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GLOBAL RELAXED MODULUS-BASED
SYNCHRONOUS BLOCK MULTISPLITTING

MULTI-PARAMETERS METHODS FOR
LINEAR COMPLEMENTARITY PROBLEMS

Litao Zhang1,2,3, Yifan Zhang1 and Xianyu Zuo4,†

Abstract Recently, Bai and Zhang [Numerical Linear Algebra with Applica-
tions, 2013, 20, 425–439] constructed modulus-based synchronous multisplit-
ting methods by an equivalent reformulation of the linear complementarity
problem into a system of fixed-point equations and studied the convergence of
them; Li et al. [Journal of Nanchang University (Natural Science), 2013, 37,
307–312] studied synchronous block multisplitting iteration methods; Zhang
and Li [Computers and Mathematics with Application, 2014, 67, 1954–1959]
analyzed and obtained the weaker convergence results for linear complemen-
tarity problems. In this paper, we generalize their algorithms and further
study global relaxed modulus-based synchronous block multisplitting multi-
parameters methods for linear complementarity problems. Furthermore, we
give the weaker convergence results of our new method in this paper when the
system matrix is a block H+−matrix. Therefore, new results provide a guar-
antee for the optimal relaxation parameters, please refer to [A. Hadjidimos,
M. Lapidakis and M. Tzoumas, SIAM Journal on Matrix Analysis and Ap-
plications, 2012, 33, 97–110, (dx.doi.org/10.1137/100811222)], where optimal
parameters are determined.

Keywords Global relaxed modulus-based method, linear complementarity
problem, block multisplitting, block H+−matrix, synchronous multisplitting.
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1. Introduction
Consider the linear complementarity problem, abbreviated as LCP(q, A), for finding
a pair of real vectors r and z ∈ Rn such that

r := Az + q ≥ 0, z ≥ 0 and zT(Az + q) = 0, (1.1)
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where A = (aij) ∈ Rn×n is a given large, sparse and real matrix and
q = (q1, q2, ..., qn)

T ∈ Rn is a given real vector. Here, zT and ≥ denote the transpose
of the vector z and the componentwise defined partial ordering between two vectors,
respectively.

Many problems in scientific computing and engineering applications may lead
to solutions of LCPs of the form (1.1). For example, the linear complementar-
ity problem may arise from application problems such as the convex quadratic
programming, the Nash equilibrium point of the bimatrix game, the free bound-
ary problems of fluid dynamics etc. (e.g. see [15, 17] and the references therein).
Some solvers for LCP(q, A) with a special matrix A were proposed [2–8, 14, 16, 20].
Recently, many people have focused the solver of LCP(q, A) with an algebra equa-
tion [7–9, 11–14, 16, 20, 29, 33–42]. In particular Bai proposed a modulus-based
matrix multisplitting iteration method for solving LCP(q, A) and presented conver-
gence analysis for the proposed methods; see [7, 8]. Zhang and Ren [33] extended
the condition of a compatible H−splitting to that of an H-splitting. Li [27] ex-
tended the modulus-based matrix splitting iteration method to more general cases.
Bai [10] presented parallel matrix block multisplitting relaxation iteration methods
and established the convergence theory of these new methods in a thorough manner.
Li et al. [28] studied synchronous block multisplitting iteration methods. Zhang
and Li [35] generalized Bai and Zhang’s methods [1] and studied modulus-based
synchronous multisplitting multi-parameters methods for linear complementarity
problems.

In this paper, we generalize the methods of Bai and Zhang’s [1] and Zhang and
Li’s [35] from point form to block form according to the modulus-based synchronous
multisplitting iteration methods and consider global relaxed modulus-based syn-
chronous block multisplitting multi-parameters method for solving LCP(q, A). More-
over, we give some theoretical analysis and improve some existing convergence re-
sults in [1, 28].

The rest of this paper is organized as follows: In section 2, we give some notations
and lemmas. In section 3, we propose global relaxed modulus-based synchronous
block multisplitting multi-parameters method for solving LCP(q, A). In section 4,
we give the convergence analysis for the proposed method.

2. Notations and Lemmas
In order to study mudulus-based synchronous block multisplitting iteration methods
for solving LCP(q, A), let us introduce some definitions and lemmas.

A matrix A = (aij) is called an M -matrix if aij ≤ 0 for i ̸= j and A−1 ≥ 0. The
comparison matrix ⟨A⟩ = (αij) of matrix A = (aij) is defined by: αij = |aij |, if
i = j;αij = −|aij |, if i ̸= j. A matrix A is called an H-matrix if ⟨A⟩ is an M -matrix
and is called an H+-matrix if it is an H-matrix with positive diagonal entries [29].
Let ρ(A) denote the spectral radius of A. A representation A = M −N is called a
splitting of A when M is nonsingular. Let A and B be M -matrices. If A ≤ B, then
A−1 ≥ B−1. Finally, we define by Rn

+ = {x|x ≥ 0, x ∈ Rn}.

Definition 2.1 ( [10]). Define the set:
(1)Ln,I(n1, n2, ..., np) = {A = Aij ∈ Ln(n1, n2, ..., np)|Aii ∈ L(Rni)
is nonsingular (i = 1, 2, ..., p)};
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(2) Ld
n,I(n1, n2, ..., np) = {A = diag(A11, A22, ..., App)|Aii ∈ L(Rni)

is nonsingular (i = 1, 2, ..., p)̇

Definition 2.2 ( [30]). Let A ∈ Ln,I(n1, n2, ..., np), and (I)-type block comparison
matrix ⟨M⟩ = (⟨M⟩ij) ∈ L(Rn) and (II)-type block comparison matrix ⟨⟨M⟩⟩ =
(⟨⟨M⟩⟩ij) ∈ L(Rn) are defined as

⟨M⟩ij =

∥M−1
ii ∥−1, i = j

−∥Mij∥ , i ̸= j
i, j = 1, 2, ..., p

⟨⟨M⟩⟩ij =

1, i = j

−∥M−1
ii Mij∥, i ̸= j

i, j = 1, 2, ..., p

respectively.

Moreover, based on block matrix A∈Ln,I(n1, n2, ..., np) and L∈Ln,I(n1, n2, ..., np),
let D(L) = diag(L11, L22, ..., Lpp), B(L) = D(L)−L, J(A) = D(A)−1B(A), µ1(A) =
ρ(J⟨A⟩), µ2(A) = ρ(I − ⟨⟨A⟩⟩), using definition 2.2, then we easily verify

⟨I − J(A)⟩ = ⟨⟨I − J(A)⟩⟩ = ⟨⟨A⟩⟩, µ2(A) ≤ µ1(A).

Definition 2.3 ( [30]). Let A∈Ln,I(n1,n2, ...,np), if there exist P,Q∈Ld
n,I(n1,n2, ...,np),

such that ⟨PAQ⟩ is M -matrix, then A is called (I)-type block H-matrix(H(I)
B (P,Q)-

matrix) about nonsingular block matrices P,Q; such that ⟨⟨PAQ⟩⟩ is M -matrix,
then A is called (II)-type block H-matrix(H(II)

B (P,Q)-matrix) about nonsingular
block matrices P,Q.

Definition 2.4 ( [30]). Let A ∈ Ln,I(n1, n2, ..., np), then [A] = (∥Mij∥) ∈ L(Rp)
is called block absolute value of block matrix A. Similarly, we may define block
absolute value of block vector x ∈ Vn(n1, n2, ..., n

p) as [x] ∈ Rn.

Lemma 2.5 ( [10]). Let A,B ∈ Ln,I(n1, n2, ..., np), x, y ∈ Vn(n1, n2, ..., np), γ ∈ R1,
then

(1) |[A]− [B]| ≤ [A+B] ≤ [A] + [B](|[x]− [y]| ≤ [x+ y] ≤ [x] + [y]);
(2) [AB] ≤ [A][B]([Ax] ≤ [A][x]);
(3) [γA] ≤ |γ|[A](γ[x] ≤ |γ|[x]);
(4) ρ(A) ≤ ρ(|A|) ≤ ρ([A]).

Lemma 2.6( [10]). Let A,B ∈ Ln,I(n1, n2, ..., np) is H
(I)
B (P,Q)-matrix, then

(1) A is nonsingular;
(2) [(PAQ)−1] ≤ ⟨PAQ⟩−1;
(3) µ1(PAQ) < 1.

Lemma 2.7 ( [10]). Let A,B ∈ Ln,I(n1, n2, ..., np) is H
(II)
B (P,Q)-matrix, then

(1) A is nonsingular;
(2) [(PAQ)−1] ≤ ⟨⟨PAQ⟩⟩−1[D(PAQ)−1];
(3) µ2(PAQ) < 1.

Definition 2.8 ( [10]). Define the set:
(1) Ω

(I)
B (M) = {F = (Fij) ∈ Ln,I(n1, n2, ..., np) |∥ F−1

ii ∥=∥ M−1
ii ∥, ∥ Fij ∥=∥

Mij ∥ (i ̸= j), i, j = 1, 2, ..., p};
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(2) Ω
(II)
B (M) = {F = (Fij) ∈ Ln,I(n1, n2, ..., np) |∥ F−1

ii Fij ∥=∥ M−1
ii Mij ∥, i, j =

1, 2, ..., p},
express the same mode set of (I)-type and (II)-type associated with the matrix
M = (Mij) ∈ Ln,I(n1, n2, ..., np), respectively.

Lemma 2.9 ( [18]). Let A be an H-matrix. Then A is nonsingular, and |A−1| ≤
⟨A⟩−1.

Lemma 2.10 ( [32]). Let A = (aij) ∈ Zn×n which has all positive diagonal entries.
A is an M -matrix if and only if ρ(B) < 1, where B = D−1C, D = diag(A), A =
D − C.

Lemma 2.11 ( [4]). A ∈ Rn×n be an H+-matrix. Then, the LCP(q, A) has a
unique solution for any q ∈ Rn.

Lemma 2.12 ( [7]). Let A = M −N be a splitting of the matrix A ∈ Rn×n,Ω be
a positive diagonal matrix, and γ a positive constant. Then, for the LCP(q, A) the
following statements hold true:

(i) if (z, r) is a solution of the LCP(q, A), then x = 1
2γ(z − Ω−1r) satisfies the

implicit fixed-point equation

(Ω +M)x = Nx+ (Ω−A)|x| − γq; (2.1)

(ii) if x satisfies the implicit fixed-point equation (2), then

z = γ−1(|x|+ x) and r = γ−1Ω(|x| − x) (2.2)

is a solution of the LCP(q, A).

3. GRMSBMMAOR methods
At first, we introduce the concept of multisplitting method and the detailed process
of parallel iterative method.

{Mk, Nk, Ek}lk=1 is a multisplitting of block matrix A if
1) A = Mk −Nk,det(Mk) ̸= 0 is a splitting for k = 1, 2, ..., l;

2) Ek = diag(Ek
11, ..., E

k
pp), k = 1, 2, ..., l, and

l∑
k=1

∥E(k)
ii ∥ = 1, i = 1, 2, ..., p,

where the block matrices Mk, Nk, Ek ∈ Ln(n1, n2, ..., np), and ∥ • ∥ expresses con-
sistent matrix norm satisfying ∥I∥ = 1 (I ∈ L(Rm) is an unit matrix).

Given a positive diagonal matrix Ω and a positive constant γ, form Lemma 2.13,
we know that if x satisfies either of the implicit fixed-point equations

(Ω +Mk)x = Nkx+ (Ω−A)|x| − γq, k = 1, 2, ..., l, (3.1)

then
z = γ−1(|x|+ x) and r = γ−1Ω(|x| − x) (3.2)

is a solution of the LCP(q, A).
Based on block matrix A ∈ Rm×m, the corresponding block diagonal matrix is

D = diag(A11, A22, ..., App), and Lk is block strictly triangular matrix, Uk = D −



Global relaxed modulus-based synchronous block. . . 1271

Lk−A, then (D−Lk, Uk, Ek) is a multisplitting of block matrix A ∈ Rm×m. With
the equivalent reformulations (4), (5) and accelerated over-relaxation (AOR) of the
LCP(q, A), we can establish the following global relaxed modulus-based synchronous
block multisplitting multi-parameters AOR method (GRMSBMMAOR), which is
similar to Method 3.1 in [19] and Method 3.1 in [28].
Method 3.1 (The GRMSBMMAOR method for LCP(q, A)).
Let (Mk, Nk, Ek)(k = 1, 2, ...l) be a multisplitting of the system matrix A ∈ Rn×n.
Given an initial vector x(0) ∈ Rn for m = 0, 1, ... until the iteration sequence
{z(m)}∞m=0 ⊂ Rn

+ is convergent, compute z(m+1) ∈ Rn
+ and x(m+1) ∈ Rn

+ by

z(m+1) =
1

γ
(|x(m+1)|+ x(m+1))

and x(m,k) ∈ Rn according to

x(m+1) = ω

l∑
k=1

Ekx
(m,k) + (1− ω)x(m),

where x(m,k), k = 1, 2, ..., l, are obtained by solving the linear systems

(αkΩ+D−βkLk)x
(m,k)=[(1−αk)D+(αk−βk)Lk+αkUk]x

(m)+αk[(Ω−A)|x(m)|−γq],

k = 1, 2, ..., l,
(3.3)

respectively.

Remark 3.1. In Method 3.1, when the coefficient matrix A is point form and
αk = α, βk = β, ω = 1, the GRMSBMMAOR method reduces to the modulus-based
synchronous multisplitting AOR method (MSMAOR) [1]; When the coefficient ma-
trix A is point form and ω = 1, the GRMSBMMAOR method reduces to the
modulus-based synchronous multisplitting multi-parameters AOR method (MSM-
MAOR) [35]; When ω = 1, the GRMSBMMAOR method reduces to the modulus-
based synchronous block multisplitting multi-parameters AOR method (MSBM-
MAOR) [28]; When the parameters (αk, βk, ω) = (αk, αk, 1), (1, 1, 1) and (1, 0, 1),
the GRMSBMMAOR method reduces to the modulus-based synchronous block mul-
tisplitting multi-parameters successive over-relaxation (MSBMMSOR), modulus-
based synchronous block multisplitting Gauss-Seidel (MSBMGS) and modulus-
based synchronous block multisplitting Jacobi (MSBMJ) methods, respectively;
When the parameters (αk, βk, ω) = (αk, αk, ω), (1, 1, ω) and (1, 0, ω), the GRMSBM-
MAOR method reduces to the global relaxed modulus-based synchronous block mul-
tisplitting multi-parameters successive over-relaxation (GRMSBMMSOR), global
relaxed modulus-based synchronous block multisplitting G-S (GRMSBMMGS) and
global relaxed modulus-based synchronous block multisplitting Jacobi (GRMSB-
MMJ) methods, respectively.

4. Convergence analysis
In 2013, based on the modulus-based synchronous multisplitting AOR method, Bai
and Zhang [1] obtained the following results.
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Theorem 4.1 ( [1]). Let A ∈ Rn×n be an H+-matrix, with D =diag(A) and
B = D−A, and let (Mk, Nk, Ek)(k = 1, 2, ..., l) and (D−Lk, Uk, Ek)(k = 1, 2, ..., l)
be a multisplitting and a triangular multisplitting of the matrix A, respectively.
Assume that γ > 0 and the positive diagonal matrix Ω satisfies Ω ≥ D. If A =
D − Lk − Uk(k = 1, 2, ..., l) satisfies ⟨A⟩ = D − |Lk| − |Uk|(k = 1, 2, ..., l), then the
iteration sequence {z(m)}∞m=0 generated by the MSMAOR iteration method converges
to the unique solution z∗ of LCP(q, A) for any initial vector z(0) ∈ Rn

+, provided the
relaxation parameters α and β satisfy

0 < β ≤ α <
1

ρ(D−1|B|)
.

In 2013, based on the modulus-based synchronous block multisplitting AOR
method, Li et al. [28] analyzed the following results.

Theorem 4.2( [28]). Let A ∈ Ln,I(n1, n2, ..., np) be a block H
(I)
B (P,Q)-matrix,

with H ∈ Ω
(I)
B (PAQ), and let (M̄k, N̄k, Ek)(k = 1, 2, ..., l) and (D̄− L̄k, Ūk, Ek)(k =

1, 2, ..., l) be a block mulisplitting and a block triangular multisplitting of block H
matrix, respectively. Assume that γ > 0 and the positive matrix Ω satisfies Ω ≥
D(H) and diag(Ω) = diag(D(H)). If H = D̄ − L̄k − Ūk(k = 1, 2, ..., l) satisfies
⟨H⟩ = ⟨D̄⟩ − [L̄k]− [Ūk] = D⟨H⟩ − B⟨H⟩(k = 1, 2, ..., l), then the iteration sequence
{z(m)}∞m=0 generated by the MSBMAOR iteration method converges to the unique
solution z∗ of LCP(q, A) for any initial vector z(0) ∈ Rn

+, provided the relaxation
parameters αk and βk satisfy

0 < β ≤ α <
1

µ1(PAQ)
.

In 2014, based on the modulus-based synchronous multisplitting multi-parameters
AOR method, Zhang and Li [35] studied the following results.

Theorem 4.3 ( [35]). Let A ∈ Rn×n be an H+-matrix, with D =diag(A) and
B = D−A, and let (Mk, Nk, Ek)(k = 1, 2, ..., l) and (D−Lk, Uk, Ek)(k = 1, 2, ..., l)
be a multisplitting and a triangular multisplitting of the matrix A, respectively.
Assume that γ > 0 and the positive diagonal matrix Ω satisfies Ω ≥ D. If A =
D − Lk − Uk(k = 1, 2, ..., l) satisfies ⟨A⟩ = D − |Lk| − |Uk|(k = 1, 2, ..., l), then
the iteration sequence {z(m)}∞m=0 generated by the MSMMAOR iteration method
converges to the unique solution z∗ of LCP(q, A) for any initial vector z(0) ∈ Rn

+,
provided the relaxation parameters αk and βk satisfy

0 < βk ≤ αk ≤ 1 or 0 < βk <
1

ρ(D−1|B|)
, 1 < αk <

1

ρ(D−1|B|)
.

Based global relaxed modulus-based synchronous block multisplitting multi-
parameters AOR method, we will present a weaker convergence results of the multi-
splitting methods for the linear complementarity problem when the system matrix
is a block H+-matrix, which is as follows:

Theorem 4.4. Let A ∈ Ln,I(n1, n2, ..., np) be a block H
(I)
B (P,Q)-matrix, with

H ∈ Ω
(I)
B (PAQ), and let (M̄k, N̄k, Ek)(k = 1, 2, ..., l) and (D̄ − L̄k, Ūk, Ek)(k =
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1, 2, ..., l) be a block mulisplitting and a block triangular multisplitting of block H
matrix, respectively. Assume that γ > 0 and the positive matrix Ω satisfies Ω ≥
D(H) and diag(Ω) = diag(D(H)). If H = D̄ − L̄k − Ūk(k = 1, 2, ..., l) satisfies
⟨H⟩ = ⟨D̄⟩ − [L̄k]− [Ūk] = D⟨H⟩ − B⟨H⟩(k = 1, 2, ..., l), then the iteration sequence
{z(m)}∞m=0 generated by the GRMSBMMAOR iteration method converges to the
unique solution z∗ of LCP(q, A) for any initial vector z(0) ∈ Rn

+, provided the
relaxation parameters αk and βk satisfy

0 < βk ≤ αk ≤ 1, 0 < ω < 2
1+ρ′ or

0 < βk < 1
µ1(PAQ) , 1 < αk < 1

µ1(PAQ) , 0 < ω < 2
1+ρ′ ,

(4.1)

where µ1(PAQ) = ρ(D−1
⟨H⟩B⟨H⟩) = ρ(J⟨H⟩), ρ

′
= max

1≤k≤l
{1 − 2αk + 2αkρϵ, 2βkρϵ −

1, 2αkρϵ − 1}.
Proof. From Lemma 2.11 and (3.3), for the GRMSBMMAOR method, it holds
that

(αkΩ+ D̄ − βkL̄k)x∗=[(1− αk)D̄+(αk − βk)L̄k+αkŪk]x∗+αk[(Ω−H)|x∗|−γq],

k = 1, 2, ..., l. (4.2)

By subtracting (4.2) from (3.3), we have

x(m+1)−x∗ =ω
l∑

k=1

Ek(αkΩ+D̄−βkL̄k)
−1[(1−αk)D̄+(αk−βk)L̄k+αkŪk](x

(m)−x∗)

+ω
l∑

k=1

Ek(αkΩ+D̄v−βkL̄k)
−1αk(Ω−H)(|x(m)|−|x∗|)+(1−ω)(x(m)−x∗).

(4.3)
By taking absolute values on both sides of the equality (4.3), estimating |[x(m)] −
[x∗]| ≤ [x(m) − x∗] and amplifying, we may obtain

[x(m+1) − x∗] ≤ ω
l∑

k=1

[Ek][(αkΩ+ D̄ − βkL̄k)
−1][|1− αk|[D̄] + |αk − βk|[L̄k]

+αk[Ūk]][x
(m)−x∗]+ω

l∑
k=1

[Ek][(αkΩ+D̄−βkL̄k)
−1]αk[Ω−H]([x(m)−x∗])

+|1− ω|[x(m) − x∗].

Since [Ω −H] = ⟨Ω⟩ − (D⟨H⟩ − B⟨H⟩) and B⟨H⟩ = [L̄k] + [Ūk], [D̄] ≥ D⟨H⟩, so we
have

[x(m+1) − x∗] ≤ ω
l∑

k=1

[Ek][(αkΩ+ D̄ − βkL̄k)
−1][|1− αk|[D̄] + |αk − βk|[L̄k] + αk[Ūk]

+αk[Ω−H]][x(m) − x∗] + |1− ω|[x(m) − x∗]

≤ ω
l∑

k=1

[Ek](αk⟨Ω⟩+D⟨H⟩ − βk[L̄k])
−1[(|1− αk| − αk)D⟨H⟩

+(|αk−βk|+αk)[L̄k]+2αk[Ūk]+αk⟨Ω⟩][x(m)−x∗]+|1−ω|[x(m)−x∗]

= ω
l∑

k=1

[Ek]HGRMSBMMAOR[x
(m) − x∗] + |1− ω|[x(m) − x∗]

= {ω
l∑

k=1

[Ek]HGRMSBMMAOR + |1− ω|I}[x(m) − x∗]

= HGRMSBMMAOR[x
(m) − x∗].

(4.4)
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where

HGRMSBMMAOR = ω
l∑

k=1

[Ek]HGRMSBMMAOR + |1− ω|I,

HGRMSBMMAOR = (αk⟨Ω⟩+D⟨H⟩ − βk[L̄k])
−1[(|1− αk| − αk)D⟨H⟩

+(|αk − βk|+ αk)[L̄k] + 2αk[Ūk] + αk⟨Ω⟩].

(4.5)

The error relationship (4.4) is the base for proving the convergence of GRMSB-
MMAOR method. By making use of Lemmas 2.5 and 2.6, defining ϵ(m) = x(m)−x∗
and arranging similar terms together, we can obtain

[ϵ(m+1)] = [x(m+1) − x∗]

≤ HGRMSBMMAOR[x
(m) − x∗]

= {ω
l∑

k=1

[Ek]HGRMSBMMAOR + |1− ω|I}[x(m) − x∗].

(4.6)

Case 1: Let 0 < βk ≤ αk ≤ 1, 0 < ω < 2
1+ρ′ . Define

Mk = αk⟨Ω⟩+D⟨H⟩ − βk[L̄k],

N1
k = (|1− αk| − αk)D⟨H⟩ + (|αk − βk|+ αk)[L̄k] + 2αk[Ūk] + αk⟨Ω⟩

= (1− 2αk)D⟨H⟩ + (2αk − βk)[L̄k] + 2αk[Ūk] + αk⟨Ω⟩

= Mk − 2αkD⟨H⟩ + 2αkB⟨H⟩.

(4.7)

So, we have

HGRMSBMMAOR = M−1
k N1

k = M−1
k (Mk − 2αkD⟨H⟩ + 2αkB⟨H⟩)

= I − 2αkM
−1
k (D⟨H⟩ −B⟨H⟩).

Through further analysis, we have

[HGRRMSBMMAOR] ≤ M−1
k [Mk − 2αk(D⟨H⟩ −B⟨H⟩)]

≤ I − 2αkM
−1
k D⟨H⟩(I −D−1

⟨H⟩B⟨H⟩).

Since A ∈ Ln,I(n1, n2, ..., np) is a block H
(I)
B (P,Q)-matrix, by Lemmas 2.6 and

2.7 we know µ1(PAQ) = ρ(D−1
⟨H⟩B⟨H⟩) = ρ(J⟨H⟩) < 1, Jϵ = J⟨H⟩ + ϵeeT , where

e denotes the vector e = (1, 1, ..., 1)T ∈ Rn. Since Jϵ is nonnegative, the matrix
J⟨H⟩ + ϵeeT has only positive entries and irreducible for any ϵ > 0. By the Perron-
Frobenius theorem for any ϵ > 0, there is a vector xϵ > 0 such that

(J⟨H⟩ + ϵeeT )xϵ = ρϵxϵ,

where ρϵ = ρ(J⟨H⟩ + ϵeeT ) = ρ(Jϵ). Moreover, if ϵ > 0 is small enough, we have
ρϵ < 1 by continuity of the spectral radius. Because of 0 < αk ≤ 1, we also have
1− 2αk + 2αkρ < 1, and 1− 2αk + 2αkρϵ < 1. So

[HGRRMSBMMAOR] ≤ I − 2αkM
−1
k D⟨H⟩[I − (D−1

⟨H⟩B⟨H⟩ + ϵeeT )]

= I − 2αkM
−1
k D⟨H⟩[I − Jϵ].
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Multiplying xϵ in two sides of the above inequality, and M−1
k ≥ D−1

⟨H⟩, we can obtain

[HGRMSBMMAOR]xϵ ≤ xϵ − 2αkM
−1
k D⟨H⟩[1− ρ(Jϵ)]xϵ

≤ xϵ − 2αkD
−1
⟨H⟩D⟨H⟩[1− ρ(Jϵ)]xϵ

= (1− 2αk + 2αkρ(Jϵ))xϵ.

Based on Ek and the definition of [•], we know that
l∑

k=1

[Ek] = I. By (4.5), we have

[HGRMSMMAOR]xϵ ≤ ω
l∑

k=1

[Ek](1− 2αk + 2αkρ(Jϵ))xϵ + |1− ω|xϵ

≤ ω(1− 2αk + 2αkρϵ)xϵ + |1− ω|xϵ

≤ (ωρ
′
+ |1− ω|)xϵ

= θ1xϵ(ϵ → 0+),

where θ1 = ωρ
′
+ |1− ω| < 1.

Case 2: 0 < βk < 1
µ1(PAQ) , 1 < αk < 1

µ1(PAQ) , 0 < ω < 2
1+ρ′ .

Subcase 1: αk ≥ βk. Define

N2
k = (|1− αk| − αk)D⟨H⟩ + (|αk − βk|+ αk)[L̄k] + 2αk[Ūk] + αk⟨Ω⟩

= Mk − 2D⟨H⟩ + 2αkB⟨H⟩.
(4.8)

So
[HGRMSBMMAOR] ≤ M−1

k [Mk − 2(D⟨H⟩ − αkB⟨H⟩)]

≤ I − 2M−1
k D⟨H⟩(I − αkD

−1
⟨H⟩B⟨H⟩).

Similar to the Case 1, let e denote the vector e = (1, 1, ..., 1)T ∈ Rn, and xϵ > 0
such that Jϵxϵ = (J⟨H⟩ + ϵeeT )xϵ = ρ(Jϵ)xϵ. Moreover, if ϵ > 0 is small enough, we
have ρϵ < 1 by continuity of the spectral radius. Because of 1 < αk < 1

µ1(PAQ) , we
also have

2αkρ− 1 < 1 and 2αkρϵ − 1 < 1.

So
[HGRMSBMMAOR] ≤ I − 2M−1

k D⟨H⟩[I − αk(D
−1
⟨H⟩D⟨H⟩ + ϵeeT )]

= I − 2M−1
k D⟨H⟩[I − αkJϵ].

Multiplying xϵ in two sides of the above inequality, and M−1
k ≥ D−1

⟨H⟩, we can obtain

[HGRMSBMMAOR]xϵ ≤ xϵ − 2M−1
k D⟨H⟩[1− αkρ(Jϵ)]xϵ

≤ xϵ − 2(1− αkρ(Jϵ))xϵ

= (2αkρ(Jϵ)− 1)xϵ.
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Based on Ek and the definition of [•], we know that
l∑

k=1

[Ek] = I. By (4.5), we have

[HGRMSBMMAOR]xϵ ≤ ω

l∑
k=1

[Ek](2αkρ(Jϵ)− 1)xϵ + |1− ω|xϵ

≤ ω(2αkρϵ − 1)xϵ + |1− ω|xϵ

≤ (ωρ
′
+ |1− ω|)xϵ

= θ2xϵ(ϵ → 0+),

where θ2 = ωρ
′
+ |1− ω| < 1.

Subcase 2: αk < βk. Define

N3
k = (|1− αk| − αk)D⟨H⟩ + (|αk − βk|+ αk)[L̄k] + 2αk[Ūk] + αk⟨Ω⟩

= Mk − 2D⟨H⟩ + 2βk[L̄k] + 2αk[Ūk]

≤ Mk − 2D⟨H⟩ + 2βkB⟨H⟩.

(4.9)

So
[HGRMSBMMAOR] ≤ M−1

k [Mk − 2(D⟨H⟩ − βkB⟨H⟩)]

≤ I − 2M−1
k D⟨H⟩(I − βkD

−1
⟨H⟩B⟨H⟩).

Similar to the Case 1, let e denote the vector e = (1, 1, ..., 1)T ∈ Rn, and xϵ > 0
such that Jϵxϵ = (J⟨H⟩ + ϵeeT )xϵ = ρ(Jϵ)xϵ. Moreover, if ϵ > 0 is small enough, we
have ρϵ < 1 by continuity of the spectral radius. Because of 0 < βk < 1

µ1(PAQ) , we
also have

2βkρ− 1 < 1 and 2βkρϵ − 1 < 1.

So
[HGRMSBMMAOR] ≤ I − 2M−1

k D⟨H⟩[I − βk(D
−1
⟨H⟩D⟨H⟩ + ϵeeT )]

= I − 2M−1
k D⟨H⟩[I − βkJϵ].

Multiplying xϵ in two sides of the above inequality, and M−1
k ≥ D−1

⟨H⟩, we can obtain

[HGRMSBMMAOR]xϵ ≤ xϵ − 2(1− βkρ(Jϵ))xϵ

= (2βkρ(Jϵ)− 1)xϵ.

Based on Ek and the definition of [•], we know that
l∑

k=1

[Ek] = I. By (11), we have

[HGRMSBMMAOR]xϵ ≤ ω
l∑

k=1

[Ek](2βkρ(Jϵ)− 1)xϵ + |1− ω|xϵ

≤ ω(2βkρϵ − 1)xϵ + |1− ω|xϵ

≤ (ωρ
′
+ |1− ω|)xϵ

= θ3xϵ(ϵ → 0+),
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where θ3 = ωρ
′
+ |1− ω| < 1.

Remark 4.1. Obviously, from Figure 1, we can find that the conditions of The-
orem 4.4 (when ω = 1) in this paper are weaker than those of Theorem 1 in [23].
Moreover, the parameters can be adjusted suitably so that the convergence prop-
erty of method can be substantially improved. That is to say, we have more choices
for the splitting A = B − C which makes the multisplitting iteration methods
converge. Therefore, our convergence theories extend the scope of multisplitting
iteration methods in applications.

Figure 1. Comparison of convergence domains in Li et al.’s paper and in this paper. Here, ρ = µ1(PAQ).

Based on the similar proving process of Theorem 4.4, we can obtain the following
convergence results.

Theorem 4.5. Let A ∈ Ln,I(n1, n2, ..., np) be a block H
(II)
B (P,Q)-matrix, with H ∈

Ω
(II)
B (PAQ), and let (M̄k, N̄k, Ek)(k = 1, 2, ..., l) and (D̄−L̄k, Ūk, Ek)(k = 1, 2, ..., l)

be a block mulisplitting and a block triangular multisplitting of block H matrix,
respectively. Assume that γ > 0 and the positive matrix Ω satisfies Ω ≥ D(H)
and diag(Ω) = diag(D(H)). If ⟨⟨H⟩⟩ = I − [D̄−1L̄k] − [D̄−1Ūk] = I − B⟨⟨H⟩⟩(k =

1, 2, ..., l), then the iteration sequence {z(m)}∞m=0 generated by the GRMSBMMAOR
iteration method converges to the unique solution z∗ of LCP(q, A) for any initial
vector z(0) ∈ Rn

+, provided the relaxation parameters αk and βk satisfy

0 < βk ≤ αk ≤ 1, 0 < ω < 2
1+ρ′ or

0 < βk < 1
µ2(PAQ) , 1 < αk < 1

µ2(PAQ) , 0 < ω < 2
1+ρ′ ,

(4.10)

where µ2(PAQ) = ρ(J⟨⟨H⟩⟩), ρ
′
= max

1≤k≤l
{1− 2αk + 2αkρϵ, 2βkρϵ − 1, 2αkρϵ − 1}.

Remark 4.2. From Table 1, we obviously see that the MSMMAOR method in [1]
and the MSBMAOR method in [28] use the same parameters α, β in different pro-
cessors, but the GRMSBMMAOR method in this paper uses different parameters
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αk, βk(k = 1, 2, ..., l) in different processors. Moreover, when computing x(m+1) in
Method 3.1, we utilize relaxation extrapolation technique and add a relaxation pa-
rameter ω. Therefore, we may choose proper relaxation parameters to increase con-
vergence speed and reduce the computation time when doing numerical experiments.
On the other hand, the convergence results in [1] and [28] are 0 < β ≤ α < 1

ρ(D−1|B|)
and 0 < β ≤ α < 1

µ1(PAQ) , respectively, but the convergence results in this paper
are 0 < βk ≤ αk ≤ 1, 0 < ω < 2

1+ρ′ or 0 < βk < 1
µ1(PAQ) , 1 < αk < 1

µ1(PAQ) , 0 <

ω < 2
1+ρ′ , where ρ

′
= max

1≤k≤l
{1−2αk+2αkρϵ, 2βkρϵ−1, 2αkρϵ−1}. So, our method

is not only the generalization of MSMAOR and MSBMAOR methods, but also con-
vergence results of new method are weaker than those of Bai and Zhang’s [1] and
Li et al.’s [28]. In GRMSBMMAOR method, we may choose proper Ek to balance
the load of each processor and avoid synchronization.

Table 1. The global relaxed modulus-based synchronous (block) multisplitting multi-parameters method
and corresponding convergence results.

Method αk, βk, ω Description Ref

MSMJ αk = 1, βk = 0, ω = 1 Modulus-based synchronous [1]

multisplitting Jacobi method

MSMGS αk = βk = 1, ω = 1 Modulus-based synchronous [1]

multisplitting Gauss-Seidel method

MSMSOR 0 < α(αk) = β(βk) < 1

ρ(D−1|B|)
, ω = 1 Modulus-based synchronous [1]

multisplitting SOR method

MSMAOR 0 < β(βk) ≤ α(αk) < 1

ρ(D−1|B|)
, ω = 1 Modulus-based synchronous [1]

multisplitting AOR method

GRMSMMAOR 0 < βk ≤ αk ≤ 1, 0 < ω < 2

1+ρ
′ or Global relaxed modulus-based [32]

0 < βk < 1

ρ(D−1|B|)
, 1 < αk < 1

ρ(D−1|B|)
synchronous multisplitting

0 < ω < 2

1+ρ
′ multi-parameters AOR method

where ρ
′
= max

1≤k≤l
{1 − 2αk + 2αkρϵ,

2αkρϵ − 1, 2αkρϵ − 1}

MBRI 0 < β < 1
µ1(PAQ)

, ω = 1 Parallel matrix block multisplitting [10]

relaxation iteration method

MSBMAOR 0 < β ≤ α < 1
µ1(PAQ)

, ω = 1 Modulus-based synchronous block [25]

multisplitting AOR method

GRMSBMMAOR 0 < βk ≤ αk ≤ 1, 0 < ω < 2

1+ρ
′ or Global relaxed modulus-based this paper

0 < βk < 1
µ1(PAQ)

, 1 < αk < 1
µ1(PAQ)

synchronous block multisplitting

0 < ω < 2

1+ρ
′ multi-parameters AOR method

where ρ
′
= max

1≤k≤l
{1 − 2αk + 2αkρϵ,

2βkρϵ − 1, 2αkρϵ − 1}
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