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Abstract In this paper, we study a delayed Michaelis-Menten Type ratio-
dependent predator-prey model with prey harvesting. By considering the char-
acteristic equation associated with the nonhyperbolic equilibrium, the critical
value of the parameters for the Bogdanov-Takens bifurcation is obtained. The
conditions for the characteristic equation having negative real parts are dis-
cussed. Using the normal form theory of Bogdanov-Takens bifurcation for
retarded functional differential equations, the corresponding normal form re-
stricted to the associated two-dimensional center manifold is calculated and
the versal unfolding is considered. The parameter conditions for saddle-node
bifurcation, Hopf bifurcation and homoclinic bifurcation are obtained. Nu-
merical simulations are given to support the analytical results.
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1. Introduction

In recent years, ratio-dependent predator-prey systems have been regarded by some
researchers as being more appropriate for predator-prey interactions. When preda-
tors have to search seriously for food(or compete for food), the functional response
depends on the densities of both prey and predator. Roughly stated, the per capita
predator growth rate should be a function of the ratio of prey to predator abun-
dance( [4, 10, 11, 18, 19, 22, 23, 33]). Based on the Michaelis-Menten or Holling type
II function, Arditi and Ginzburg [1] introduced a Michaelis-Menten type ratio-
dependent system of the form

ẋ = rx(1− x

K
)− cxy

x+my
,

ẏ = y(−d+
fx

x+my
),

(1.1)
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where x, y stand for densities of prey and predator respectively. The growth rate
of the prey is logistic with carrying capacity K and intrinsic growth rate r, the
predator consumes the prey according to functional response cx

x+my with the cap-
turing rate c and the half saturation constant m, d is the mortality rate of preda-
tor. r,K, d, f, c,m are all positive constants. Since then, many researchers studied
the system and obtained rich results( [2, 20, 29]). Xiao and Ruan [29] gave global
qualitative analysis for the model depending on all parameters and conditions of
existence and non-existence of limit cycles were given. In Li and Kuang [20], the ex-
istence of a heteroclinic bifurcation for the Michaelis-Menten type ratio-dependent
predator-prey system was rigorously established, limit cycles related to the hetero-
clinic bifurcation were also discussed.

In [3], Beretta and Kuang proposed a ratio-dependent model with a single dis-
crete positive delay τ

ẋ(t) = rx(1− x

K
)− cxy

x+my
,

ẏ(t) = y(−d+
fx(t− τ)

x(t− τ) +my(t− τ)
),

(1.2)

where x0(θ) = φ1(θ) ≥ 0, y0(θ) = φ2(θ) ≥ 0, θ ∈ [−τ, 0], x0(0) > 0, y0(0) > 0,
φ = (φ1, φ2) ∈ C([−τ, 0], R2

+), R2
+ = {(x, y) : x ≥ 0, y ≥ 0}. They made use of

a rather novel and non-trivial way of constructing proper Lyapunov functions to
obtain some new and significant global stability or convergence results for (1.2).
In [30], Xiao and Li discussed the qualitative behaviour of system (1.2) at the
equilibrium in the interior of the first quadrant showed that the interior equilibrium
cannot be absolutely stable and there exist non-trivial periodic solutions for the
model.

Bogdanov-Takens bifurcation was established by Bogdanov [5] and then intro-
duced in many books and articles(see [13] and refereces therein). In 1995, Fari-
a and Magalhã developed normal forms of Bogdanov-Takens singularity for re-
tarded functional differential equations [8]. Since then Bogdanov-Takens bifurca-
tions of the delayed differential equations have been studied by many researchers
(see [7, 14–17,21,24–26,28,31,32] and refereces therein).

In this paper , we consider Eq.(1.2) with constant prey harvesting as following
form 

ẋ(t) = rx(1− x

K
)− cxy

x+my
− h,

ẏ(t) = y(−d+
fx(t− τ)

x(t− τ) +my(t− τ)
),

(1.3)

where h > 0 represents the rate of harvesting or removal of the prey and the ini-
tial conditions are the same as for (1.2). We find that there is Bogdanov-Takens
singularity. We consider the negative real parts of the characteristic equation of
the linearized part of system (1.3) so that we can discuss the system on a two
dimensional center manifold. By unfolding the model at the Bogdanov-Takens sin-
gular point, the parameter conditions for saddle-node bifurcation, Hopf bifurcation
and homoclinic bifurcation are obtained. Our results show that the introducing of
the prey harvesting plays an important role in the system, even though the prey
harvesting parameter h is small, the dynamical behaviors of the model are quite
different from which of h = 0.
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This paper is organized as follows. In Section 2, we discuss the existence of
Bogdanov-Takens bifurcation of system (1.3). In Section 3, the normal form of
system (1.3) at the Bogdanov-Takens singular point is computed. The dynamical
classification near the Bogdanov-Takens point is discussed according to the obtained
normal forms. In Section 4, some numerical simulations are given to support the
analytical results. A brief conclusion is given in Section 5.

2. The existence of Bogdanov-Takens bifurcation

In this section, by analyzing the characteristic equation of the linearized system
of Eq.(1.3) at the positive equilibrium, we investigate the existence of Bogdanov-
Takens bifurcation. To guarantee that system (1.3) always has at least one positive
equilibrium, we assume that coefficients of system (1.3) satisfy the following condi-
tions:

(H1) 0 < β <
r

c−mr
, h ≤ h∗ =

K

4r
(r − cβ

1 +mβ
)2,

where β = f−d
md .

The positive equilibria are E1(x1, y1), E2(x2, y2), where

x1 =
K

2r

(
r − cβ

1 +mβ
+

√
(r − cβ

1 +mβ
)2 − 4rh

K

)
,

x2 =
K

2r

(
r − cβ

1 +mβ
−

√
(r − cβ

1 +mβ
)2 − 4rh

K

)
,

yi = βxi, i = 1, 2.

When h = h∗, then E1 = E2.

Let E∗ = E∗(x∗, y∗) be an arbitrary positive equilibrium. In order to discuss the
properties of system (1.3) in the neighborhood of the equilibrium E∗ = E∗(x∗, y∗),
let x̄ = x−x∗, ȳ = y− y∗, then E∗ is translated to (0, 0), and system (1.3) becomes
(still denoting x̄, ȳ as x, y)

ẋ(t) = (
h

x∗
− rx∗

K
+ cβδ)x− cδy + g1x

2 + g2xy + g3y
2 + h.o.t,

ẏ(t) = mfβ2δx(t− τ)−mfβδy(t− τ) + g4x
2(t− τ) + g5x(t− τ)y(t− τ)

+ g6y
2(t− τ) + g7x(t− τ)y + g8y(t− τ)y + h.o.t,

(2.1)
where h.o.t denotes the higher order terms which are equal or higher than third
order,

g1 =
2cmβ2δ3/2

x∗
− 2r

K
, g2 =−2cmβ(1+mβ)δ2

x∗
, g3 =

2cmδ3/2

x∗
, g4 =−2cmβ2δ3/2

x∗
,

g5 =
mfβδ2(1−m2β2)

x∗
, g6 =

2mfβδ3/2

x∗
, g7 =

mfβδ

x∗
, g8 = −mfδ

x∗
,

δ =
1

(1 +mβ)2
.
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The characteristic equation of the linearized part of system (2.1) is

F (λ, τ) = λ2 + (mfβδe−λτ +
rx∗
K
− h

x∗
− cβδ)λ+mfβδ(

rx∗
K
− h

x∗
)e−λτ . (2.2)

We note that if h =
rx2

∗
K , it is h = h∗. Let c∗ = mf , then, we have following lemma.

Lemma 2.1. Suppose that (H1) is satisfied and h = h∗, then
(i) if c 6= c∗, λ = 0 is a single root of Eq.(2.2);
(ii) if c = c∗, τ 6= 1

mfβδ , λ = 0 is a double root of Eq.(2.2).

Proof. From Eq. (2.2), the presence of zero roots follows from the fact that
F (0, τ) = 0 . Taking the partial derivative with respective to λ yields

∂F (0, τ)

∂λ
= mfβδ − cβδ.

Clearly, ∂F (0,τ)
∂λ 6= 0 if and only if τ > 0, h = h∗, c 6= c∗, which implies the

conclusion of (i). We also have

∂F 2(0, τ)

∂λ2
= 2− 2τmfβδ.

It is easy to know if τ 6= 1
mfβδ , h = h∗, c = c∗, then ∂F 2(0,τ)

∂λ2 6= 0, (ii) holds. This
completes the proof.

Lemma 2.2. Suppose that (H1) is satisfied, then
(i) When h = h∗, c < c∗, τ ∈ [0,min{ 1

mfβδ , τ0}), all roots of Eq.(2.2), ex-

cept for the zero roots, have negative real parts, where τ0 = 1
ω0

arccos( c
mf ), ω0 =√

m2f2 − c2βδ.
(ii) When h < h∗, c = c∗, there is τ1 such that when τ ∈ [0,min{ 1

mfβδ , τ1}), all

roots of Eq.(2.2), have negative real parts, where τ1 = 1
ω1

arccos[
ω2

1x
2
∗

(h−h∗)2+ω2
1x

2
∗
],

ω1 =
2c∗(h−h∗)x2

∗δβ−(h−h∗)2+
√

((h−h∗)2−2c∗δβ(h−h∗)x2
∗)2+4c2∗δ

2β2(h−h∗)2x2
∗

2x2
∗

.

(iii) When h < h∗, c < c∗, there is τ2 such that when τ ∈ [0,min{ 1
mfβδ , τ2}), all

roots of Eq.(2.2), have negative real parts, where τ2 = 1
ω2

arccos[
cω2

2(h−h∗)2

c∗((h−h∗)2+ω2
2x

2
∗)

],

ω2 =
c2∗δ

2β2x2
∗−(h−h∗−cδβ)2+

√
(c2∗δ

2β2x2
∗−(h−h∗−cδβ)2)2+4c2∗δ

2β2(h−h∗)2x2
∗

2x2
∗

.

Proof. (i) When h = h∗, c < c∗, from (2.2), F (λ, τ) = 0 has root λ1 = 0 and
λ+ fmβδe−λτ − cβδ = 0.

When τ = 0, then
λ2 = βδ(c− c∗) < 0. (2.3)

When τ 6= 0. Suppose that iω is a root of Eq.(2.2) in the imaginary axis.
Substituting it to Eq.(2.2) and separating the real and imaginary parts, we have{

ω = mfβδ sinωτ,

c = mf cosωτ,
(2.4)
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then, ω0 =
√
m2f2 − c2βδ > 0, if c < c∗. We obtain that τ0 = 1

ω0
arccos( c

fm ), then

we know that when τ ∈ [0,min{ 1
mfβδ , τ0}), all roots of Eq.(2.2) have negative real

parts except zero roots, which implies the conclusion of (i).

(ii) If h < h∗, c = c∗, when τ = 0, λ =
−(h∗−h)±

√
(h∗−h)2−4mfβδx∗(h∗−h)

2x∗
which

have negative real parts. Suppose that iω is a root of Eq.(2.2) in the imaginary
axis. Substituting it to Eq.(2.2) and separating the real and imaginary parts, we
have {

ωc∗βδx∗ sinωτ + c∗βδ(h− h∗) cosωτ = ω2x∗,

c∗βδ(h− h∗) sinωτ − ωc∗βδx∗ cosωτ = ω(h− h∗ − c∗βδ),
(2.5)

then, ω1 =
2c∗(h−h∗)x2

∗δβ−(h−h∗)2+
√

(2c∗δβ(h−h∗)x2
∗−(h−h∗)2)2+4c2∗δ

2β2(h−h∗)2x2
∗

2x2
∗

> 0,

if h < h∗, c = c∗. We obtain that τ1 = 1
ω1

arccos[
ω2

1x
2
∗

(h−h∗)2+ω2
1x

2
∗
], then we know that

when τ ∈ [0,min{ 1
mfβδ , τ1}), all roots of Eq.(2.2) have negative real parts, which

implies the conclusion of (ii).
(iii) If h < h∗, c < c∗, we can easy see that when τ = 0, λ has negative real

parts. Suppose that iω is a root of Eq.(2.2) in the imaginary axis. Substituting it
to Eq.(2.2) and separating the real and imaginary parts, we have{

ωmfβδx∗ sinωτ +mfβδ(h− h∗) cosωτ = ω2x∗,

mfβδ(h− h∗) sinωτ − ωmfβδx∗ cosωτ = ω(h− h∗ − cβδ),
(2.6)

then, ω2 =
c2∗δ

2β2x2
∗−(h−h∗−cδβ)2+

√
(c2∗δ

2β2x2
∗−(h−h∗−cδβ)2)2+4c2∗δ

2β2(h−h∗)2x2
∗

2x2
∗

> 0.

We obtain that τ2 = 1
ω2

arccos[
cω2

2(h−h∗)2

c∗((h−h∗)2+ω2
2x

2
∗)

], then we know that when τ ∈
[0,min{ 1

mfβδ , τ2}), all roots of Eq.(2.2) have negative real parts, which implies the

conclusion of (iii).
This completes the proof.

Theorem 2.1. Suppose that (H1) holds and h = h∗, there exists B-T singularity
near E∗ if the condition (ii) of Lemma 2.1 is satisfied.

Because of the results of Lemma 2.2, we can discuss Bogdanov-Takens bifurca-
tion on the center manifold of two dimension.

3. Normal form for the Bogdanov-Takens bifurca-
tion

In this section, we focus on the dynamics near nonhyperbolic equilibrium E∗(x∗, y∗)
when the parameters h and c varies in a small neighbourhood of the bifurcating point
(h∗, c∗) . We employ the method in Faria and Magalhães [8] to obtain the normal
forms on the center manifold, which determine the dynamics near the Bogdanov-
Takens point.

Bogdanov-Takens bifurcation is a codimension-two bifurcation, requiring two
independent parameters for its singularity analysis. Thus, we introduce two per-
turbation parameters µ1 and µ2 by considering h = h∗ + µ1, c = c∗ + µ2, such
that system (1.3) undergos a Bogdanov-Takens bifurcation at µ = (µ1, µ2) = (0, 0),
where µ1 ≤ 0, µ2 ≤ 0. When τ ∈ [0,min{ 1

mfβδ , τ0, τ1, τ2}), we have that all roots
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of Eq.(2.2) have negative real parts except zero roots from above section. Rescale
the time by t→ tτ to normalize the delay and system (1.3) is transformed into ẋ = τ [(c∗ + µ2)(βδx− δy) +

1

x∗
µ1x+ F 1

2 + h.o.t.],

ẏ = τ [mfβ2δx(t− 1)−mfβδy(t− 1) + F 2
2 + h.o.t.],

(3.1)

where
F 1

2 = g1x
2 + g2xy + g3y

2,

F 2
2 = g4x

2(t− 1) + g5x(t− 1)y(t− 1) + g6y
2(t− 1)

+ g7x(t− 1)y + g8y(t− 1)y.

Let η(θ) = Aδ(θ) +Bδ(θ + 1) , where

A =

 τc∗βδ −τc∗δ

0 0

 , B =

 0 0

τmfβ2δ −τmfβδ

 , (3.2)

and define

L0ϕ =

∫ 0

−1

dη(θ)ϕ(θ),∀ϕ ∈ C.

Define the infinitesimal generator

A0ϕ =

 ϕ̇, − 1 ≤ θ < 0,∫ 0

−1
dη(θ)ϕ(θ), θ = 0.

Rewrite system (3.1) as

u̇t = L(µ)ut + F (ut, µ) + h.o.t = (L0 + L1(µ))ut + F (ut, µ) + h.o.t, (3.3)

where

L0ut = τ

 c∗βδx(0)− c∗δy(0)

mfβ2δx(−1)−mfβδy(−1)

 ,

and

L1(µ)ut = µ2

 τβδx(0)− τδy(0)

0

+ µ1

 τ
x∗
x(0)

0

 ,

1
2!F (ut, µ) = 1

2!τ

 g1x
2(0) + g2x(0)y(0) + g3y

2(0)

g4x
2(−1) + g5x(−1)y(−1) + g6y

2(−1) + g7x(−1)y(0) + g8y(−1)y(0)

 .

(3.4)
The bilinear form on C × C∗ is

〈ψ,ϕ〉 = ψ(0)ϕ(0)−
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dη(θ)ϕ(θ),

where ϕ(θ) = (ϕ1(θ), ϕ2(θ)) ∈ C, ψ(s) = (ψ1(s), ψ2(s))T ∈ C∗. Next we will find
Φ(θ) and Ψ(s) based on the techniques developed by [32].
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Lemma 3.1.The bases of P and its dual space P ∗ have the following representation

P = spanΦ,Φ(θ) = (ϕ1(θ), ϕ2(θ)), − 1 ≤ θ ≤ 0,

P ∗ = spanΨ,Ψ(s) = col(Ψ1(s),Ψ2(s)), 0 ≤ s ≤ 1,

where ϕ1(θ) = ϕ0
1 ∈ Rn\{0}, ϕ2(θ) = ϕ0

2 + ϕ0
1θ, ϕ

0
1 ∈ Rn and Ψ2(s) = Ψ0

2 ∈
R2∗\{0},Ψ1(s) = Ψ0

1 − sΨ0
2,Ψ

0
1 ∈ R2∗,which satisfy

(1)(A+B)ϕ0
1 = 0, (2)(A+B)ϕ0

2 = (B + I)ϕ0
1,

(3)ψ0
2(A+B) = 0, (4)ψ0

1(A+B) = ψ0
2(B + I),

(5)ψ0
2ϕ

0
2 − 1

2ψ
0
2Bϕ

0
1 + ψ0

2Bϕ
0
2 = 1,

(6)ψ0
1ϕ

0
2 − 1

2ψ
0
1Bϕ

0
2 + ψ0

1Bϕ
0
2 + 1

6ψ
0
2Bϕ

0
1 − 1

2ψ
0
2Bϕ

0
2 = 0.

So it is not difficult to verify that

Φ(θ) =

 1 1
τc∗δβ

+ θ

β βθ

 , Ψ(s) =

m1 + sβn m2 − sn

−βn n

 , (3.5)

where

m1 =
τc∗δβ(τc∗δβ − 2)

2(τc∗δβ − 1)2
, m2 =

1 + (τc∗δβ − 1)2

2β(τc∗δβ − 1)2
, n =

τc∗δ

τc∗δβ − 1
.

Let (x, y)T = Φz + v, z = (z1, z2)T , v = (v1, v2)T , then we have

x(0) = z1 +
z2

τc∗δβ
+ v1(0), y(0) = βz1 + v2(0),

x(−1) = z1 + (
1

τc∗δβ
− 1)z2 + v1(−1), y(−1) = β(z1 − z2) + v2(−1).

(3.6)

System (3.1) can be decomposed as ż = Jz + Ψ(0)F (Φz + v, µ),

v̇ = AQ1v + (I − π)X0F (Φz + v, µ), z ∈ R2, v ∈ Q1,
(3.7)

for v ∈ Q1 = Q∩C ⊂ Kerπ, where AQ1 is the restriction of A0 as an operator from
Q1 to the Banach space Kerπ. In view of Taylor expansion, we write (3.7) as the
following system 

ż = Jz +
∑
j≥2

1

j!
f1
j (z, v, µ),

v̇ = AQ1v +
∑
j≥2

1

j!
f2
j (z, v, µ).

(3.8)

From (3.3), (3.4) we have

1

2!
f1

2 (z, 0, µ) = Ψ(0)[L1(µ)Φz +
1

2!
F (Φz, µ)] = Ψ(0)

 F̃ 1
2 (z, 0, µ1, µ2)

F̃ 2
2 (z, 0, µ1, µ2)
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=

 m1 m2

−βn n

 F̃ 1
2

F̃ 2
2

 =

m1F̃
1
2 +m2F̃

2
2

−βnF̃ 1
2 + nF̃ 2

2

 ,

1

2!
f2

2 (z, 0, µ) = (I − π)X0[L1(µ)Φz +
1

2!
F (Φz, µ)] = (I − π)X0

 F̃ 1
2 (z, 0, µ1, µ2)

F̃ 2
2 (z, 0, µ1, µ2)

 ,

(3.9)

where

F̃ 1
2 =

τ

x∗
µ1z1+(

1

c∗
µ2+

1

x∗c∗δβ
µ1)z2+

1

2
τg1(z1+

z2

τc∗δβ
)2+

1

2
τβg2(z1+

z2

τc∗δβ
)z1

+
1

2
τg3β

2z2
1 ,

F̃ 2
2 =

1

2
τg4(z1 − z2 +

z2

τc∗δβ
)2 +

1

2
τβg5(z1 − z2 +

z2

τc∗δβ
)(z1 − z2)

+
1

2
τβ2g6(z1 − z2)2 +

1

2
τβg7(z1 − z2 +

z2

τc∗δβ
)z1 +

1

2
τβ2g8(z1 − z2)z1.

On the center manifold, system (3.1) can be written as ż1 = z2 +m1F̃
1
2 +m2F̃

2
2 ,

ż2 = −βnF̃ 1
2 + nF̃ 2

2 .
(3.10)

Following the computation of the normal forms introduced by Faria and Magalhães
[8], we can get the normal form with versal unfolding on the center manifold: ż1 = z2 + h.o.t,

ż2 = λ1z1 + λ2z2 + η1z
2
1 + η2z1z2 + h.o.t.

(3.11)

where

λ1 = −nβτ
x∗

µ1,

λ2 = −nβ
c∗
µ2 −

nβ + c∗δβτm1

x∗c∗δβ
µ1,

η1 =
1

2
τ [−nβ(g1 + βg2 + β2g3) + n(g4 + βg5 + β2g6 + βg7 + β2g8)],

η2 = −n(2g1 + βg2)

2c∗δ
+ τng4(

1

τc∗δβ
− 1) +

1

2
τβng5(

1

τc∗δβ
− 2)

− τβ2ng6 +
1

2
τβng7(

1

τc∗δβ
− 1) +

1

2
τβ2ng8

− τ [m1(g1 + βg2 + β2g3) +m2(g4 + βg5 + β2g6 + βg7 + β2g8)].

When η1η2 6= 0, the dynamics of system (3.11) in the small neighborhood of
Bogdanov- Takens bifurcation point (µ1, µ2) = (0, 0) can be determined by the
normal form truncated to the second order. We assume that η1 6= 0, η2 6= 0. After
time rescaling and coordinate transformation given by

t→ η2

η1
t, z1 →

η1

η2
2

(z1 −
η2

2

2η2
1

λ1), z2 →
η2

1

η3
2

z2,
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the normal form (3.11) up to the second order terms becomes ż1 = z2,

ż2 = u1 + u2z2 + z2
1 + z1z2,

(3.12)

where u1 = − η42
4η41

λ2
1, u2 = (η1η2λ2 − λ1

2 )
η22
η21
.

The complete bifurcation diagrams of system (3.12) can be found in many ref-
erences and monographs [6, 9, 27]. Here, we briefly list the results for small u1, u2

as follows:
(i) System (3.12) undergoes a saddle-node bifurcation on the curve

SN = {(u1, u2) : u1 = 0, u2 6= 0},

(ii) system (3.12) undergoes a Hopf bifurcation on the curve

H = {(u1, u2) : u1 = −u2
2, u2 > 0},

(iii) system (3.12) undergoes a homoclinic bifurcation on the curve

HL = {(u1, u2) : u1 = −49

25
u2

2 + o(|u2|5/2), u2 > 0}.

Applying the above results and using the parameters of µ1, µ2, we obtain the
following result.

Theorem 3.1. Suppose that (H1) holds.
(i) System (3.1) undergoes a saddle-node bifurcation on the curve

SN = {(µ1, µ2) : µ1 = 0, µ2 < 0},

(ii) system (3.1) undergoes a Hopf bifurcation on the curve

H = {(µ1, µ2) : µ1 < 0, µ2 = c∗(
η2τ

η1x∗
− τc∗δm1 + n

x∗c∗δβn
)µ1},

(iii) system (3.1) undergoes a homoclinic bifurcation on the curve

HL = {(µ1, µ2) : µ1 < 0, µ2 =
−p1 +

√
p2

1 − 4p2

2
µ1},

where p1 = 2(n+τc∗δm1)
nβδx∗

− τc∗η2
x∗η1

, p2 = (n+τc∗δm1)2

n2β2δ2x2
∗
− τc∗η2(n+τc∗δm1)

nβδx2
∗η1

+
6τ2c2∗η

2
2

49x2
∗η

2
1
, and

we suppose that η2τ
η1x∗

− τc∗δm1+n
x∗c∗δβn

> 0,
−p1+

√
p21−4p2

2 > 0.

The bifurcation diagram of system (3.1) in the plane of the perturbation param-
eters µ1 and µ2 is sketched in Fig.1. The µ1−µ2 plane for µ1 < 0, µ2 < 0 is divided
into three regions 1©, 2©, 3© by the Hopf bifurcation line H and the homoclinic
bifurcation line HL. On the line SN , there is only one equilibrium, which is a
saddle-node. In the region 1© there are two equilibria, the left one is a saddle and
the right one is a stable focus. For fixed µ1, when µ2 goes up through the line H,
Hopf bifurcation occurs. In the region 2©, there is a stable periodic solution and the
focus changes its stability. On the curve HL, there is a homoclinic orbit connecting
the left equilibrium to itself and the periodic solution vanishes. In the region 3©
there are a unstable focus and a saddle.
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Figure 1. The B-T bifurcation diagram and phase portraits of system (3.1) in the µ1 − µ2 plane for
µ1 < 0, µ2 < 0.

4. Numerical simulations

In this section, we present numerical simulations of (1.3) to support the analytical
results obtained above.

According to the center manifold theory and the method of the normal form
for FDEs developed in [12, 27], the dynamics of the original system (1.3) near the
positive equilibrium E∗(x∗, y∗) are topologically equivalent to that of the associat-
ed normal form (3.1) on the center manifold. Therefore, for given r,K, c, d,m and
f, we can get the Bogdanov-Takens point h∗, c∗. Let h = h∗ + µ1, c = c∗ + µ2,
when the perturbation parameters (µ1, µ2) vary small, the local representations of
the bifurcation curves can be determined by the normal form (3.1) on the center
manifold. The dynamical classification of the original system (1.3) near the posi-
tive equilibrium E∗(x∗, y∗) is obtained when the parameters (h, c) vary in a small
neighborhood of the Bogdanov-Takens point (h∗, c∗).

To demonstrate the main results obtained in the previous sections, we choose
r = 1, K = 1, d = 1.14159, m = 1, f = 2, τ = 1.5. Then we can compute the B-T
point: c∗ = mf = 2, h∗ = K

4r (r − c∗β
1+mβ )2 = 0.005, and E∗ = (0.0708, 0.0532).

To investigate the dynamics of system (1.3), we fix µ1 = −0.001 < 0 and
change the perturbation parameter µ2 from c∗. For fixed µ1 = −0.001, µ2 = −0.4,
there is two positive equilibria E1 = (0.2999, 0.2255), E2 = (0.0134, 0.0101) bi-
furcating from the positive equilibrium E∗, where the positive equilibrium E2 is
a saddle, and E1 is a stable focus(see Fig.2). E2 is always a saddle and the
stability of E1 will be changed when Hopf bifurcations occur with the increas-
ing of the parameter µ2. Fig.3 is a numerical simulation of system (1.3) with
µ1 = −0.001, µ2 = −0.145 when (µ1, µ2) increases across the Hopf bifurcation
line H = {(µ1, µ2) : µ1 < 0, µ2 = 147.9977µ1} into 2©, the bifurcating period-
ic solution occurs, where E1 = (0.1818, 0.1367), E2 = (0.0221, 0.0166). When
(µ1, µ2) continuously increases closing to the homoclinic bifurcation line HL =
{(µ1, µ2) : µ1 < 0, µ2 = 34.0576µ1}, the bifurcating periodic solution is near
the homoclinic orbit , as shown in Fig.4 when µ1 = −0.001, µ2 = −0.035 and
E1 = (0.1243, 0.0935), E2 = (0.0323, 0.0243). When (µ1, µ2) crosses the line HL
entering the region 3©, the periodic solutions disappear and E1 becomes unstable.
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Figure 2. Numerical simulations for system (1.3) near the Bogdanov-Takens bifurcation point (h∗, c∗)
for (µ1, µ2) = (−0.001,−0.4), (µ1, µ2) ∈ 1©, where the positive equilibrium E1 is stable.
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Figure 3. Numerical simulations for system (1.3) near the Bogdanov-Takens bifurcation point (h∗, c∗)
for (µ1, µ2) = (−0.001,−0.145), (µ1, µ2) ∈ 2© sufficiently close to the line H. E1 is unstable and a
stable bifurcating periodic solution occurs.
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Figure 4. E1 is unstable for (µ1, µ2) = (−0.001,−0.035), (µ1, µ2) ∈ 2© sufficiently closing to the line
HL. The orbit of the periodic solution sufficiently closes to the homoclinic orbit.
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5. Conclusion

In this paper, we study a delayed ratio-dependent predator-prey model with prey
harvesting. Using h and c as bifurcating parameters, we find that h, the rate
of the harvesting of prey, has an important effect on the dynamics of the model.
For the Bogdanov-Takens singularity at the parameters h∗ and c∗, the model has a
positive equilibrium at which the corresponding characteristic equation has two zero
eigenvalues. Considering the normal form on the two dimensional center manifold,
the small neighbourhood of the Bogdanov-Takens singularity in h < h∗, c < c∗ can
be divided into three dynamical regions by two bifurcation lines: Hopf bifurcation
line H and homoclinic bifurcation line HL. When the prey harvesting parameter
lies in some specific interval, there exists a stable limit cycle which means that when
the initial population of the prey and predator are near this cycle, both the prey
and predator populations oscillate about this cyclic state. Our results show that
the introduction of the prey harvesting plays an important role for the oscillation
period. When the parameters (h, c) near the line HL in the region 2©, the oscillation
period will become more longer. We show that even though the prey harvesting
parameter h is small, as long as it is not zero, the dynamical behaviors of the
model are quite different from which of h = 0 considered in [3,30], the saddle-node
bifurcation, Hopf bifurcation and homoclinic bifurcation occur from the Bogdanov-
Takens bifurcation.

Acknowledgements. The authors are grateful to the editors and the referees for
their valuable comments and suggestions, which have improved the contents of this
article.
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