AN APPLICATION OF JACK-FUKUI-SAKAGUCHI LEMMA

Mamoru Nunokawa ${ }^{1}$, Janusz Sokó ${ }^{2, \dagger}$ and Huo Tang ${ }^{3}$

Abstract

We present some applications of Jack-Fukui-Sakaguchi Lemma which become sufficient criteria for a function to be in the class of strongly starlike, strongly close-to-convex or in the other classes.

Keywords Bazilevič function, close-to-convex functions, convex functions, starlike functions.

MSC(2010) 30C45, 30C80.

1. Introduction

Let \mathcal{A} be the class of functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{S} denote the subclass of \mathcal{A} consisting of all univalent functions in \mathbb{D}. If $f \in \mathcal{A}$ satisfies

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, z \in \mathbb{D}
$$

then $f(z)$ is said to be starlike with respect to the origin in \mathbb{D} and it is denoted by $f(z) \in \mathcal{S}^{*}$. It is known that $\mathcal{S}^{*} \subset \mathcal{S}$. For further properties of starlike functions and other functions having a geometric property we refer to [3,11]. To prove the main results we apply techniques of differential subordinations widely described in the book [10]. We say that an analytic function $f(z)$ is subordinate to an analytic function $g(z)$, univalent or not, and write $f(z) \prec g(z)$, if and only if there exists a function $\omega(z)$, analytic in \mathbb{D} such that $\omega(0)=0,|\omega(z)|<1$ for $|z|<1$ and $f(z)=g(\omega(z))$. If we additionally assume that $g(z)$ is univalent in \mathbb{D}, then we have the following equivalence:

$$
\begin{equation*}
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(|z|<1) \subset g(|z|<1) . \tag{1.2}
\end{equation*}
$$

The differential subordinations were deeply developed in the monograph [10] as well as in many of recent papers, see for example in $[2,8,9,16,17]$. The following lemma is a generalization of well known Jack lemma, [5].

[^0]Lemma 1.1 ([4]). Let $w(z)=a_{p} z^{p}+a_{p+1} z^{p+1}+\cdots, a_{p} \neq 0,1 \leq p$ be analytic in \mathbb{D}. If the maximum of $|w(z)|$ on the circle $|z|=r<1$ is attained at $z=z_{0}$, then $z_{0} w^{\prime}\left(z_{0}\right) / w\left(z_{0}\right)$ is a real number and

$$
\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)} \geq p
$$

A related boundary behavior of analytic functions is considered also in [14]. In this paper we present some applications of the above Jack-Fukui-Sakaguchi Lemma to obtain several sufficient criteria for a function to be in the class of strongly starlike, strongly close-to-convex or in the other classes. A related Sakaguchi's result was recently considered in $[12,13]$.

2. Main results

Theorem 2.1. Let $q(z)=1+c_{n} z^{n}+\cdots$ be analytic in \mathbb{D} with $c_{n} \neq 0$. Assume that for all $z \in \mathbb{D}$ we have $q(z) \neq-1, q(z) \neq 0$ and for all $z \in \mathbb{D} \backslash\{0\}$ we have $q(z) \neq 1$. Furthermore, suppose that

$$
\begin{equation*}
\left|\frac{z q^{\prime}(z)}{q(z)}\right|<n, \quad(z \in \mathbb{D}) \tag{2.1}
\end{equation*}
$$

for some positive integer n. Then we have

$$
\begin{equation*}
q(z) \prec \frac{1+z^{n}}{1-z^{n}} . \tag{2.2}
\end{equation*}
$$

Proof. Let us consider the function $w(z)$ such that

$$
w^{n}(z)= \begin{cases}\frac{q(z)-1}{q(z)+1}, & z \neq 0 \tag{2.3}\\ 0, & z=0\end{cases}
$$

Then we have

$$
w(z)=\sqrt[n]{\frac{c_{n}}{2}} z+\cdots
$$

which gives

$$
\begin{equation*}
q(z)=\frac{1+w^{n}(z)}{1-w^{n}(z)} \tag{2.4}
\end{equation*}
$$

then it follows that $w(z)$ is analytic in \mathbb{D} and to prove (2.2) we need to show $|w(z)|<1$.

From Fukui and Sakaguchi's Lemma 1.1, we have that if there exists a point $z_{0} \in \mathbb{D}$ such that

$$
|w(z)|<\left|z_{0}\right| \text { for }|z|<\left|z_{0}\right|
$$

and

$$
\begin{equation*}
\left|w\left(z_{0}\right)\right|=\left|z_{0}\right| \quad w\left(z_{0}\right)=e^{i \theta} \tag{2.5}
\end{equation*}
$$

where θ is a real number and $0 \leq \theta<2 \pi$, then

$$
\begin{equation*}
\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)}=k \geq 1 \tag{2.6}
\end{equation*}
$$

From (2.3) and (2.4) it follows that $\theta \neq 0$ and $\theta \neq \pi$ and so $w\left(z_{0}\right) \neq \pm 1$. On the other hand, from (2.4), we have

$$
\begin{equation*}
\frac{z q^{\prime}(z)}{q(z)}=\frac{2 n z w^{\prime}(z) w^{n-1}(z)}{1-w^{2 n}(z)} \tag{2.7}
\end{equation*}
$$

Therefore, by (2.5) and (2.6) the equality (2.7) becomes

$$
\begin{aligned}
\left|\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}\right| & =\left|\frac{2 n z_{0} w^{\prime}\left(z_{0}\right) w^{n-1}\left(z_{0}\right)}{1-w^{2 n}\left(z_{0}\right)}\right| \geq\left|\frac{2 n k w^{n}\left(z_{0}\right)}{1-w^{2 n}\left(z_{0}\right)}\right| \\
& =2 n k\left|\frac{e^{i n \theta}}{1-e^{2 i n \theta}}\right|=2 n k \frac{1}{2|\sin n \theta|} \geq n .
\end{aligned}
$$

This contradicts (2.1) and so, it completes the proof.
Notice that in the subordination (2.2) the function $\left(1+z^{n}\right) /\left(1-z^{n}\right)$ is not univalent and it makes the calculations more difficult. Usually in $p(z) \prec q(z)$ it is considered univalent function $q(z)$. Several classes of functions connected with subordination under not-univalent function of the type

$$
q(z) \prec \frac{1+A z^{n}}{1+B z^{n}},
$$

where A, B are some complex numbers, were considered in [6] and [7].
If $q^{\alpha}(z)=z f^{\prime}(z) / f(z)$, the Theorem 2.1 becomes the following corollary.
Corollary 2.1. Let $\left(z f^{\prime}(z) / f(z)\right)^{1 / \alpha}=1+c_{n} z^{n}+\cdots,\left(z f^{\prime}(z) / f(z)\right)^{1 / \alpha} \neq-1$, $z f^{\prime}(z) / f(z) \neq 0$ be analytic in \mathbb{D} for some positive real α. Suppose also that

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right|<\alpha n, \quad(z \in \mathbb{D}) \tag{2.8}
\end{equation*}
$$

for some positive integer n. Then we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z^{n}}{1-z^{n}}\right)^{\alpha} \tag{2.9}
\end{equation*}
$$

It is easy to see, that (2.9) implies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha} \tag{2.10}
\end{equation*}
$$

which means that $f(z)$ is strongly starlike functions of order α. We say that a function $f \in \mathcal{S}^{*}$ is strongly starlike of order β if and only if

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \beta, \quad(z \in \mathbb{D})
$$

for some $\beta(0<\beta \leq 1)$, where the function \arg is chosen with values in an interval between $-\pi$ and π. Let $\mathcal{S S}^{*}(\beta)$ denote the class of strongly starlike functions of order β. The class $\mathcal{S S}^{*}(\beta)$ was introduced independently in $[18,19]$ and in [1]. Recall also, that if there exists a function $g(z) \in \mathcal{S}^{*}$ for which the function $f(z) \in \mathcal{A}$ satisfies the condition

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{g(z)}\right)\right|<\frac{\pi}{2} \alpha, \quad(z \in \mathbb{D})
$$

then we say that $f(z)$ is strongly close-to-convex of order $\alpha, 0<\alpha \leq 1$. For some recent results on strongly starlike functions we refer to [15]. Putting $q^{\alpha}(z)=$ $z f^{\prime}(z) / g(z)$ in Theorem 2.1 we get the following sufficient condition for $f(z)$ to be strongly close-to-convex of order α.
Corollary 2.2. Assume that $f(z) \in \mathcal{A}, g(z) \in \mathcal{S}^{*}$ and that for some positive real $\alpha, 0<\alpha \leq 1$ the function $\left(z f^{\prime}(z) / g(z)\right)^{1 / \alpha}=1+c_{n} z^{n}+\cdots$ is analytic in \mathbb{D} with $\left(z f^{\prime}(z) / g(z)\right)^{1 / \alpha} \neq-1, z f^{\prime}(z) / g(z) \neq 0$. Furthermore, suppose that

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right|<\alpha n, \quad(z \in \mathbb{D}) \tag{2.11}
\end{equation*}
$$

for some positive integer n. Then we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{g(z)} \prec\left(\frac{1+z^{n}}{1-z^{n}}\right)^{\alpha} \tag{2.12}
\end{equation*}
$$

which follows that $f(z)$ is strongly close-to-convex of order α.
Moreover, if there exists a function $g(z) \in \mathcal{S}^{*}$ such that $f(z) \in \mathcal{A}$ satisfies the condition

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}\right)\right|<\frac{\pi}{2} \alpha, \quad(z \in \mathbb{D})
$$

then we call that $f(z)$ is strongly Bazilevič function of type $\beta, 0<\beta$ and of order $\alpha, 0<\alpha \leq 1$.
Corollary 2.3. Assume that $f(z) \in \mathcal{A}, g(z) \in \mathcal{S}^{*}$ and that for some positive real $\alpha, \beta, 0<\alpha \leq 1$ the function $\left(z f^{\prime}(z) / f^{1-\beta}(z) g^{\beta}(z)\right)^{1 / \alpha}=1+c_{n} z^{n}+\cdots$ is analytic in \mathbb{D} with $\left(z f^{\prime}(z) / f^{1-\beta}(z) g^{\beta}(z)\right)^{1 / \alpha} \neq-1, z f^{\prime}(z) / f^{1-\beta}(z) g^{\beta}(z) \neq 0$. Furthermore, suppose that

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\beta) \frac{z f^{\prime}(z)}{f(z)}-\beta \frac{z g^{\prime}(z)}{g(z)}\right|<\alpha n, \quad(z \in \mathbb{D}) \tag{2.13}
\end{equation*}
$$

for some positive integer n. Then we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)} \prec\left(\frac{1+z^{n}}{1-z^{n}}\right)^{\alpha} \tag{2.14}
\end{equation*}
$$

which follows that $f(z)$ is strongly Bazilevič function of type $\beta, 0<\beta$ and of order α.

If $q(z)$ is of the form $q(z)=(p(z))^{1 / \alpha}$, then Theorem 2.1 becomes the following corollary.
Corollary 2.4. Let $(p(z))^{1 / \alpha}=1+c_{n} z^{n}+\cdots,(p(z))^{1 / \alpha} \neq-1, p(z) \neq 0$ be analytic in \mathbb{D}, and suppose that

$$
\begin{equation*}
\left|\frac{z p^{\prime}(z)}{p(z)}\right|<\alpha n, \quad(z \in \mathbb{D}) \tag{2.15}
\end{equation*}
$$

for some positive real α and for some positive integer n. Then we have

$$
\begin{equation*}
p(z) \prec\left(\frac{1+z^{n}}{1-z^{n}}\right)^{\alpha} \tag{2.16}
\end{equation*}
$$

Theorem 2.2. Let $(\log \{p(z)\})^{1 / \alpha}=1+c_{1} z+\cdots, \log \{p(z)\} \neq 0,(\log \{p(z)\})^{1 / \alpha} \neq$ -1 , be analytic in \mathbb{D} and suppose that

$$
\begin{equation*}
\left|\frac{z p^{\prime}(z)}{p(z)}\right|<\frac{\alpha}{2\left(\frac{1+\alpha}{2}\right)^{(1+\alpha) / 2}+\left(\frac{1-\alpha}{2}\right)^{(1-\alpha) / 2}}, \quad(z \in \mathbb{D}) \tag{2.17}
\end{equation*}
$$

for some positive real $\alpha<1$. Then we have $p(z)=e+d_{1} z+\cdots$ and

$$
\begin{equation*}
p(z) \prec e^{\left(\frac{1+z}{1+z}\right)^{\alpha}}, \quad(z \in \mathbb{D}) . \tag{2.18}
\end{equation*}
$$

Proof. Let us put

$$
\begin{equation*}
w(z)=\frac{(\log \{p(z)\})^{1 / \alpha}-1}{(\log \{p(z)\})^{1 / \alpha}+1}, \quad w(0)=0 \tag{2.19}
\end{equation*}
$$

or

$$
\begin{equation*}
p(z)=e^{\left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha}} \tag{2.20}
\end{equation*}
$$

then it follows that $w(z)$ is analytic in $\mathbb{D}, w(0)=0$ and

$$
\begin{aligned}
\frac{z p^{\prime}(z)}{p(z)} & =\alpha z\left(\frac{1+w(z)}{1-w(z)}\right)^{\prime}\left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha-1} \\
& =\frac{2 \alpha z w^{\prime}(z)}{(1-w(z))^{2}}\left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha-1} \\
& =\frac{2 \alpha z w^{\prime}(z)}{1-w^{2}(z)}\left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha} .
\end{aligned}
$$

To prove (2.18) we need $|w(z)|<1$ in \mathbb{D}. If there exists a point $z_{0} \in \mathbb{D}$ such that

$$
|w(z)|<1 \text { for }|z|<\left|z_{0}\right|
$$

and

$$
\begin{equation*}
\left|w\left(z_{0}\right)\right|=1, \quad w\left(z_{0}\right)=e^{i \theta} \tag{2.21}
\end{equation*}
$$

for some real $\theta, \theta \in[0,2 \pi) \backslash\{0, \pi\}$ because from the hypothesis and from (2.19) it follows that $w\left(z_{0}\right) \neq \pm 1$. Then from Jack [5] and Fukui and Sakaguchi's [4] Lemma 1.1, we have that

$$
\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)}=k \geq 1
$$

Then it follows that

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{2 \alpha z_{0} w^{\prime}\left(z_{0}\right)}{1-w^{2}\left(z_{0}\right)}\left(\frac{1+w\left(z_{0}\right)}{1-w\left(z_{0}\right)}\right)^{\alpha}=2 \alpha k \frac{w\left(z_{0}\right)}{1-w^{2}\left(z_{0}\right)}\left(\frac{1+w\left(z_{0}\right)}{1-w\left(z_{0}\right)}\right)^{\alpha}
$$

and for $\theta \in(0,2 \pi) \backslash\{\pi\}$

$$
\begin{aligned}
\frac{w\left(z_{0}\right)}{1-w^{2}\left(z_{0}\right)} & =\frac{e^{i \theta}}{1-e^{2 i \theta}}=\frac{i}{2 \sin \theta} \\
\frac{1+w\left(z_{0}\right)}{1-w\left(z_{0}\right)} & =\frac{2 i \sin \theta}{2(1-\cos \theta)}=i \frac{\cos (\theta / 2)}{\sin (\theta / 2)}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left|\frac{2 z_{0} w^{\prime}\left(z_{0}\right)}{1-w^{2}\left(z_{0}\right)}\left(\frac{1+w\left(z_{0}\right)}{1-w\left(z_{0}\right)}\right)^{\alpha}\right| & =\left|\frac{i}{2 \sin \theta}\right|\left|i \frac{\cos (\theta / 2)}{\sin (\theta / 2)}\right|^{\alpha} \\
& =\frac{1}{2}\left|\frac{1}{(\sin (\theta / 2))(\cos (\theta / 2))}\right|\left|\frac{\cos (\theta / 2)}{\sin (\theta / 2)}\right|^{\alpha} \\
& =\frac{1}{2} \frac{1}{\left(|\sin (\theta / 2)|^{1+\alpha}|\cos (\theta / 2)|^{1-\alpha}\right.}
\end{aligned}
$$

Putting

$$
\begin{aligned}
& g(x)=(\sin x)^{1+\alpha}(\cos x)^{1-\alpha}, \quad 0<x<\pi / 2 \\
& h(x)=(\sin x)^{1+\alpha}(-\cos x)^{1-\alpha}, \quad \pi / 2<x<\pi
\end{aligned}
$$

shows that

$$
\begin{aligned}
g^{\prime}(x) & =(1+\alpha)\left(\frac{\sin x}{\cos x}\right)^{\alpha}\left\{\cos ^{2} x-\frac{1-\alpha}{1+\alpha} \sin ^{2} x\right\} \\
& =(1+\alpha)\left(\frac{\sin x}{\cos x}\right)^{\alpha}\left\{1-\frac{2}{1+\alpha} \sin ^{2} x\right\}
\end{aligned}
$$

Therefore, for $0 \leq x<\pi / 2$ we have

$$
g^{\prime}(x)=0 \Leftrightarrow\left(\sin x=0 \vee \sin x=\sqrt{\frac{1+\alpha}{2}}\right)
$$

which gives

$$
g^{\prime}(x)=0 \Leftrightarrow\left(x=0 \quad \vee x=\sin ^{-1} \sqrt{\frac{1+\alpha}{2}}\right) .
$$

It follows that

$$
\max _{0<x<\pi / 2}|g(x)|=\left(\frac{1+\alpha}{2}\right)^{(1+\alpha) / 2}+\left(\frac{1-\alpha}{2}\right)^{(1-\alpha) / 2}
$$

Also

$$
\max _{\pi / 2<x<\pi}|h(x)|=\left(\frac{1+\alpha}{2}\right)^{(1+\alpha) / 2}+\left(\frac{1-\alpha}{2}\right)^{(1-\alpha) / 2}
$$

Therefore, we have

$$
\left|\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right| \geq \frac{\alpha k}{2\left(\frac{1+\alpha}{2}\right)^{(1+\alpha) / 2}\left(\frac{1-\alpha}{2}\right)^{(1-\alpha) / 2}} \geq \frac{\alpha}{2\left(\frac{1+\alpha}{2}\right)^{(1+\alpha) / 2}\left(\frac{1-\alpha}{2}\right)^{(1-\alpha) / 2}}
$$

This contradicts (2.17) and so, we have (2.18).

References

[1] D. A. Brannan, W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc., 1969, 1(2), 431-443.
[2] S. Z. H. Bukhari, T. Bulboaca, M. S. Shabbir, Subordination and superordination results for analytic functions with respect to symmetrical points, Quaestiones Mathematicae, 2017, 41(1), 1-15.
[3] A. W. Goodman, Univalent Functions, Vols. I and II, Mariner Publishing Co.: Tampa, Florida, 1983.
[4] S. Fukui, K. Sakaguchi, An extension of a theorem of S. Ruscheweyh, Bull. Fac. Edu. Wakayama Univ. Nat. Sci., 1980, 29, 1-3.
[5] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 1971, 3, 469-474.
[6] R. Jurasinńska, J. Stankiewicz, Coefficients in some classes defined by subordination to multivalent majorants, Ann. Polon. Math., 2003, 80, 163-170.
[7] R. Jurasinńska, J. Sokół, Some problems for certain family of starlike functions, Math. Comp. Modell., 2012, 55, 2134-2140.
[8] R. Kargar, N. Pascu, A. Ebadian, Locally univalent approximations of analytic functions, J. Math. Anal. Appl., 2017. DOI: 10.1016/j.jmaa.2017.04.054.
[9] R. Kargar, A. Ebadian, L. Trojnar-Spelina, Further Results for Starlike Functions Related with Booth Lemniscate, Iranian J. Science and Tech., Transaction A, Science, 2019, 43(3), 1235-1238.
[10] S. S. Miller, P. T. Mocanu, Differential Subordinations, Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York / Basel, 2000.
[11] K. I. Noor, N. Khan, Q. Zahoor, Some properties of multivalent spiral-like functions Maejo Int. J. Sci. Technol., 2018, 12(2), 139-151.
[12] M. Nunokawa, S. Owa, K. Kuroki, J. Sokół, Some generalization properties of analytic functions concerned with Sakaguchi result, Tamkang J. Math., 2015, 46(2), 143-150.
[13] M. Nunokawa, J. Sokół, On an extension of Sakaguchi's result, J. Math. Ineq., 2015, 9(3), 683-697.
[14] M. Nunokawa, J. Sokół, On a boundary property of analytic functions, J. Ineq. Appl., 2017, 2017:298.
[15] M. Nunokawa, J. Sokół, New conditions for starlikeness and strongly starlikeness of order alpha, Houston J. Math., 2017, 43(2), 333-344.
[16] S. Rahrovi, J. Sokół, Differential sandwich theorems for some subclasses of p-valent functions, Acta Univ. Apulensis Math. Inform., 2016, 47, 117-132.
[17] H. M. Srivastava, S. Hussein, M. Raza, The Fekete-Szegö Functional for a Subclass of Analytic Functions Associated with Quasi-Subordination, Carpathian J. Math., 2018, 34(1), 103-113.
[18] J. Stankiewicz, Quelques problèmes extrémaux dans les classes des fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 1965, 20, 59-75.
[19] J. Stankiewicz, On a family of starlike functions, Ann. Univ. Mariae CurieSkłodowska Sect. A, 1968/70, 22-24, 175-181.

[^0]: ${ }^{\dagger}$ the corresponding author. Email address:jsokol@ur.edu.pl(J. Sokół)
 ${ }^{1}$ Departmentof Mathematics, University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba, 260-0808, Japan
 ${ }^{2}$ College of Natural Sciences, University of Rzeszów, Prof. Pigonia's Street 1, 35-310 Rzeszów, Poland
 ${ }^{3}$ School of Mathematics and Statistics, Chifeng University, Chifeng 024000, Inner Mongolia, China

