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Abstract The authors present conditions under which every positive solution
x(t) of the integro–differential equation x′′(t) = a(t) +

∫ t
c

(t − s)α−1[e(s) +
k(t, s)f(s, x(s))]ds, c > 1, α > 0, satisfies x(t) = O(tA(t)) as t → ∞, i.e,

lim supt→∞
x(t)
tA(t)

< ∞,where A(t) =
∫ t
c
a(s)ds. From the results obtained,

they derive a technique that can be applied to some related integro–differential
equations that are equivalent to certain fractional differential equations of
Caputo type of any order.
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1. Introduction

Consider the integro–differential equation

x′′(t) = a(t) +

∫ t

c

(t− s)α−1[e(s) + k(t, s)f(s, x(s))]ds, c > 1, α > 0. (1.1)

In the sequel we assume that:

(i) a : [c,∞]→ (0,∞) is a continuous function;

(ii) k : [c,∞]× [c,∞]→ R is a real-valued continuous function and there exists a
continuous function b : [c,∞]→ (0,∞) such that

|k(t, s)| ≤ b(t) for all t ≥ s ≥ c;

(iii) e : [c,∞]→ R is a real-valued continuous function;
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(iv) f : [c,∞] × R → R is a real-valued continuous function and there exist a
continuous function h : [c,∞] → (0,∞) and a real number λ with 0 < λ ≤ 1
such that

0 ≤ xf(t, x) ≤ h(t) |x|λ+1
for x 6= 0 and t ≥ c.

We only consider those solutions of equation (1.1) that are continuable and
nontrivial in any neighborhood of ∞. Such a solution is said to be oscillatory if
there exists a sequence {tn} ⊆ [c,∞) with tn →∞ as n→∞ such that x(tn) = 0,
and it is nonoscillatory otherwise.

In the last few decades, integral and fractional differential equations have gained
considerably more attention due to their applications in many engineering and sci-
entific disciplines as the mathematical models for systems and processes in fields
of such as physics, mechanics, chemistry, aerodynamics and the electrodynamics of
complex media. For more details one can refer to Băleanu et al. [3], Lakshmikan-
tham et al. [13], Kilbas et al. [12], Medveď [16], Miller et al. [18], Ma et al. [19],
Podlubny [20], Prudnikov et al. [21], and Samko et al. [22].

Oscillation and asymptotic behavior results for integral as well as integro–
differential equations and fractional differential equations are scarce; some results
can be found in Bohner et al. [1], Grace and Zafer [7], and Grace et al. [8–10].

It seems that there are no such results for integral equations of the type (1.1).
The main objective of this paper is to establish some new criteria for the asymptotic
behavior of all solutions of equation (1.1). We also investigate some new criteria on
the asymptotic behavior of the nonoscillatory solutions of equation (1.1) with a(t)
being a polynomial of degree n− 1, i.e., the equation

x′′(t)=c0+c1(t−c)+ ...+ cn−1(t−c)n−1+
1

Γ(α)

∫ t

c

(t−s)α−1[e(s)+k(t, s)f(s, x(s))]ds,

(1.2)
where c > 1, α ∈ (n − 1, n), n ≥ 1. This equation is equivalent to a fractional
differential equation with k(t, s) = 1 of the type

CDα
c y(t) = e(t) + f(t, x(t)), c > 1, α ∈ (n− 1, n), n ≥ 1, (1.3)

where y(t) = r(t)x′(t), r(t) is a positive continuous function on [c,∞),

c0 =
y(c)

Γ(1)
, c1 =

y′(c)

Γ(2)
, ..., cn−1 =

y(n−1)(c)

Γ(n)
,

and c0, c1,...,cn−1 are real constants.
We note that

CDα
c x(t) :=

1

Γ(n− α)

∫ t

c

(t− s)n−α−1x(n)(s)ds

is the Caputo derivative of order α ∈ (n− 1, n) of a Cn scaler valued function x(t)

defined on the interval [c,∞), where x(n)(t) = dnx(t)
dtn . For the case where α ∈ (0, 1),

this definition was given by Caputo [4]; for the definition of a Caputo derivative of
order α ∈ (n− 1, n), n ≥ 1, see Băleanu et al. [3], Diethelm et al. [5], and Furati et
al. [6].

Results related to those in this paper can be found in the papers of Medveď et
al. [2, 16, 17]. Our proofs are based on a de-singularization method introduced by
Medveď in [14, 15] that has proved to be quite useful in the study of problems of
this type.
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2. Main results

To obtain our main results in this paper, we need the following two lemmas.

Lemma 2.1 ( [2]). Let α and p be positive constants such that p(α − 1) + 1 > 0.
Then ∫ t

0

(t− s)p(α−1)epsds ≤ Qept, t ≥ 0,

where

Q =
Γ (1 + p(α− 1))

p1+p(α−1)

and

Γ(x) =

∫ ∞
0

sx−1e−sds, x > 0,

is the Euler-Gamma function.

Lemma 2.2 ( [11]). If X and Y are nonnegative and 0 < λ < 1, then

Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0,

where equality holds if and only if X = Y .

In what follows, for any t1 ≥ c and continuous function m : [c,∞)→ (0,∞), we
let

g(t) = (1− λ)λλ/(1−λ)b(t)

∫ t

t1

(t− s)α−1m
λ/(λ−1)

(s)h
1/(1−λ)

(s)ds for t ≥ t1, (2.1)

g∗(t) = (1− λ)λλ/(1−λ)
1

Γ(α)

∫ t

t1

(t− s)α−1m
λ/(λ−1)

(s)h
1/(1−λ)

(s)ds for t ≥ t1

(2.2)
and

A(t) =

∫ t

c

a(s)ds.

Now we give sufficient conditions under which any positive solution x(t) of equation
(1.1) satisfies

x(t) = O(tA(t)) as t→∞.

Theorem 2.1. Let conditions (i)–(iv) hold and 0 < λ < 1. Assume there exist real
numbers p > 1 and α > 0 with p(α − 1) + 1 > 0, real numbers S > 0 and σ > 1
such that (

b(t)

A(t)

)
≤ Se−σt for t ≥ t∗ > c, (2.3)

and there exists a continuous function m : [c,∞)→ (0,∞) such that∫ t

c

e−qs (sA(s)m(s))
q
ds <∞, where q =

p

p− 1
. (2.4)

If
1

a(t)

∫ t

c

(t− s)α−1 |e(s)| ds, tα−1b(t)

a(t)
, and

g(t)

a(t)
(2.5)
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are bounded on [c,∞), where g(t) is defined by (2.1), then any positive solution x(t)
of equation (1.1) satisfies

lim sup
t→∞

x(t)

tA(t)
<∞. (2.6)

Proof. Let x be an eventually positive solution of equation (1.1), say x(t) > 0 for
t ≥ t1 for some t1 ≥ c. We let F (t) = f(t, x(t)). Then, in view of (i)–(iv), from
(1.1) we obtain

x′′(t) ≤ a(t) +

∫ t

c

(t− s)α−1e(s)ds+ b(t)

t1∫
c

(t− s)α−1 |F (s)| ds

+b(t)

∫ t

t1

(t− s)α−1
[
h(s)xλ(s)−m(s)x(s)

]
ds

+b(t)

∫ t

t1

(t− s)α−1m(s)x(s)ds. (2.7)

Applying Lemma 2.2 to
[
h(s)xλ(s)−m(s)x(s)

]
with

X = (h(s))1/λx(s) and Y =

(
1

λ
m(s)h−1/λ(s)

)1/(λ−1)

,

we obtain

h(s)xλ(s)−m(s)x(s) ≤ (1− λ)λλ/(1−λ)mλ/(λ−1)(s)h1/(1−λ)(s). (2.8)

Using (2.8) in (2.7) gives

x′′(t) ≤ a(t) +

t∫
c

(t− s)α−1 |e(s)| ds+ b(t)

∫ t1

c

(t− s)α−1 |F (s)| ds

+(1− λ)λλ/(1−λ)b(t)

∫ t

t1

(t− s)α−1mλ/(λ−1)(s)h1/(1−λ)(s)ds

+b(t)

∫ t

t1

(t− s)α−1m(s)x(s)ds,

or

x′′(t) ≤ a(t) + b(t)

∫ t1

c

(t− s)α−1 |F (s)| ds+

t∫
c

(t− s)α−1 |e(s)| ds

+g(t) + b(t)

∫ t

t1

(t− s)α−1m(s)x(s)ds. (2.9)

In view of (2.5), inequality (2.9) can be written as

x′′(t) ≤ C1a(t) + b(t)

∫ t

t1

(t− s)α−1m(s)x(s)ds, (2.10)

where C1 is an upper bound of

1 +
g(t)

a(t)
+

1

a(t)

∫ t

c

(t− s)α−1 |e(s)| ds+
b(t)

a(t)

∫ t1

c

(t− s)α−1 |F (s)| ds.
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Integrating (2.10) from t1 to t gives

x′(t) ≤ |x′(t1)|+ C1A(t) +

∫ t

t1

b(u)

∫ u

t1

(u− s)α−1m(s)x(s)dsdu,

or

x′(t) ≤ C2A(t) +

∫ t

t1

b(u)

∫ u

t1

(u− s)α−1m(s)x(s)dsdu := w(t), (2.11)

where |x′(t1)|/A(t)+C1 ≤ |x′(t1)|/A(t1)+C1 = C2 is a constant. Integrating (2.11)
from t1 to t and then using the fact that w(t) is nondecreasing, we see that

x(t) ≤ x(t1) +

∫ t

t1

w(s)ds ≤ x(t1) + tw(t),

or

x(t)

t
≤ x(t1)

t
+ w(t) ≤ x(t1)

t
+ C2A(t) +

∫ t

t1

b(u)

∫ u

t1

(u− s)α−1m(s)x(s)dsdu.

(2.12)
Applying Hölder’s inequality and Lemma 2.1 to the integral on the far right in
(2.12), we obtain∫ u

t1

(
(u− s)α−1 es

) (
e−sm(s)x(s)

)
ds

≤
(∫ u

t1

(u− s)p(α−1) espds
)1/p(∫ u

t1

e−qsmq(s)xq(s)ds

)1/q

≤
(∫ u

0

(u− s)p(α−1) espds
)1/p(∫ u

t1

e−qsmq(s)xq(s)ds

)1/q

≤ (Qepu)1/p
(∫ u

t1

e−qsmq(s)xq(s)ds

)1/q

= Q1/peu
(∫ u

t1

e−qsmq(s)xq(s)ds

)1/q

. (2.13)

Using (2.13) in (2.12) gives

x(t)

t
≤ x(t1)

t
+ C2A(t) +Q1/p

∫ t

t1

b(u)eu
(∫ u

t1

e−qsmq(s)xq(s)ds

)1/q

du,

or

x(t)

tA(t)
:= z(t) ≤ x(t1)

tA(t)
+ C2

+Q1/p

∫ t

t1

(
b(u)eu

A(u)

)(∫ u

t1

e−qs (sA(s)m(s))
q
zq(s)ds

)1/q

du

≤ C3 +Q1/pS

∫ t

t1

e−(σ−1)u
(∫ u

t1

e−qs (sA(s)m(s))
q
zq(s)ds

)1/q

du,

(2.14)
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where C3 is a positive constant. Since the integral on the far right in (2.14) is
nondecreasing in u, we have

z(t) ≤ C3 +Q1/pS

(∫ t

t1

e−(σ−1)udu

)(∫ t

t1

e−qs (sA(s)m(s))
q
zq(s)ds

)1/q

. (2.15)

Since σ > 1, it follows from (2.15) that

z(t) ≤ 1 + C3 + k

(∫ t

t1

e−qs (sA(s)m(s))
q
zq(s)ds

)1/q

, (2.16)

where k = Q1/pS/(σ − 1). Applying the inequality

(x+ y)q ≤ 2q−1(xq + yq), x, y ≥ 0 and q ≥ 1,

to (2.16) gives

zq(t) ≤ 2q−1(1 + C3)q + 2q−1kq
(∫ t

t1

e−qs (sA(s)m(s))
q
zq(s)ds

)
. (2.17)

Setting P1 = 2q−1(1 + C3)q, Q1 = 2q−1kq, and w(t) = zq(t) so that z(t) = w1/q(t),
inequality (2.17) becomes

w(t) ≤ P1 +Q1

(∫ t

t1

e−qs (sA(s)m(s))
q
w(s)ds

)
for t ≥ t1 ≥ c.

Gronwall’s inequality and condition (2.4) imply that w(t) and hence z(t) is bounded,
that is,

lim sup
t→∞

x(t)

tA(t)
<∞.

This completes the proof of the theorem.
The following result is concerned with the linear case of equation (1.1).

Theorem 2.2. Let conditions (i)–(iv) hold and λ = 1. Assume that there exist
numbers p > 1 and α > 0 with p(α− 1) + 1 > 0, there are real numbers S > 0 and
σ > 1 such that (2.3) holds, and (2.4) is satisfied with m(t) replaced by h(t). If

1

a(t)

∫ t

c

(t− s)α−1 |e(s)| ds and
tα−1b(t)

a(t)
(2.18)

are bounded on [c,∞), then any positive solution x(t) of equation (1.1) satisfies
(2.6).

Proof. Let x(t) be an eventually positive solution of equation (1.1), say x(t) > 0
for t ≥ t1 for some t1 ≥ c. As in the proof of Theorem 2.1, we let F (t) = f(t, x(t)).
Then, in view of (i)–(iv), from (1.1) it follows that

x′′(t) ≤ a(t) +

∫ t

c

(t− s)α−1 |e(s)| ds+ b(t)

∫ t1

c

(t− s)α−1 |F (s)| ds

+b(t)

∫ t

t1

(t− s)α−1 h(s)x(s)ds.

The remainder of the proof is similar to that of Theorem 2.1 and so we omit the
details.

Next, we have the following result for equation (1.2).
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Theorem 2.3. Let conditions (ii)–(iv) hold, 0 < λ < 1, there exist real numbers
p > 1 and α > 0 with p(α − 1) + 1 > 0, there are real numbers S > 0 and σ > 1
such that (

b(t)

tn

)
≤ Se−σt, (2.19)

and there is a continuous function m : [c,∞)→ (0,∞) such that∫ t

c

e−qs
(
sn+1m(s)

)q
ds <∞, where q =

p

p− 1
. (2.20)

If
1

tn−1

∫ t

c

(t− s)α−1 |e(s)| ds, tα−nb(t), and
g(t)

tn−1
(2.21)

are bounded on [c,∞), where g(t) is defined by (2.1), then any positive solution x(t)
of equation (1.2) satisfies

lim sup
t→∞

x(t)

tn+1
<∞. (2.22)

Proof. Let x(t) be an eventually positive solution of equation (1.2) with x(t) > 0
for t ≥ t1 for some t1 ≥ c. There exists a constant M1 > 0 such that

x′′(t) ≤M1t
n−1+

1

Γ(α)

∫ t

c

(t−s)α−1 |e(s)| ds+
1

Γ(α)

∫ t

c

(t−s)α−1k(t, s)f(s, x(s))ds.

(2.23)
Letting F (t) = f(t, x(t)), then in view of (ii)–(iv), inequality (2.23) can be written
as

x′′(t) ≤ M1t
n−1 +

1

Γ(α)

∫ t

c

(t− s)α−1 |e(s)| ds+
b(t)

Γ(α)

∫ t1

c

(t− s)α−1 |F (s)| ds

+
b(t)

Γ(α)

∫ t

t1

(t− s)α−1
[
h(s)xλ(s)−m(s)x(s)

]
ds

+
b(t)

Γ(α)

∫ t

t1

(t− s)α−1m(s)x(s)ds. (2.24)

Proceeding exactly as in the proof of Theorem 2.1, we again see that (2.8) holds.
Next, using (2.8) in (2.24) gives

x′′(t) ≤ M1t
n−1 +

1

Γ(α)

∫ t

c

(t− s)α−1 |e(s)| ds+
b(t)

Γ(α)

∫ t1

c

(t− s)α−1 |F (s)| ds

+
(1− λ)λλ/(1−λ)

Γ(α)
b(t)

∫ t

t1

(t− s)α−1m
λ/(λ−1)

(s)h
1/(1−λ)

(s)ds

+
b(t)

Γ(α)

∫ t

t1

(t− s)α−1m(s)x(s)ds,

or

x′′(t) ≤ M1t
n−1 +

1

Γ(α)

∫ t

c

(t− s)α−1 |e(s)| ds+
b(t)

Γ(α)

∫ t1

c

(t− s)α−1 |F (s)| ds

+
g(t)

Γ(α)
+

b(t)

Γ(α)

∫ t

t1

(t− s)α−1m(s)x(s)ds,
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≤M2t
n−1 +

b(t)

Γ(α)

∫ t

t1

(t− s)α−1m(s)x(s)ds, (2.25)

where M2 is an upper bound for

M1+
1

tn−1Γ(α)

∫ t

c

(t−s)α−1 |e(s)| ds+
b(t)

Γ(α)tn−1

∫ t1

c

(t−s)α−1 |F (s)| ds+
g(t)

tn−1Γ(α)
.

Integrating inequality (2.25) from t1 to t, we obtain

x′(t) ≤ |x′(t1)|+M2

(
tn − tn1
n

)
+

1

Γ(α)

∫ t

t1

b(u)

∫ u

t1

(u− s)α−1m(s)x(s)dsdu,

from which it follows that

x′(t) ≤M3t
n +

1

Γ(α)

∫ t

t1

b(u)

∫ u

t1

(u− s)α−1m(s)x(s)dsdu := w(t), (2.26)

for some positive constant M3. An integration of (2.26) from t1 to t yields

x(t) ≤ x(t1) +

∫ t

t1

w(s)ds ≤ x(t1) + tw(t)

since w(t) is nondecreasing, so

x(t)

t
≤ x(t1)

t
+ w(t)

≤ x(t1)

t
+M3t

n +
1

Γ(α)

∫ t

t1

b(u)

∫ u

t1

(u− s)α−1m(s)x(s)dsdu. (2.27)

As in Theorem 2.1, applying Hölder’s inequality and Lemma 2.1 to the integral on
the far right in (2.27), we see that (2.13) holds. Using (2.13) in (2.27), we obtain

x(t)

t
≤ x(t1)

t
+M3t

n +
Q1/p

Γ(α)

∫ t

t1

b(u)eu
(∫ u

t1

e−qsmq(s)xq(s)ds

)1/q

du,

or

x(t)

tn+1
:= z(t) ≤ M4 +

Q1/p

Γ(α)

∫ t

t1

(
b(u)eu

un

)(∫ u

t1

e−qs
(
sn+1m(s)

)q
zq(s)ds

)1/q

du

≤ M4 +
Q1/pS

Γ(α)

∫ t

t1

e−(σ−1)u
(∫ u

t1

e−qs
(
sn+1m(s)

)q
zq(s)ds

)1/q

du,

where M4 = x(t1)/tn+1
1 +M3. As in the proof of Theorem 2.1, since σ > 1, we have

the estimate

z(t) ≤ 1 +M4 + k

(∫ t

t1

e−qs
(
sn+1m(s)

)q
zq(s)ds

)1/q

,

where k = Q1/pS/(σ − 1)Γ(α). The rest of the proof is similar to that of Theorem
2.1.

Similar to the sublinear case, one can easily prove the following result.
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Theorem 2.4. Let conditions (ii)–(iv) hold, λ = 1, and assume there exist real
numbers p > 1 and α > 0 with p(α− 1) + 1 > 0, S > 0 and σ > 1 such that (2.19)
holds, and let (2.20) be satisfied with m(t) replaced by h(t). If

1

tn−1

∫ t

c

(t− s)α−1 |e(s)| ds and tα−nb(t) (2.28)

are bounded on [c,∞), then any positive solution x(t) of equation (1.2) satisfies
(2.22).

Proof. Let x(t) be an eventually positive solution of equation (1.2) with x(t) > 0
for t ≥ t1 for some t1 ≥ c. Now there exists a constant M1 > 0 such that

x′′(t) ≤M1t
n−1+

1

Γ(α)

∫ t

c

(t−s)α−1 |e(s)| ds+
1

Γ(α)

∫ t

c

(t−s)α−1k(t, s)f(s, x(s))ds.

(2.29)
With F (t) = f(t, x(t)), in view of (ii)–(iv), (2.29) can be written as

x′′(t) ≤ M1t
n−1 +

1

Γ(α)

∫ t

c

(t− s)α−1 |e(s)| ds+
b(t)

Γ(α)

t1∫
c

(t− s)α−1 |F (s)| ds

+
b(t)

Γ(α)

t∫
c

(t− s)α−1h(s)x(s)ds.

The remainder of the proof is similar to that of Theorem 2.3 and hence is omitted.

The following results are concerned with the asymptotic behavior of equation
(1.3).

Theorem 2.5. Let conditions (ii)–(iv) hold, 0 < λ < 1, there exist real numbers
p > 1 and α > 0 with p(α − 1) + 1 > 0, there are numbers S > 0 and σ > 1 such
that (

1

tnr(t)

)
≤ Se−σt, (2.30)

and there is a continuous function m : [c,∞)→ (0,∞) such that∫ t

c

e−qs (snm(s))
q
ds <∞, where q =

p

p− 1
. (2.31)

If

1

tn−1r(t)

∫ t

c

(t− s)α−1 |e(s)| ds, tα−n

r(t)
, and

g∗(t)

r(t)tn−1
(2.32)

are bounded on [c,∞), where g∗(t) is defined by (2.2), then any nonoscillatory
solution x(t) of equation (1.3) satisfies

lim sup
t→∞

|x(t)|
tn

<∞. (2.33)
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Proof. Let x(t) be an eventually positive solution of equation (1.3), say x(t) > 0
for t ≥ t1 ≥ c. Then, there exists a constant N1 > such that

r(t)x′(t) ≤ N1t
n−1 +

1

Γ(α)

∫ t

c

(t− s)α−1 |e(s)| ds+
1

Γ(α)

∫ t

c

(t− s)α−1f(s, x(s))ds.

(2.34)
Again letting F (t) = f(t, x(t)), in view of (ii)–(iv), (2.34) can be written as

r(t)x′(t) ≤ N1t
n−1 +

1

Γ(α)

∫ t

c

(t− s)α−1 |e(s)| ds+
1

Γ(α)

∫ t1

c

(t− s)α−1 |F (s)| ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1
[
h(s)xλ(s)−m(s)x(s)

]
ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1m(s)x(s)ds. (2.35)

Proceeding exactly as in the proof of Theorem 2.1, we again see that (2.8) holds.
Next, using (2.8) in (2.35) gives

r(t)x′(t) ≤ N1t
n−1 +

1

Γ(α)

∫ t

c

(t− s)α−1 |e(s)| ds+
1

Γ(α)

∫ t1

c

(t− s)α−1 |F (s)| ds

+
(1− λ)λλ/(1−λ)

Γ(α)

t∫
t1

(t− s)α−1m
λ/(λ−1)

(s)h
1/(1−λ)

(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1m(s)x(s)ds,

or

x′(t) ≤ N2t
n−1 +

1

Γ(α)r(t)

∫ t

t1

(t− s)α−1m(s)x(s)ds, (2.36)

where N2 is an upper bound for

N1

r(t)
+

1

tn−1r(t)Γ(α)

∫ t

c

(t− s)α−1 |e(s)| ds

+
1

tn−1r(t)Γ(α)

∫ t1

c

(t− s)α−1 |F (s)| ds+
g∗(t)

r(t)tn−1
.

Integrating inequality (2.36) from t1 to t yields

x(t) ≤ x(t1) +N2

(
tn − tn1
n

)
+

1

Γ(α)

∫ t

t1

1

r(u)

∫ u

t1

(u− s)α−1m(s)x(s)dsdu,

from which we see that

x(t) ≤ N3t
n +

1

Γ(α)

∫ t

t1

1

r(u)

∫ u

t1

(u− s)α−1m(s)x(s)dsdu, (2.37)

for some positive constant N3. As in Theorem 2.1, applying Hölder’s inequality and
Lemma 2.1 to the integral on the far right in (2.37), we again see that (2.13) holds.
Using (2.13) in (2.37), we obtain

x(t) ≤ N3t
n +

Q1/p

Γ(α)

∫ t

t1

eu

r(u)

(∫ u

t1

e−qsmq(s)xq(s)ds

)1/q

du,
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or

x(t)

tn
:= z(t) ≤ N3 +

Q1/p

Γ(α)

∫ t

t1

eu

r(u)un

(∫ u

t1

e−qs (snm(s))
q
zq(s)ds

)1/q

du

≤ N3 +
Q1/pS

Γ(α)

∫ t

t1

e−(σ−1)u
(∫ u

t1

e−qs (snm(s))
q
zq(s)ds

)1/q

du.

Since σ > 1, as in the proof of Theorem 2.1, we have the estimate

z(t) ≤ 1 +N3 + k

(∫ t

t1

e−qs (snm(s))
q
zq(s)ds

)1/q

, (2.38)

where k = Q1/pS/(σ − 1)Γ(α). The rest of the proof is similar to that of Theorem
2.1 and so we omit the details.

Similarly we have the following result.

Theorem 2.6. Let conditions (ii)–(iv) hold, λ = 1, there exist p > 1 and α > 0
with p(α − 1) + 1 > 0, there are numbers S > 0 and σ > 1 such that (2.30) holds,
and (2.31) is satisfied with m(t) replaced by h(t). If

1

tn−1r(t)

∫ t

c

(t− s)α−1 |e(s)| ds and
tα−n

r(t)
(2.39)

are bounded on [c,∞), then any nonoscillatory solution x(t) of equation (1.3) sat-
isfies (2.33).

Example 2.1. Consider the integro–differential equation

x′′(t) = c0 + c1(t− 2) +
1

Γ(α)

∫ t

2

(t− s)α−1
[

1

s2
+ k(t, s)h(s) |x(s)|λ−1 x(s)

]
ds,

(2.40)

with 0 < λ < 1. Here we have c = 2, n = 2, e(t) = 1
t2 , f(t, x(t)) = h(t) |x(t)|λ−1 x(t),

and we take k(t, s) = e−6t

1+s+t2 , b(t) = e−5t

t2 , and h(t) = t. Then, it is easy to see that

conditions (i)–(iv) hold. Letting p = 3
2 and α = 2 − 1

p = 4
3 ∈ (1, 2), we see that

q = 3 and p(α − 1) + 1 = 3
2 . With σ = 5, S = 1, and m(t) = h(t) = t, conditions

(2.19) and (2.20) become (
b(t)

tn

)
=
e−5t

t4
≤ e−5t,

and ∫ t

c

e−qs
(
sn+1m(s)

)q
ds =

∫ t

2

e−3s
(
s3 × s

)3
ds =

∫ t

2

s12

e3s
ds <∞,

respectively. Since

1

tn−1

∫ t

c

(t− s)α−1 |e(s)| ds =
1

t

∫ t

2

(t− s)1/3 1

s2
ds

≤ (t− 2)1/3

t

∫ t

2

1

s2
ds ≤ 1

2t2/3
<∞,

tα−nb(t) =
1

t8/3e5t
<∞,
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and with m(t) = h(t) = t

g(t)

tn−1
= (1− λ)λλ/(1−λ)

e−5t

t3

∫ t

t1

(t− s)α−1m(s)ds

= (1− λ)λλ/(1−λ)
e−5t

t3

∫ t

2

(t− s)1/3sds

≤ (1− λ)λλ/(1−λ)
e−5tt

t3

∫ t

2

(t− s)1/3ds

≤ (1− λ)λλ/(1−λ)
3

4e5tt2/3
<∞,

condition (2.21) holds. All conditions of Theorem 2.3 are satisfied and so every
positive solution x(t) of equation (2.40) satisfies

lim sup
t→∞

x(t)

t3
<∞.

Example 2.2. Consider the integro–differential equation

x′′(t) = 2t+

∫ t

2

(t− s)α−1
[
sin s+ k(t, s)h(s) |x(s)|λ−1 x(s)

]
ds, (2.41)

with 0 < λ < 1. Here we have a(t) = 2t, c = 2, e(t) = sin t, f(t, x(t)) =

h(t) |x(t)|λ−1 x(t), and we take k(t, s) = 2e−2t

1+s2 , b(t) = 2e−2t, and h(t) = t. Then, it
is easy to see that conditions (i)–(iv) hold. Letting p = 3/2 and α = 1/2, we see
that q = 3 and p(α− 1) + 1 = 1/4 > 0. Since

A(t) =

∫ t

c

a(s)ds =

∫ t

2

2sds = t2 − 4,

we see that, for t ≥ 2c = 4, i.e., for t ≥ 2× 2,

t

2
≥ 2,

so

t2 − 4 ≥ 3t2

4
,

and thus

A(t) ≥ 3t2

4
.

Therefore, with σ = 2, and S = 2/3, condition (2.3) becomes(
b(t)

A(t)

)
≤ 8e−2t

3t2
≤ 2e−2t

3
,

i.e, condition (2.3) holds.
With m(t) = h(t) = t, condition (2.4) becomes∫ t

c

e−qs (sA(s)m(s))
q
ds =

∫ t

2

e−3s
(
s× (s2 − 4)× s

)3
ds ≤

∫ t

2

s12

e3s
ds <∞,
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i.e, condition (2.4) holds.
Since

1

a(t)

∫ t

c

(t− s)α−1 |e(s)| ds =
1

2t

∫ t

2

(t− s)−1/2 |sin s| ds

≤ 1

2t

∫ t

2

(t− s)−1/2ds

≤ 1

t1/2
<∞,

tα−1b(t)

a(t)
=

1

t3/2e2t
<∞,

and with m(t) = h(t)

g(t)

a(t)
= (1− λ)λλ/(1−λ)

e−2t

t

∫ t

2

(t− s)−1/2 × sds

≤ (1− λ)λλ/(1−λ)
e−2t × t

t

∫ t

2

(t− s)−1/2ds

≤ (1− λ)λλ/(1−λ)
2t1/2

e2t
<∞,

condition (2.5) holds. All conditions of Theorem 2.1 are satisfied and so every
positive solution x(t) of equation (2.41) satisfies

lim sup
t→∞

x(t)

t3
<∞.

We end our paper by noting that it would be of interest to study equations
(1.1)–(1.3) for the case where f satisfies condition (iv) with λ > 1.
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