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GLOBAL RESULTS FOR AN HIV/AIDS
MODEL WITH MULTIPLE SUSCEPTIBLE
CLASSES AND NONLINEAR INCIDENCE∗

Wei Yang

Abstract In this paper, an HIV/AIDS epidemic model is proposed in which
there are two susceptible classes. Two types of general nonlinear incidence
functions are employed to depict the scenarios of infection among cautious
and incautious individuals. Qualitative analyses are performed, in terms of the
basic reproduction number R0, to gain the global dynamics of the model: the
disease-free equilibrium is of global asymptotic stability whenR0 ≤ 1; a unique
endemic equilibrium exists and globally asymptotically stable R0 > 1. The
introduction of cautious susceptible and the resulting multiple transmission
functions has positive effect on HIV/AIDS prevalence. Numerical simulations
are carried out to illustrate and extend the obtained analytical results.

Keywords HIV/AIDS, cautious susceptible, general nonlinear incidence, ba-
sic reproduction number.
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1. Introduction

The human immunodeficiency virus (HIV) infection, leading to the acquired im-
munodeficiency syndrome (AIDS) [27], continues to be a major public health issue
across the globe. In 2017, there were approximately 36.9 million people worldwide
living with HIV/AIDS, out of which an estimated 1.8 million individuals became
newly infected [22].

Infected individuals advance through several stages of HIV life cycle before de-
veloping full-blown AIDS [12]. Without treatment, the majority of HIV-positive
people will develop signs of HIV-related illness and even AIDS within 5-10 years.
HIV is a sexually transmitted disease in most cases, and it is transmitted by perform-
ing unprotected sex with someone who is HIV positive. HIV education programs
may prevent new infections from taking place by giving the public information
about HIV - what HIV/AIDS are, how they are transmitted, and how people can
avoid infection. The mass media is a very effective way to convey this information.
Therefore, creation of public awareness about HIV prevention, treatment, care and
support can potentially influence individual’s behavior.
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The transmission dynamic of HIV/AIDS has been of extreme interest to re-
searchers, including both mathematicians and biologists. Mathematical models
have been used extensively in helping improve our understanding of the major con-
tributing factors to the pandemic. The classical mathematical model for infectious
diseases is the compartmental model, first proposed by Kermack and McKendric
in the year of 1927, in which, individuals are divided into multiple compartments
dependent on their epidemiological status [10]. Since then, a large amount of epi-
demiological models have popped up to find out the mechanisms of HIV transmission
and to determine the effective measures in preventing and controlling the spread of
HIV/AIDS. de Arazoza and Lounes studied an epidemic model with contact tracing
and fitted it with the data for the Cuban HIV/AIDS outbreak [2]. Naresh formu-
lated an HIV model with varying population size and considered both horizontal
and vertical transmission [17]. The optimal strategy for controlling HIV/AIDS was
studied by Yusuf and Benyah targeting South Africa [30]. An HIV/AIDS model
with different latent stages and treatment was developed and investigated [8]. Sil-
va and Torres obtained the global results of an HIV/AIDS model with constant
recruitment rate, mass action incidence, and varying population size [19].

Bilinear and standard incidence functions have been widely used in previous
work [16,24]. Several nonlinear incidence functions have been proposed correspond-
ing to different scenarios. A saturated incidence Sf(I) was introduced by Capasso
and Serio to study the cholera in Bari in 1973 [1]. Another two types of nonlinear
incidence function βIpSq and βIpS/(1 +αIq) were proposed by Liu et al. [15], and
ever since they have been employed in various epidemic models (see [5,6,18] and the
references therein). The nonlinear incidence form of β(I + νIp)S was proposed by
van den Driessche and Watmough [25]. An HIV/AIDS epidemic model with general
nonlinear incidence rate and treatment was formulated and studied in [9]. A more
general form of nonlinear incidence f(S, I,N) was considered in [11], and many oth-
er forms of nonlinear incidence were proposed and discussed in [4,13,21,24,28,29].

Motivated by previous work, we consider an HIV/AIDS epidemic model with two
general nonlinear incidences and two susceptible classes: the cautious susceptible
class and the incautious susceptible class. The paper is organized as follows. In
section 2, the compartmental model is formulated; In section 3, preliminary results
are summarized and the basic reproduction number is derived; In section 4, the
global stability of the disease-free equilibrium is analyzed; In section 5, the existence
and uniqueness of endemic equilibrium are identified, and its global stability is
proved; In section 6, numerical simulations are performed. The paper ends up with
a conclusion.

2. Model formulation

The total population is divided into five classes depending on epidemiological sta-
tus of individuals: incautious susceptible Su(t), cautious susceptible Sw(t), asymp-
tomatic infective E(t), symptomatic infective I(t) before the onset of AIDS, and
AIDS patients A(t). The AIDS patients are usually hospitalized or sexually inac-
tive, who are then assumed not to engage in HIV transmission activities, and do not
contribute to HIV infection accordingly. The dynamic flow chart describing HIV
infection between compartments is shown in Figure 1.

The following system of nonlinear ordinary differential equations is formulated
from Figure 1.
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Figure 1. Dynamic flow of HIV infection for the SEIA model.

dSu(t)

dt
= Λu − Su(t)gu(E(t), I(t))− dSu(t), (2.1a)

dSw(t)

dt
= Λw − Sw(t)gw(E(t))− dSw(t), (2.1b)

dE(t)

dt
= Su(t)gu(E(t), I(t)) + Sw(t)gw(E(t))− αE(t)− dE(t), (2.1c)

dI(t)

dt
= αE(t)− δI(t)− dI(t), (2.1d)

dA(t)

dt
= δI(t)− rA(t)− dA(t), (2.1e)

where Λu and Λw are the recruitment rates of the susceptible classes Su(t) and Sw(t),
respectively; d is the natural death rate; α is the transfer rate from asymptomatic
stage to symptomatic stage of HIV infection; δ is the transfer rate from symptomatic
stage to the full-blown AIDS; r is the AIDS-related death rate; gu(E(t), I(t)) is
the general nonlinear force of infection toward incautious susceptible, which can
be infected by both asymptomatic infective and symptomatic infective through
sexual contact; gw(E(t)) is the general nonlinear force of infection toward cautious
susceptible, which only can be infected by asymptomatic infective. The initial
conditions are listed below:

Su(0) > 0, Sw(0) > 0, E(0), I(0), A(0) ≥ 0, E(0) + I(0) > 0. (2.2)

Motivated by previous research [7, 9, 13, 20, 23, 24, 28], assume gu(E, I) and gw(E)
satisfies the following properties:

(H1) gu(E, I) is a real locally Lipschitz function in [0,+∞) × [0,+∞); gw(E) is a
real locally Lipschitz function on [0,+∞);
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(H2) gu(0, 0) = 0, gu(E, I) > 0 for E > 0, I > 0; gw(0) = 0, gw(E) > 0 for E > 0;

(H3)
∂gu(E, I)

∂E
> 0 and

∂gu(E, I)

∂I
> 0 for E, I ≥ 0; g

′

w(E) > 0 for all E ≥ 0;

(H4)
∂2gu(E, I)

∂E2
≤ 0,

∂2gu(E, I)

∂I2
≤ 0, and

∂2gu(E, I)

∂E∂I
= 0;

∂2gw(E)

∂E2
≤ 0;

(H5) gu(E, I)/E is continuous and monotonously non-increasing with respect to
E, for E, I > 0; Similarly, gu(E, I)/I is continuous and monotonously non-
increasing with respect to I, for E, I > 0; gw(E)/E is continuous and
monotonously non-increasing with respect to E, for E > 0.

3. Preliminary results

Let N(t) = Su(t) + Sw(t) + E(t) + I(t) + A(t). From system (2.1), we have the
equation for total population N(t):

dN(t)

dt
= Λu + Λw − dN − rA,

yielding

dN(t)

dt
≤ (Λu + Λw)− dN.

Therefore, the biologically feasible domain for system (2.1) is

Ω = {(Su, Sw, E, I, A) ∈ R5
+|0 ≤ Su + Sw + E + I +A ≤ (Λu + Λw)/d)}. (3.1)

Note that system (2.1) always has a disease-free equilibrium E0 = (S0
u, S

0
w, 0, 0, 0)

with S0
u = Λu/d and S0

w = Λw/d.

Follow the next generation method to calculate the basic reproduction number
for deterministic compartmental models [3, 26]. Denote x = (E, I,A, Su, Sw)T .
Using the same notations as [26], we rewrite system (2.1) as

dx

dt
= F (x)− V (x), (3.2)

where

F (x) = (Sugu(E, I) + Swgw(E), 0, 0, 0, 0)T , (3.3)

and

V (x) =



αE + dE

(δ + d)I − αE

(γ + d)A− δI

Sugu(E, I) + dSu − Λu

Swgw(E) + dSw − Λw


. (3.4)
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Denote

∂1gu(0, 0) =
∂gu(E, I)

∂E

∣∣∣∣
E=0,I=0

,

∂2gu(0, 0) =
∂gu(E, I)

∂I

∣∣∣∣
E=0,I=0

,

g
′

w(0) =
dgw(E)

∂E

∣∣∣∣
E=0

.

Set E = I = A = 0, and then x0 = (0, 0, 0, S0
u, S

0
w)T . Taking the Fréchet derivatives

of F (x) and V (x) and evaluating them at x0, we find

F =


Su∂1gu(0, 0) + Swg

′

w(0) Su∂2gu(0, 0) 0

0 0 0

0 0 0

 ,

and

V =


α+ d 0 0

−α δ + d 0

0 −d γ + d

 ,

where F is non-negative and V is non-singular. Additionally,

FV −1 =
1

(α+ d)(δ + d)(γ + d)


M1 M2 0

0 0 0

0 0 0

 ,

where

M1 = (Su∂1gu(0, 0) + Swg
′

w(0))(δ + d)(γ + d) + Su∂2gu(0, 0)α(γ + d)

and
M2 = Su∂2gu(0, 0)(γ + d)(α+ d).

The basic reproduction number of system (2.1) is given as follows.

R0 = ρ(FV −1) =
(S0

u∂1gu(0, 0) + S0
wg

′

w(0))(δ + d) + S0
u∂2gu(0, 0)α

(α+ d)(δ + d)
. (3.5)

4. Global stability of disease-free equilibrium

Considering the variable A(t) in (2.1e) decouples from the first four equations of
(2.1), we target the following subsystem for the rest of paper:

dSu(t)

dt
= Λu − Su(t)gu(E(t), I(t))− dSu(t), (4.1a)

dSw(t)

dt
= Λw − Sw(t)gw(E(t))− dSw(t), (4.1b)
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dE(t)

dt
= Su(t)gu(E(t), I(t)) + Sw(t)gw(E(t))− αE(t)− dE(t), (4.1c)

dI(t)

dt
= αE(t)− δI(t)− dI(t). (4.1d)

System (4.1) always has a disease-free equilibrium E0 = (S0
u, S

0
w, 0, 0), where S0

u =
Λu/d and S0

w = Λw/d. The Jacobian matrix of system (4.1) at E0 is

J(E0) =



−d 0 −S0
u∂1gu(0, 0) −S0

u∂2gu(0, 0)

0 −d −S0
wg

′

w(0) 0

0 0 S0
u∂1gu(0, 0) + S0

wg
′

w(0)− α− d S0
u∂2gu(0, 0)

0 0 α −δ − d


.

The characteristic equation of J(E0) is

det(λI − J(E0)) = 0. (4.2)

Obviously, equation (4.2) has four roots: a negative double root −d; and other two
roots satisfy the following equation

λ2 +B1λ+B2 = 0, (4.3)

where
B1 = −[S0

u∂1gu(0, 0) + S0
wg

′

w(0)− α− d− δ − d],

and

B2 = −[S0
u∂1gu(0, 0) + S0

wg
′

w(0)− α− d](δ + d)− αS0
u∂1gu(0, 0)

= (δ + d)(α+ d)(1−R0).

When R0 < 1, we have

S0
u∂1gu(0, 0) + S0

wg
′

w(0) < α+ d.

It infers that B1 > 0 and B2 > 0, which means that all the eigenvalues of matrix
J(E0) have negative real parts. Therefore, the disease-free equilibrium E0 is locally
asymptotically stable.

Next, we prove the global stability of E0. It is obvious from Eqs. (4.1a) and
(4.1b) that

Su(t) ≤ S0
u, Sw(t) ≤ S0

w.

Let
h1(E, I) = gu(E, I)− (∂1gu(0, 0)E + ∂2gu(0, 0)I),

and
h2(E) = gw(E)− g

′

w(0)E.

For E, I > 0, from assumptions (H1)∼(H5), we have

∂h1(E, I)

∂E
=
∂gu(E, I)

∂E
− ∂1gu(0, 0) < 0,

∂h1(E, I)

∂I
=
∂gu(E, I)

∂I
− ∂2gu(0, 0) < 0,

(4.4)
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and
∂2h1(E, I)

∂E2
=
∂2gu(E, I)

∂E2
< 0,

∂2h1(E, I)

∂I2
=
∂2gu(E, I)

∂I2
< 0,

∂2h1(E, I)

∂E∂I
=
∂2gu(E, I)

∂E∂I
= 0.

(4.5)

Together with h1(0, 0) = 0, we have h1(E, I) < 0 for all E, I > 0.

Similarly, for E > 0, we have

∂h2(E)

∂E
=
∂gw(E)

∂E
− g

′

w(0) < 0,

∂2h2(E)

∂E2
=
∂2gw(E)

∂E2
< 0.

(4.6)

Together with h2(0) = 0, we have h2(E) < 0 for all E > 0.

Therefore, we have

dE(t)

dt
≤ S0

u[∂1gu(0, 0)E + ∂2gu(0, 0)I] + S0
wg

′

w(0)E − αE − dE,

dI(t)

dt
≤ αE − δI − dI.

(4.7)

The following auxiliary system is then constructed:

dE(t)

dt
= [S0

u∂1gu(0, 0) + S0
wg

′

w(0)− α− d]E + S0
u∂2gu(0, 0)I,

dI(t)

dt
= αE − (δ + d)I.

(4.8)

The coefficient matrix of system (4.8) is:

MC =

S0
u∂1gu(0, 0) + S0

wg
′

w(0)− α− d S0
u∂2gu(0, 0)

α −(δ + d)

 . (4.9)

Discussions above indicate that all the eigenvalues of matrix MC have negative real
parts. Therefore,

lim
t→+∞

E(t) = 0, lim
t→+∞

I(t) = 0, (4.10)

and

lim
t→+∞

Su(t) = S0
u, lim

t→+∞
Sw(t) = S0

w. (4.11)

We then have the following results.

Theorem 4.1. The disease-free equilibrium E0 of system (4.1) is globally asymp-
totically stable when R0 ≤ 1, and unstable when R0 > 1.
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5. Existence and global stability of endemic equi-
librium

The existence and uniqueness of an endemic equilibrium is investigated in this
section. Let the right hand side of system (4.1) be zero.

Λu − Sugu(E, I)− dSu = 0, (5.1)

Λw − Swgw(E)− dSw = 0, (5.2)

Sugu(E, I) + Swgw(E)− αE − dE = 0, (5.3)

αE − δI − dI = 0. (5.4)

From (5.1), (5.2) and (5.4), we have

Su =
Λu

gu(E, I) + d
, Sw =

Λw

gw(E) + d
, E =

(δ + d)I

α
. (5.5)

Substituting (5.5) into (5.3) gives

Λugu(E, I)

gu(E, I) + d
+

Λwgw(E)

gw(E) + d
=

(α+ d)(δ + d)

α
I. (5.6)

Rewrite (5.6) as the following equation

1

d

(
Λu + Λw −

(α+ d)(δ + d)

α
I

)
=

Λu

gu(E, I) + d
+

Λw

gw(E) + d
. (5.7)

Let

f1(I) =
1

d

(
Λu + Λw −

(α+ d)(δ + d)

α
I

)
, (5.8)

f2(E, I) =
Λu

gu(E, I) + d
+

Λw

gw(E) + d
. (5.9)

Then (5.7) presents
f1(I) = f2(E, I). (5.10)

Moreover,

f1(0) =
1

d
(Λu + Λw), (5.11)

f2(E, 0) =
Λu

gu(E, 0) + d
+

Λw

gw(E) + d
. (5.12)

If E > 0, we have gu(E, 0) > 0, namely, f2(E, 0) < f1(0); If E = 0, we have
gw(0) = 0, namely, f2(E, 0) = f1(0). When f1(I) = 0, we have

Î =
(Λu + Λw)α

(α+ d)(δ + d)
, (5.13)

and f2(E, Î) > 0. Then f2(E, Î) > f1(Î). Next, the derivatives of f1 and f2 with
respect to I are calculated.

∂f2(E, I)

∂I

∣∣∣∣
I=0

= − (Λu∂1gu(E, 0) + Λwg
′

w(E))(δ + d) + Λu∂2gu(E, 0)α

αd2
< 0,

∂f1(I)

∂I

∣∣∣∣
I=0

= − (α+ d)(δ + d)

αd
< 0.

(5.14)
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Then at E = 0, we have

∂f2(E, I)

∂I

∣∣∣∣
I=0

− ∂f1(I)

∂I

∣∣∣∣
I=0

=
(α+ d)(δ + d)

αd
(1−R0). (5.15)

When R0 ≤ 1,
∂f2(E, I)

∂I

∣∣∣∣
I=0

− ∂f1(I)

∂I

∣∣∣∣
I=0

≥ 0; (5.16)

when R0 > 1,
∂f2(E, I)

∂I

∣∣∣∣
I=0

− ∂f1(I)

∂I

∣∣∣∣
I=0

< 0. (5.17)

𝟎,
𝜦𝒅 + 𝚲𝒘

𝒅
= (𝟎, 𝒇𝟐(𝟎, 𝟎))

𝒚

𝒚 = 𝒇𝟏(𝑰)

𝑰
( , 𝟎)

(    ,  𝒇𝟐( , 𝑬))

(𝟎, 𝒇𝟐(𝑬, 𝟎))

𝒚 = 𝒇𝟐(𝑬, 𝑰)

if 𝑬 > 𝟎,

(a) R0 ≤ 1

𝟎,
𝜦𝒅 + 𝚲𝒘

𝒅
= (𝟎, 𝒇𝟐(𝟎, 𝟎))

𝒚

𝒚 = 𝒇𝟏(𝑰)

𝑰
( , 𝟎)

(    ,  𝒇𝟐( , 𝑬))

(𝟎, 𝒇𝟐(𝑬, 𝟎))

𝒚 = 𝒇𝟐(𝑬, 𝑰)

if 𝑬 > 𝟎,

(b) R0 > 1

Figure 2. Sketch map of y = f1(I) and y = f2(E, I) for E ≥ 0.

Fig. 2 indicates that system (4.1) has a unique endemic equilibrium E∗ =
(S∗u, S

∗
w, E

∗, I∗) when R0 > 1. The components of E∗ satisfy

Λu − S∗ug∗u − dS∗u = 0,

Λw − S∗wg∗w − dS∗w = 0,

S∗ug
∗
u + S∗wg

∗
w − αE∗ − dE∗ = 0,

αE∗ − δI∗ − dI∗ = 0,

(5.18)

where g∗u = gu(E∗, I∗) and g∗w = gw(E∗).
Next, the second Lyapunov criterion is employed to prove the global stability of

the endemic equilibrium E∗. Define

V (Su, Sw, E, I) =

(
Su − S∗u − S∗u ln

(
Su

S∗u

))
+

(
Sw − S∗w − S∗w ln

(
Sw

S∗w

))
+

S∗ug
∗
u

(δ + d)I∗

(
I − I∗ − I∗ ln

(
I

I∗

))
+

(
E − E∗ − E∗ ln

(
E

E∗

))
.

(5.19)
It is easy to verify that V ≥ 0, where V = 0 if and only if (Su, Sw, E, I) =
(S∗u, S

∗
w, E

∗, I∗).
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Differentiating V (Su, Sw, E, I) along the solution of system (4.1) yields

dV

dt
(Su, Sw, E, I)

∣∣∣∣
(4.1)

= P1 + P2 + P3 + P4, (5.20)

where Pi(i = 1, · · · , 4) are calculated as follows.

P1 =

(
1− S∗u

Su

)
S

′

u

=

(
1− S∗u

Su

)
(Λu − Sugu − dSu)

=

(
1− S∗u

Su

)
(S∗ug

∗
u + dS∗u − Sugu − dSu)

= dS∗u

(
2− S∗u

Su
− Su

S∗u

)
+ S∗ug

∗
u

(
1− S∗u

Su
− Sugu
S∗ug

∗
u

+
gu
g∗u

)
,

(5.21)

P2 =

(
1− S∗w

Sw

)
S

′

w

=

(
1− S∗w

Sw

)
(Λw − Swgw − dSw)

=

(
1− S∗w

Sw

)
(S∗wg

∗
w + dS∗w − Swgw − dSw)

= dS∗w

(
2− S∗w

Sw
− Sw

S∗w

)
+ S∗wg

∗
w

(
1− S∗w

Sw
− Swgw
S∗wg

∗
w

+
gw
g∗w

)
,

(5.22)

P3 =

(
1− E∗

E

)
E

′

=

(
1− E∗

E

)
(Sugu + Swgw − αE − dE)

=

(
1− E∗

E

)(
Sugu + Swgw −

(S∗ug
∗
u + S∗wg

∗
w)E

E∗

)
= S∗ug

∗
u

(
1− E

E∗
− SuguE

∗

S∗ug
∗
uE

+
Sugu
S∗ug

∗
u

)
+S∗wg

∗
w

(
1− E

E∗
− SwgwE

∗

S∗wg
∗
wE

+
Swgw
S∗wg

∗
w

)
,

(5.23)

and

P4 =
S∗ug

∗
u

(δ + d)I∗

(
1− I∗

I

)
I

′

=
S∗ug

∗
u

(δ + d)I∗

(
1− I∗

I

)
(αE − δI − dI)

=
S∗ug

∗
u

(δ + d)I∗

(
1− I∗

I

)(
(δ + d)I∗E

E∗
− (δ + d)I

)
= S∗ug

∗
u

(
E

E∗
− EI∗

E∗I
− I

I∗
+ 1

)
.

(5.24)
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We then have

P1 + P2 + P3 + P4 = dS∗u

(
2− S∗u

Su
− Su

S∗u

)
+ dS∗w

(
2− S∗w

Sw
− Sw

S∗w

)
+S∗ug

∗
u

(
3− S∗u

Su
− EI∗

E∗I
− I

I∗
− SuguE

∗

S∗ug
∗
uE

+
gu
g∗u

)
+S∗wg

∗
w

(
2− S∗w

Sw
− E

E∗
− SwgwE

∗

S∗wg
∗
wE

+
gw
g∗w

)
.

(5.25)

Since
gu
g∗u
− I

I∗
=

(
gu
g∗u
− 1

)(
1− g∗uI

guI∗

)
+ 1− g∗uI

guI∗
, (5.26)

and
gw
g∗w
− E

E∗
=

(
gw
g∗w
− 1

)(
1− g∗wE

gwE∗

)
+ 1− g∗wE

gwE∗
, (5.27)

then

P1 + P2 + P3 + P4 = dS∗u

(
2− S∗u

Su
− Su

S∗u

)
+ dS∗w

(
2− S∗w

Sw
− Sw

S∗w

)
+S∗ug

∗
u

(
4− S∗u

Su
− SuguE

∗

S∗ug
∗
uE
− g∗uI

guI∗
− EI∗

E∗I

)
+S∗wg

∗
w

(
3− Sw

S∗w
− SwgwE

∗

S∗wg
∗
wE

− g∗uE

guE∗

)
+S∗ug

∗
u

(
gu
g∗u
− 1

)(
1− g∗uI

guI∗

)
+S∗wg

∗
w

(
gw
g∗w
− 1

)(
1− g∗wE

gwE∗

)
.

(5.28)

Therefore,

P1+P2+P3+P4 ≤ S∗ug∗u
(
gu
g∗u
− 1

)(
1− g∗uI

guI∗

)
+ S∗wg

∗
w

(
gw
g∗w
− 1

)(
1− g∗wE

gwE∗

)
.

Using the monotonous conditions in (H1)∼(H5), we have(
gu
g∗u
− 1

)(
1− g∗uI

guI∗

)
=

I

g∗ugu
(gu − g∗u)

(
gu
I
− g∗u
I∗

)
≤ 0 (5.29)

and (
gw
g∗w
− 1

)(
1− g∗wE

gwE∗

)
=

E

g∗wgw
(gw − g∗w)

(
gw
E
− g∗w
E∗

)
≤ 0. (5.30)

Then
dV (t)

dt
= P1 + P2 + P3 + P4 ≤ 0. (5.31)

And dV (t)/dt = 0 if and only if (Su, Sw, E, I) = (S∗u, S
∗
w, E

∗, I∗). According to the
second Lyapunov criterion [14], the endemic equilibrium of system (4.1) is globally
asymptotically stable. The results are summarized in following theorem.

Theorem 5.1. System (4.1) has a unique endemic equilibrium E∗, and it is globally
asymptotically stable when R0 > 1.
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6. Numerical considerations

The following specific forms of gu(E, I) and gw(E) are chosen to illustrate the
obtained theoretical results for model (2.1):

gu(E, I) =
β1E

1 + α1E
+

β2I

1 + α2I
, gw(E) =

β3E

1 + α3E
, (6.1)

which satisfy conditions (H1)∼(H5).
The parameter values are assigned as follows: Λu = 7, Λw = 5, d = 0.0196,

δ = 0.4, α = 0.2, r = 0.15, α1 = 0.02, α2 = 0.03, α3 = 0.01. The initial condition
(Su(0), Sw(0), E(0), I(0), A(0)) = (200; 150; 80; 40; 20). Fig. 3(a) presents the global
asymptotic stability of the disease-free equilibrium when R0 < 1 with β1 = 0.0003,
β2 = 0.0002, β3 = 0.00025; Fig. 3(b) presents the global asymptotic stability of the
endemic equilibrium when R0 > 1 with β1 = 0.003, β2 = 0.002, β3 = 0.004.

(a) (b)

Figure 3. Illustration of the dynamical nature of Su(t), Sw(t), E(t), I(t), A(t) when (a)R0 = 0.9334 < 1
and (b) R0 = 11.0760 > 1.

Next, the effects of incorporating two susceptible classes and two incidence func-
tions on disease transmission are investigated by considering the basic reproduction
number R0. If we do not distinguish classes Su and Sw, i.e., both of them getting
infected through the same infection force gu(E, I), (2.1) turns into the following
system:

dSu(t)

dt
= Λu − Sugu(E, I)− dSu, (6.2a)

dSw(t)

dt
= Λw − Swgu(E, I)− dSw, (6.2b)

dE(t)

dt
= Sugu(E, I) + Swgu(E, I)− αE − dE, (6.2c)

dI(t)

dt
= αE − δI − dI, (6.2d)

dA(t)

dt
= δI − rA− dA. (6.2e)



Global results for an HIV/AIDS model 347

Denote S = Su + Sw and Λ = Λu + Λw. By adding (6.2a) and (6.2b), we have

dS(t)

dt
= Λ− Sgu(E, I)− dS,

dE(t)

dt
= Sgu(E, I)− αE − dE.

(6.3)

System (6.3) is the classic model equations for S(t) and E(t).
The basic reproduction number for model (6.2) is calculated following the same

method in section 3:

R̃0 =
(S0

u∂1gu(0, 0) + S0
w∂1gu(0, 0))(δ + d) + (S0

u∂2gu(0, 0) + S0
w∂2gu(0, 0))α

(α+ d)(δ + d)
.

It is checked that

R0 ≤ R̃0. (6.4)

This implies that system (2.1) has a smaller basic reproduction number because
of the introduction of cautious susceptible Sw, which does not interact with symp-
tomatic infective. Moreover, Fig. 4 shows the consistent result that the cautious
individuals Sw(t) and the resulting infection force gw(E) have positive impact on
HIV transmission .

Figure 4. Effect of the introduction of cautious class and multiple transmission functions on HIV/AIDS
prevalence when R0 > 1.

7. Conclusion

In this paper, an HIV/AIDS epidemic model is proposed, incorporating the cautious
and incautious susceptible classes. The incautious susceptible can be infected by
both the asymptomatic and the symptomatic infectives. However, the cautious
susceptible can only get infected by asymptomatic infectives. This results in two
types of general nonlinear incidence function.

The basic reproduction number R0 is derived by the next generation method,
which is crucial to the global dynamics of the model system. The system only has a
globally asymptotically stable disease-free equilibrium when R0 ≤ 1, and it implies
that the disease eventually dies out; the system has a unique globally asymptotically
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stable endemic equilibrium when R0 > 1, and it means that the disease becomes
endemic in the long run.

The introduction of cautious susceptible may reduce the basic reproduction num-
ber to some extent through avoiding excessive contact with symptomatic infectives
(presence of two nonlinear infection force functions). This in turn mitigates the
HIV epidemic and give hints for the role that the mass media may play in disease
prevention and control by raising public awareness.
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