theorem 3.1.
Let R be the positive constant satisfying condition (H4) and let r = (ΦR∗), then
R > r > 0 since R > (ΦR∗).

Next we prove that Q(Ω) ⊂ Ω. For each x ∈ Ω and for all t ∈ [0, ω], by the
non-positive sign of the Green’s function G(t, s) and the nonlinear term f(t, x) we
have, from condition (H3),

(Qx)(t) = P (f(t, x(t)) + e(t))

≥ T (f(t, x(t)) + e(t))

=

∫ ω

0

G(t, s)f(s, x(s))ds+ γ(t)

=

∫ ω

0

G(t, s)f−(s, x(s))ds+ γ(t)
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≥
∫ ω

0

G(t, s)ϕR(s)ds+ γ(t)

≥ (ΦR)∗ := r > 0.

On the other hand, from Lemma 2.2, conditions (H1) and (H4), we obtain

(Qx)(t) = P (f(t, x(t)) + e(t))

≤ M

m
max
t∈[0,ω]

|T (f(t, x(t)) + e(t))|

=
M

m
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)(f(s, x(s)) + e(s))ds

∣∣∣∣
=

M

m
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)f−(s, x(s))ds+ γ(t)

∣∣∣∣
≤ M

m

{
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)f−(s, x(s))ds

∣∣∣∣+ ∥γ∥
}

≤ M

m
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)ζ(t)(g(x(s)) + p(x(s)))ds

∣∣∣∣+ M

m
∥γ∥

≤ M

m

(
g(r)

(
1 +

p(R)

g(R)

)
Λ∗ + ∥γ∥

)
≤ R.

By above two inequalities, we have Q(Ω) ⊂ Ω. Therefore, by Schauder’s fixed point
theorem, our result is proved.

Corollary 3.4. Assume the following condition holds:
(F4) There exist continuous functions d(t), d̂(t) ≺ 0 and 0 < ρ < 1 such that

satisfy
d(t)

xρ
≤ f(t, x) ≤ d̂(t)

xρ
≤ 0, for all x > 0 and a.e. t.

If γ∗ = 0, then equation (1.1) has at least one positive periodic solution.

Proof. Take

ϕL(t) =
d̂(t)

Lρ
, ζ(t) = d(t), g(x) =

1

xρ
and p(x) = 0,

then conditions (H1) and (H3) are satisfied and the existence condition (H4) be-
comes

R >
Ψ̂∗

Rρ
= r,

M

m

((
Rρ

Ψ̂∗

)ρ

Ψ∗ + ∥γ∥
)

≤ R, (3.5)

where Ψ̂ =
∫ ω

0
G(t, s)d̂(t)dt, for some R > 0. Note that Ψ∗ > 0, since 0 < ρ < 1, we

choose R > 0 as large as possible so that equation (3.5) is satisfied and the proof is
complete.

In the following, we investigate equation (1.1) with attractive-repulsive singu-
larities.

Corollary 3.5. Assume the following condition holds:
(F5) There exist constants 0 < β < α < 1 and µ > 0 such that (α+β)α < 1 and

µ

xβ
− 1

xα
≤ f(t, x), for all x > 0 and a.e. t.
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If γ∗ = 0, then there exists a positive constant µ2 such that equation (1.1) has at
least one positive periodic solution for each 0 ≤ µ ≤ µ2.

Proof. Take
ζ(t) = −1 and g(x) =

1

xα
.

Firstly, condition (H3) is satisfied. Let

Γ(x) =
µ

xβ
− 1

xα
, x ∈ (0,+∞), s1 = µ− 1

α−β , s2 =

(
α

µβ

) 1
α−β

.

Since α > β, one can easily verify that s1 < s2 and

Γ(s1) = 0, Γ′(s2) = 0 and Γ′(s) > 0, s ∈ (0, s2).

Therefore, Γ(s) is increasing in (0, s1) ⊂ (0, s2). On the other hand, we can choose
µ > 0 small enough such that R ∈ (0, s1). Thus,

max
s∈(0,R)

Γ(s) = Γ(R) < Γ(s1) = 0.

This implies that condition (H3) is satisfied if we take

ϕR(t) = Γ(R).

Secondly, the existence condition (H4) becomes(
Rα+β

Rβ − µRα

)α

Υ∗ + γ∗ ≤ R, (3.6)

where Υ(t) = −
∫ ω

0
G(t, s)ds. Since (α+ β)α < 1, we can choose R > 0 as large as

possible so that equation (3.6) is satisfied.
Finally, the condition (H1) is also satisfied. In fact, f(t, x) ≤ 0 if and only

if µ < xβ−α, condition (H1) is verified of any µ < Rβ−α since β < α. As a
consequence, the result holds for µ2 = Rβ−α.

3.3. Case (III) γ∗ < 0

Theorem 3.3. Assume that conditions (H1) and (H3) hold. Furthermore, suppose
that the following condition holds:

(H5) There exists R > 0 such that R > (ΦR)∗ + γ∗ > 0 and

M

m
g((ΦR)∗ + γ∗)

(
1 +

p(R)

g(R)

)
Λ∗ ≤ R.

If γ∗ < 0, then equation (1.1) has at least one positive periodic solution.

Proof. Let R be the positive constant satisfying (H5) and r = (ΦR)∗ + γ∗, then
R > r > 0 since R > (ΦR)∗ + γ∗.

Next we prove that Q(Ω) ⊂ Ω. For each x ∈ Ω and for all t ∈ [0, ω], by the
non-positive sign of the Green’s function G(t, s) and the nonlinear term f(t, x) we
have, from conditions (H3) and (H5),

(Qx)(t) = P (f(t, x(t)) + e(t))
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≥ T (f(t, x(t)) + e(t))

=

∫ ω

0

G(t, s)f(s, x(s))ds+ γ(t)

=

∫ ω

0

G(t, s)f−(s, x(s))ds+ γ(t)

≥
∫ ω

0

G(t, s)ϕR(s)ds+ γ(t)

≥ (ΦR)∗ + γ∗ = r > 0.

On the other hand, from Lemma 2.2, conditions (H1) and (H5), we deduce

(Qx)(t) =P (f(t, x(t)) + e(t))

≤M

m
max
t∈[0,ω]

|T (f(t, x(t)) + e(t))|

=
M

m
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)f(s, x(s))ds+ γ(t)

∣∣∣∣
≤M

m
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)f(s, x(s))ds

∣∣∣∣ ,
since γ∗ ≤ 0, G(t, s) and f(t, x(t)) are non-positive, (ΦR)∗ + γ∗ > 0, then we know∣∣∣∣∫ ω

0

G(t, s)f(s, x(s))ds+ γ(t)

∣∣∣∣ ≤ ∣∣∣∣∫ ω

0

G(t, s)f(s, x(s))ds

∣∣∣∣ .
Therefore, by (H2) and (H5), we have

(Qx)(t) ≤ M

m

{
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)f−(s, x(s))ds

∣∣∣∣}
≤ M

m

{
max
t∈[0,ω]

∣∣∣∣∫ ω

0

G(t, s)ζ(s)(g(x(s)) + p(x(s)))ds

∣∣∣∣}
≤ M

m
g(r)

(
1 +

p(R)

g(R)

)
Λ∗

≤ R.

By above two inequalities, Q(Ω) ⊂ Ω. Therefore, by Schauder’s fixed point theorem,
our result is proven.

Corollary 3.6. Assume that condition (F4) holds. If γ∗ ≤ 0 and

γ∗ ≥

(
Ψ̂∗m

ρ

(MΨ∗)ρ
ρ2

) 1
1−ρ2

(
1− 1

ρ2

)
,

then there exists a positive periodic solution of equation (1.1).

Proof. Take

ϕL(t) =
d̂(t)

Lρ
, ζ(t) = d(t), g(x) =

1

xρ
and p(x) = 0.

then conditions (H1) and (H3) are satisfied.
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Next, we consider the condition (H5) is also satisfied. Take R = MΨ∗

m(r)ρ , then
(ΦR)∗ + γ∗ > 0 holds if r verifies

Ψ̂∗m
ρ

(MΨ∗)ρ
(r)ρ

2

+ γ∗ ≥ r,

or equivalently,

γ∗ ≥ f(r) := r − Ψ̂∗m
ρ

(MΨ∗)ρ
(r)ρ

2

.

The function f(r) possesses a minimum at

r0 :=

[
Ψ̂∗m

ρ

(MΨ∗)ρ
ρ2

] 1
1−ρ2

.

Let r = r0, then (ΦR)∗ + γ∗ > 0 holds in condition (H5) if γ∗ ≥ f(r0), which is just
the condition

γ∗ ≥

(
Ψ̂∗m

ρ

(MΨ∗)ρ
ρ2

) 1
1−ρ2

(
1− 1

ρ2

)
.

The condition (H5) holds directly by the choice of R, and it would remain to prove
that R = MΨ∗

m(r0)ρ
> r0. This is easily verified through elementary computations.

In the following, we investigate equation (1.1) with attractive-repulsive singu-
larities.

Corollary 3.7. Assume the following condition holds:
(F6) There exist continuous functions c(t), d(t) ≺ 0, 0 < β < α < 1, ρ > 0 and

µ > 0 such that ρα < 1 and

d(t)

xα
− µd(t)

xβ
≤ f(t, x) ≤ c(t)

xρ
, for all x > 0, and a.e. t.

If γ∗ ≤ 0 and

γ∗ ≥
(
αρ

C∗

(Ψ∗)ρ

) 1
1−αρ

(
1− 1

αρ

)
,

where C(t) =
∫ ω

0
G(t, s)c(s)ds, then there exists a positive constant µ3 such that

equation (1.1) has at least one positive periodic solution for each 0 ≤ µ ≤ µ3.

Proof. Take
ϕR(t) =

c(t)

Rρ
, ζ(t) = d(t) and g(x) =

1

xα
,

then condition (H1) is satisfied.
Next, we consider condition (H5) to be satisfied. Take R = Ψ∗

rα , then (ΦR)∗ +
γ∗ > 0 holds if r verifies

C∗

(Ψ∗)ρ
(r)αρ + γ∗ ≥ r,

or equivalently,
γ∗ ≥ f(r) := r − C∗

(Ψ∗)ρ
(r)αρ.
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The function f(r) possesses a minimum at

r0 :=

(
αρ

C∗

(Ψ∗)ρ

) 1
1−αρ

.

Let r = r0, then the (ΦR)∗ + γ∗ > 0 holds if γ∗ ≥ f(r0), which is just the condition

γ∗ ≥
(
αρ

C∗

(Ψ∗)ρ

) 1
1−αρ

(
1− 1

αρ

)
.

Then the condition (H5) holds directly by the choice of R, and it would remain to
prove that R = Ψ∗

(r0)ρ
> r0. This is easily verified through elementary computations.

Finally, we consider that condition (H3) is satisfied. In fact,

d(t)

xα
− µd(t)

xβ
≤ c(t)

Rρ
if and only if µ ≤ xβ−α − c(t)

d(t)

xβ

Rρ
.

Condition (H3) is verified for any µ ≤ Rβ−α − c(t)
d(t)R

β−ρ since β < α. As a conse-
quence, the result holds for

µ3 :=
(Ψ∗)β−α(

αρ B∗
(Ψ∗)ρ

)α(β−α)
1−αρ

− c∗
d∗

(Ψ∗)β−ρ(
αρ B∗

(Ψ∗)ρ

)α(β−ρ)
1−αρ

.
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