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Abstract We propose and investigate an evolution system with a Riemann-
Liouville fractional derivative. With the aid of a resolvent method, we formu-
late a suitable notion of solutions to this system and demonstrate the corre-
sponding existence and uniqueness of solutions under a regular integral con-
tractor condition. Furthermore, by applying a space decomposition technique,
we exhibit the approximate controllability result of the system. This paper
closes with a simple example, which confirms our analytical findings.
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1. Introduction

In the past two decades, differential equations with fractional derivatives have at-
tracted increasing research attention because they play a central role in describing
many physical phenomena. Many researchers have studied them extensively and
much significant literature about them has been displayed [5,7,13,15,25,26,30,31].
In [31], Laplace transformations and probability densities were applied to formulate
a suitable concept of solutions to a Riemann-Liouville fractional system when A
generates a C0-semigroup. In 2014, Fan [7] analyzed a Riemann-Liouville fractional
linear inhomogeneous system by using a resolvent method introduced by Li and
Peng [15]. With the help of the uniform integrability assumption on the resolvent,
Fan presented an appropriate notion of solutions to this system. Considering that
the resolvent method, a generalization of semigroup approach, is convenient and effi-
cient, we will also utilize this technique to investigate solutions of Riemann-Liouville
fractional semilinear systems when A generates a resolvent.
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On the other hand, there are widespread applications of controllability in many
fields, such as control theory, engineering practice, technical science, etc. Thereby,
we need pay attention to various control problems. Especially, many researchers
have shown an intense interest in analyzing approximate controllability problems
(e.g., [4,9,12,14,16–19,22–24]). In addition, many authors have explored these prob-
lems by applying a space decomposition method (refer to [12, 18, 19, 22, 23]). How-
ever, few results on approximate controllability for Riemann-Liouville fractional sys-
tems have been displayed by employing this technique. Therefore, the objective of
the present paper is to address the approximate controllability of Riemann-Liouville
fractional semilinear systems by utilizing this method.

Here, under suitable conditions of the operator t1−αTα(t), we first formulate a
concept of solutions to system (2.1) by a resolvent approach. Emphasis here is that
this is a nontrivial extension of Fan [7] since the assumptions on the operator Tα(t)
is different from Fan’s. Then, we display the existence and uniqueness of solutions
by utilizing an integral contractor assumption. It is worth mentioning here that this
assumption is weaken than a Lipschitz condition. Next, we analyze the approximate
controllability problems by applying a technique of space decomposition. Finally,
we present a simple example to illustrate that the hypotheses on t1−αTα(t) are
suitable. We emphasize that the technique combining integral contractor, resolvent
and space decomposition can enable us to treat all previous works on approximate
controllability problems in Hilbert spaces.

The work is structured as follows. Section 2 contains some preliminaries, includ-
ing symbols, definitions and lemmas. In Section 3, we introduce a suitable concept
of solutions and exhibit the existence and uniqueness result. Section 4 is devoted to
the approximate controllability problem. Finally, a simple application is proposed
in Section 5 to demonstrate the validity of our analytical findings.

2. Problem statement and preliminaries

We explore the following Riemann-Liouville fractional evolution system:Dαx(t) = Ax(t) + (Bu)(t) + f(t, x(t)), 1
2 < α < 1, t ∈ J ′ = (0, b],

lim
t→0+

Γ(α)t1−αx(t) = x0,
(2.1)

where A : D(A) ⊂ H → H generates an α-order resolvent {Tα(t)}t>0 on a Hilbert
space H and f : J × H → H is a nonlinear function. Furthermore, u ∈ L2(J ;U)
and B : L2(J ;U) → L2(J ;H) is a bounded and linear operator, where J = [0, b]
and U is a Hilbert space.

To establish our main results, we first summarize some preliminaries, including
notations, definitions and lemmas. We employ the symbol ∗ to denote the convo-
lution of functions, i.e., (f ∗ h)(s) =

∫ s

0
f(s − τ)h(τ)dτ, s > 0. Additionally, the

notation L(H) represents the class of all bounded and linear operators from H to
itself. Moreover, we denote the closure of the set D by D. Let

C1−α(J ;H)={x ∈ C(J ′;H) : x̃(s)=s1−αx(s), x̃(0)= lim
s→0+

x̃(s), x̃ ∈ C(J ;H)}

be normed by ∥x∥C1−α = sup
s∈J

∥x̃(s)∥. Then C1−α(J ;H) is a Banach space.
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Definition 2.1 ( [21]). Let α > 0. For any f ∈ L1(J ;H), the α-order fractional
integral is

Jα
s f(s) = (gα ∗ f)(s), s > 0,

where

gα(s) =
sα−1

Γ(α)
, s > 0.

Definition 2.2 ( [21]). Let 0 < α < 1 and f ∈ L1(J ;H). The α-order fractional
derivative of f , in the Riemann-Liouville sense, can be expressed by

Dαf(s) =
d

ds
(g1−α ∗ f)(s), s > 0.

Definition 2.3 ( [15]). Let 0 < α < 1. By an α-order resolvent, we mean a strongly
continuous family {Tα(s)}s>0 ⊆ L(H) satisfying
(a) lims→0+ Γ(α)s1−αTα(s)x = x, x ∈ H;
(b) Tα(τ)Tα(s) = Tα(s)Tα(τ), s, τ > 0;
(c) Tα(τ)J

α
s Tα(s)− Jα

τ Tα(τ)Tα(s)= gα(τ)J
α
s Tα(s)− gα(s)J

α
τ Tα(τ), s, τ > 0.

The generator A : D(A) ⊆ H → H of the resolvent {Tα(s)}s>0 is defined by

Ax = Γ(2α) lim
s→0+

s1−αTα(s)x− x
Γ(α)

sα
,

where

D(A) =

{
x ∈ H : lim

s→0+

s1−αTα(s)x− x
Γ(α)

sα
exists

}
.

Remark 2.1. It is easily seen that the operator s1−αTα(s) is bounded on J , where
s1−αTα(s)|s=0 = lim

s→0+
s1−αTα(s). For brevity, set M = sup

s∈J
∥s1−αTα(s)∥.

Lemma 2.1 ( [15]). Let A generate a resolvent {Tα(s)}s>0. Then

(i) Tα(s)D(A) ⊆ D(A), s > 0;

(ii) D(A) = H.

Hereafter, we always assume that

(HA) {s1−αTα(s)}s>0 is compact and there exists a positive constant C such that∥∥∥d(s1−αTα(s))
ds

∥∥∥ ≤ C
s , s ∈ J ′.

Remark 2.2. In view of Lemma 3.8 in [8], if {s1−αTα(s)}s>0 is an analytic compact
operator family of analyticity type (ω0, θ0), then (HA) is fulfilled.

Following the proofs in Lemmas 3.4, 3.5 and 3.8 of [8], we can derive the following
properties of the operator s1−αTα(s).

Lemma 2.2. Let condition (HA) hold. Then for s ∈ J ′, we have

(a) lim
τ→0

∥∥(s+ τ)1−αTα(s+ τ)− s1−αTα(s)
∥∥ = 0;
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(b) lim
τ→0+

∥∥(s+ τ)1−αTα(s+ τ)− (Γ(α)τ1−αTα(τ))(s
1−αTα(s))

∥∥ = 0;

(c) lim
τ→0+

∥∥s1−αTα(s)− (Γ(α)τ1−αTα(τ))((s− τ)1−αTα(s− τ))
∥∥ = 0.

Lemma 2.3 ( [28]). Let 1 ≤ p <∞. If ψ ∈ Lp(J ;H), then

lim
s→0

∫ b

0

∥ψ(s+ τ)− ψ(τ)∥pdτ = 0,

where ψ(t) = 0 for t /∈ J .

We now introduce the concept of a regular integral contractor associated with
the resolvent {Tα(s)}s>0 (refer to [1, 9–11]).

Definition 2.4. Let γ : J ×H → L(C1−α(J ;H)). γ is called a bounded integral
contractor of f , depending on the resolvent {Tα(s)}s>0, if∥∥∥∥f(s, x(s) + y(s) +

∫ s

0

Tα(s− τ)τ1−α(γ(τ, x(τ))y)(τ)dτ

)
−f(s, x(s))− s1−α(γ(s, x(s))y)(s)

∥∥∥∥ ≤ λs1−α∥y(s)∥ (2.2)

with λ > 0 holds for all s ∈ J and x, y ∈ C1−α(J ;H). In addition, if for any
x, z ∈ C1−α(J ;H), the following equation

y(s) +

∫ s

0

Tα(s− τ)τ1−α(γ(τ, x(τ))y)(τ)dτ = z(s)

possesses a solution y ∈ C1−α(J ;H), then γ is called a regular integral contractor.

For convenience, we set β = sup {∥γ(s, x(s))∥ : s ∈ J, x ∈ C1−α(J ;H)}.

Remark 2.3. If for x, y ∈ H and s ∈ J , ∥f(s, x)− f(s, y)∥ ≤ λs1−α∥x− y∥ with
λ > 0, then f has a regular integral contractor γ = 0.

3. Existence results

The task of this section is to introduce a suitable concept of solutions to system (2.1)
and exhibit the corresponding existence and uniqueness of solutions by employing
a resolvent method. To achieve our goal, we suppose that f : J ×H → H satisfies

(Hf) (i) for a.e. s ∈ J , y → f(s, y) is continuous;

(ii) for all y ∈ H, s→ f(s, y) is measurable;

(iii) for a.e. s ∈ J and all y ∈ H, ∥f(s, y)∥ ≤ k + ϱs1−α∥y∥ with ϱ, k > 0;

(iv) f : J ×H → H has a regular integral contractor γ.

Definition 3.1. For fixed u ∈ L2(J ;U), by a solution to (2.1) depending on u, we
mean a function x ∈ C1−α(J ;H) satisfying

x(t) = gα(t)x0 +AJα
t x(t) + Jα

t ((Bu)(t) + f(t, x(t))), (3.1)

for t ∈ J ′.
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In order to propose an equivalent concept of solutions to (2.1) by employing the
resolvent method, for h ∈ L2(J ;H), we first analyze the continuity of Tα ∗ h in
C(J ;H). We emphasize that it is essential to study the continuity, since Tα(t) has
singularity at zero.

Lemma 3.1. Assume that condition (HA) is satisfied and h ∈ L2(J ;H). Then
Tα ∗ h ∈ C(J ;H).

Proof. We begin by showing the existence of (Tα ∗ h)(s), s ∈ J . By a similar
proof as employed in Proposition 1.3.4 of [2], we can check the measurability of
Tα(s− ·)h(·) on (0, s), s ∈ J ′. Furthermore, we have∥∥∥∥∫ s

0

Tα(s− τ)h(τ)dτ

∥∥∥∥ =

∥∥∥∥∫ s

0

((s− τ)1−αTα(s− τ))(s− τ)α−1h(τ)dτ

∥∥∥∥
≤ M

√
b2α−1

2α− 1
∥h∥L2 .

Thus, (Tα ∗ h)(s) exists.
We now turn to prove the continuity of Tα ∗ h on J . It suffices to show that

Tα ∗ h ∈ C(J ′;H), since it is easily seen that Tα ∗ h is continuous at s = 0. Let
0 < ε < t1 < t2 ≤ b. We have

∥(Tα ∗ h)(t2)− (Tα ∗ h)(t1)∥

≤
∥∥∥∥∫ t1−ε

0

((t2− τ)1−αTα(t2 − τ)− (t1 − τ)1−αTα(t1 − τ))(t2 − τ)α−1h(τ)dτ

∥∥∥∥
+

∥∥∥∥∫ t1

t1−ε

((t2− τ)1−αTα(t2 − τ)− (t1− τ)1−αTα(t1− τ))(t2− τ)α−1h(τ)dτ

∥∥∥∥
+

∥∥∥∥∫ t1

0

(t1 − τ)1−αTα(t1 − τ)((t2 − τ)α−1− (t1 − τ)α−1)h(τ)dτ

∥∥∥∥
+

∥∥∥∥∫ t2

t1

(t2 − τ)1−αTα(t2 − τ)(t2 − τ)α−1h(τ)dτ

∥∥∥∥
≤ sup

τ∈[0,t1−ε]

∥(t2 − τ)1−αTα(t2 − τ)− (t1 − τ)1−αTα(t1 − τ)∥
√

b2α−1

2α− 1
∥h∥L2

+2M

∫ t1

t1−ε

(t2 − τ)α−1∥h(τ)∥dτ

+M∥h∥L2

(∫ t1

0

[(t2 − τ)α−1 − (t1 − τ)α−1]2dτ

) 1
2

+M

∫ t2

t1

(t2 − τ)α−1∥h(τ)∥dτ.

Thus, it follows from Lemmas 2.2 and 2.3, the absolute continuity of integration of
(t2 − ·)α−1∥h(·)∥ and the arbitrariness of ε, we can infer that

∥(Tα ∗ h)(t2)− (Tα ∗ h)(t1)∥ → 0, t2 → t1.

Hence, Tα ∗ h ∈ C(J ;H).
With the help of Lemma 3.1, we give the following equivalent concept of solutions

to (2.1).
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Lemma 3.2. For each u ∈ L2(J ;U), if hypotheses (HA) and (Hf) hold, then
x ∈ C1−α(J ;H) is a solution depending on u to (2.1) if and only if x satisfies

x(t) = Tα(t)x0 +

∫ t

0

Tα(t− τ)((Bu)(τ) + f(τ, x(τ)))dτ, t ∈ J ′. (3.2)

Proof. Due to Lemma 3.1, we can infer that the expression (3.2) is well defined.
Similar to the proofs of Theorems 3.2 and 3.3 in [7], we can easily verify the assertion
of the lemma.

We are now in a position to establish the existence and uniqueness result.

Theorem 3.1. Under conditions (HA) and (Hf), for fixed u ∈ L2(J ;U), problem
(2.1) possesses a unique solution.

Proof. To begin with, we show the existence of solutions. Define the sequences
{yn} and {zn} in C1−α(J ;H) by using the following iteration procedures:

y0(t) = Tα(t)x0 +

∫ t

0

Tα(t− τ)(Bu)(τ)dτ,

zn(t) = yn(t)− y0(t)−
∫ t

0

Tα(t− τ)f(τ, yn(τ))dτ, (3.3)

yn+1(t) = yn(t)−
(∫ t

0

Tα(t− τ)τ1−α(γ(τ, yn(τ))zn)(τ)dτ + zn(t)

)
. (3.4)

Based on Lemma 3.1, we can conclude that the sequences {yn} and {zn} are
well defined in C1−α(J ;H). Plugging (3.3) into (3.4) yields

yn+1(t) =

∫ t

0

Tα(t− τ)f(τ, yn(τ))dτ + y0(t)

−
∫ t

0

Tα(t− τ)τ1−α(γ(τ, yn(τ))zn)(τ)dτ. (3.5)

In view of (3.3)-(3.5),

zn+1(t)=

∫ t

0

Tα(t− τ)f(τ, yn(τ))dτ −
∫ t

0

Tα(t− τ)τ1−α(γ(τ, yn(τ))zn)(τ)dτ

−
∫ t

0

Tα(t− τ)f

(
τ, yn(τ)− zn(τ)

−
∫ τ

0

Tα(τ − θ)θ1−α(γ(θ, yn(θ))zn)(θ)dθ

)
dτ.

Exploiting (2.2) with x = yn and y = −zn gives

t1−α∥zn+1(t)∥ ≤ b1−αMλ

∫ t

0

(t− τ)α−1τ1−α∥zn(τ)∥dτ.

By induction, we can easily obtain

∥zn∥C1−α ≤ (bMλΓ(α))n

Γ(nα+ 1)
∥z0∥C1−α . (3.6)
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Moreover, by virtue of the definition of {yn} and {zn}, straightforward calculations
tell us that

∥z0∥C1−α ≤ bM

α

(
k +Mϱ∥x0∥+Mϱ

√
b

2α− 1
∥Bu∥L2

)
.

Thus, it follows from the convergence of Eα(bMλΓ(α)) =
∞∑

n=0

(bMλΓ(α))n

Γ(nα+1) that

lim
n→∞

zn = 0 in C1−α(J ;H).

On the other hand, by means of (3.4) and (3.6), we get

t1−α∥yn+1(t)− yn(t)∥

≤ t1−α∥zn(t)∥+ t1−αβM

∫ t

0

(t− τ)α−1∥zn∥C1−αdτ

≤
(
1 +

bβM

α

)
∥zn∥C1−α

≤
(
1 +

bβM

α

)
(bMλΓ(α))n

Γ(nα+ 1)
∥z0∥C1−α .

As such, we have

∥yn − ym∥C1−α ≤
n−1∑
k=m

∥yk+1 − yk∥C1−α

≤
(
1 +

bβM

α

) n−1∑
k=m

(bMλΓ(α))k

Γ(kα+ 1)
∥z0∥C1−α

,

for n > m ≥ 0, which indicates that {yn} is a Cauchy sequence in C1−α(J ;H).
Thus, we can assume that yn → y∗ in C1−α(J ;H) for some y∗ in C1−α(J ;H), as
n → ∞. Hence, we arrive at yn(t) → y∗(t), t ∈ J ′. Therefore, according to the
expression (3.3), condition (Hf) and the dominated convergence theorem, we can
deduce that

y∗(t)= Tα(t)x0+

∫ t

0

Tα(t− τ)(Bu)(τ)dτ+

∫ t

0

Tα(t− τ)f(τ, y∗(τ))dτ, t ∈ J ′,

which means that y∗ is a solution of (2.1).
We proceed to verify the uniqueness of solutions. For fixed u ∈ L2(J ;U), we

assume that y1 and y2 are two solutions depending on u to (2.1). Then one has

y2(t)− y1(t) =

∫ t

0

Tα(t− τ)[f(τ, y2(τ))− f(τ, y1(τ))]dτ. (3.7)

Moreover, according to Definition 2.4, the following equation

z(t) +

∫ t

0

Tα(t− τ)τ1−α(γ(τ, y1(τ))z)(τ)dτ = y2(t)− y1(t) (3.8)

admits a solution z ∈ C1−α(J ;H). Combining (3.7) with (3.8) yields

z(t)=

∫ t

0

Tα(t− τ)

[
f

(
τ, y1(τ)+ z(τ)+

∫ τ

0

Tα(τ − θ)θ1−α(γ(θ, y1(θ))z)(θ)dθ

)
−f(τ, y1(τ))− τ1−α(γ(τ, y1(τ))z)(τ)

]
dτ.
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Applying (2.2) gives

t1−α∥z(t)∥ ≤ t1−α

∫ t

0

∥(t− τ)1−αTα(t− τ)∥(t− τ)α−1λτ1−α∥z(τ)∥dτ

≤ Mλb1−α

∫ t

0

(t− τ)α−1τ1−α∥z(τ)∥dτ.

Thus, by Gronwall inequality of singular version [27], we get t1−α∥z(t)∥ = 0, for
any t ∈ J , which implies that ∥z∥C1−α

= 0. Furthermore, based upon (3.8), we get

t1−α∥y2(t)− y1(t)∥

≤ t1−α∥z(t)∥+Mt1−α

∫ t

0

τ1−α∥γ((τ, y1(τ))z)(τ)∥(t− τ)α−1dτ

≤
(
1 +

Mbβ

α

)
∥z∥C1−α .

Hence, we have ∥y2 − y1∥C1−α = 0, which indicates that y1 = y2. Therefore, we
acquire the uniqueness of solutions.

4. Approximate controllability results

In this section, we treat the approximate controllability of (2.1) by employing a
technique combining integral contractor, resolvent and space decomposition. For
convenience of later analysis. Let N = {h ∈ L2(J ;H) : Gh = 0}, where G :
L2(J ;H) → H is a linear map given by

Gh =

∫ b

0

Tα(b− τ)h(τ)dτ, h ∈ L2(J ;H).

The symbol N⊥ means the orthogonal complement of N . Moreover, let F :
C1−α(J ;H) → L2(J ;H) be a map defined by (Fx)(τ) = f(τ, x(τ)). We also
introduce a set

M0 = {m ∈ C1−α(J ;H) : m = ϕn, n ∈ N},

where ϕ : L2(J ;H) → C1−α(J ;H) is a linear map defined as

(ϕz)(t) =

∫ t

0

Tα(t− τ)z(τ)dτ, z ∈ L2(J ;H). (4.1)

Definition 4.1. By the reachable set of system (2.1), we mean the set Kb(f) =
{x(b;u) ∈ H : x(b;u) is the state of problem (2.1) at b depending on a control u ∈
L2(J ;U)}. Moreover, if Kb(f) = H, then system (2.1) is said to be approximately
controllable on J .

To investigate the approximate controllability of (2.1), we need the additional
assumption:

(Hc) for any h ∈ L2(J ;H), there exists h∗ ∈ R(B) satisfying Gh = Gh∗.
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In view of (Hc), we can conclude that for any h ∈ N⊥, R(B)∩{h+N} ̸= ∅. Thus,
we can define a mapping Q : N⊥ → R(B) by

Qh={h∗ : h∗∈ R(B)∩ {h+N}, ∥h∗∥L2 =min{∥q∥L2 : q ∈ R(B)∩ {h+N}}}.

According to Naito [19], the mapping Q is well defined, linear and bounded. For
convenience, we assume that ∥Q∥ ≤ c, c > 0.

For h ∈ N⊥, we have Qh = h + n0 ∈ R(B), n0 ∈ N. Moreover, for any
z ∈ L2(J ;H), z possesses a unique decomposition z = n1 + h, n1 ∈ N, h ∈ N⊥.
Thus, one has z = n1 − n0 + (n0 + h) = n1 − n0 + Qh. Hence, z admits a unique
decomposition

z = n+ h∗, h∗ = Qh ∈ R(B), n = n1 − n0 ∈ N, h ∈ N⊥. (4.2)

Furthermore, by means of [23], we have

∥n∥L2 ≤ (1 + c)∥z∥L2 . (4.3)

We first deal with the approximate controllability for the linear system of (2.1).

Lemma 4.1. Suppose that conditions (HA) and (Hc) hold. Then Kb(0) = H.

Proof. For arbitrary ε > 0, due to D(A) = H, we can choose η ∈ D(A) satisfying

∥η − x0∥ < b1−αε
3M , where x0 is the initial value of (2.1). Let ξ ∈ D(A). According

to Lemma 2.1, one has ξ − Tα(b)η ∈ D(A).
On the other hand, owing to Remark 2.1 and (a) of Definition 2.3, we can pick

b ∈ J ′ such that∥∥∥∥(Γ(α)b1−α
Tα(b)

)2
(ξ − Tα(b)η)− (ξ − Tα(b)η)

∥∥∥∥
≤
∥∥∥Γ(α)b1−α

Tα(b) + I
∥∥∥ ∥∥∥(Γ(α)b1−α

Tα(b)− I
)
(ξ − Tα(b)η)

∥∥∥
<
ε

3
.

Now, we set

h(τ) =



−(b−τ)1−αΓ2(α)

b

[
− (b− τ)1−αTα(b− τ)

+ 2(b− τ)
d((b−τ)1−αTα(b−τ))

dτ

]
(ξ − Tα(b)η), t ∈ [b− b, b],

0, t ∈ [0, b− b].

Then Gh =
(
Γ(α)b

1−α
Tα(b)

)2
(ξ−Tα(b)η). Moreover, thanks to (HA) and Lemma

2.2, we have h ∈ L2(J ;H). Hence, on account of (Hc), we can choose q ∈ R(B)
obeying

Gq = Gh =
(
Γ(α)b

1−α
Tα(b)

)2
(ξ − Tα(b)η).

In addition, by means of q ∈ R(B), for the above-mentioned ε > 0, one can find
u ∈ L2(J ;U) satisfying

∥Bu− q∥L2 <

√
2α− 1

b2α−1

ε

3M
.
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Thus, we get

∥Gq −GBu∥

≤
∫ b

0

∥(b− τ)1−αTα(b− τ)∥(b− τ)α−1∥q(τ)− (Bu)(τ)∥dτ

≤ M

√
b2α−1

2α− 1
∥Bu− q∥L2

<
ε

3
.

Hence, we derive

∥ξ − (GBu+ Tα(b)x0)∥
≤ ∥ξ − Tα(b)η −Gq∥+ ∥Gq −GBu∥+ ∥Tα(b)η − Tα(b)x0∥

<
ε

3
+
ε

3
+ bα−1∥(b1−αTα(b))(x0 − η)∥.

≤ 2ε

3
+ bα−1M∥x0 − η∥

< ε,

which implies that D(A) ⊂ Kb(0). Therefore, Kb(0) = H.
We then study the compactness of the map ϕ given by (4.1).

Lemma 4.2. Under condition (HA), the map ϕ : L2(J ;H) → C1−α(J ;H) is com-
pact.

Proof. Assume that {zn}n≥1 ⊆ L2(J ;H) with ∥zn∥L2 ≤ r for some r > 0. We
are reduced to verifying the relative compactness of {ϕzn}n≥1 in C1−α(J ;H). Put
z̃n(·) = (·)1−α(ϕzn)(·). Then, we need only check the relative compactness of
{z̃n}n≥1 in C(J ;H).

We begin by examining the uniform boundedness of {z̃n}n≥1 in C(J ;H). For
any t ∈ J and positive integer n, one has

∥z̃n(t)∥ ≤ Mb1−α

∫ t

0

(t− τ)α−1∥zn(τ)∥dτ

≤ Mr

√
b

2α− 1
,

which ensures the uniform boundedness of {z̃n}n≥1.
We then analyze the equicontinuity of {z̃n}n≥1 in C(J ;H). Let t1, t2 ∈ J and

t1 < t2, one has

∥z̃n(t2)− z̃n(t1)∥
≤ ∥t1−α

2 (ϕzn)(t2)− t1−α
1 (ϕzn)(t1)∥

≤ (t1−α
2 − t1−α

1 )∥(ϕzn)(t2)∥+ b1−α∥(ϕzn)(t2)− (ϕzn)(t1)∥

≤ (t1−α
2 − t1−α

1 )Mr

√
b2α−1

2α− 1
+ b1−α∥(ϕzn)(t2)− (ϕzn)(t1)∥.

Thus, similar to the proof of Lemma 3.1, we can easily obtain the equicontinuity of
{z̃n}n≥1 in C(J ;H).
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Finally, we address the relative compactness of {z̃n(t)}n≥1 in H for t ∈ J . Since
the compactness of {z̃n(0)}n≥1 = {0} is obvious, it suffices to prove the case of
t ∈ J ′. For arbitrary ε ∈ (0, t), t ∈ J ′, in view of the compactness of ε1−αTα(ε), it
follows that {z̃nε

(t)}n≥1 is relatively compact, where

z̃n
ε
(t) = t1−α(Γ(α)ε1−αTα(ε))

∫ t−ε

0

Tα(t− τ − ε)zn(τ)dτ.

Now, for simplicity of notation, we set

Ψt(ε, τ) = ((t− τ − ε)1−αTα(t− τ − ε))(Γ(α)ε1−αTα(ε))

and
Φt(ε, τ) = (t− τ)1−αTα(t− τ)−Ψt(ε, τ).

Let δ ∈ (ε, t), t ∈ J ′. Then

∥z̃n(t)− z̃n
ε
(t)∥

≤ b1−α

∫ t−δ

0

∥Φt(ε, τ)∥(t− τ)α−1∥zn(τ)∥dτ

+b1−α

∫ t−ε

t−δ

∥Φt(ε, τ)∥(t− τ)α−1∥zn(τ)∥dτ

+b1−α

∫ t−ε

0

∥Ψt(ε, τ)∥((t− τ − ε)α−1 − (t− τ)α−1)∥zn(τ)∥dτ

+b1−α

∫ t

t−ε

∥(t− τ)1−αTα(t− τ)∥(t− τ)α−1∥zn(τ)∥dτ

≤ b1−α

∫ t−δ

0

∥Φt(ε, τ)∥(t− τ)α−1∥zn(τ)∥dτ

+(M + Γ(α)M2)b1−α

∫ t−ε

t−δ

(t− τ)α−1∥zn(τ)∥dτ

+Γ(α)M2b1−αr

(∫ t−ε

0

((t− τ − ε)α−1 − (t− τ)α−1)2dτ

) 1
2

+Mb1−α

∫ t

t−ε

(t− τ)α−1∥zn(τ)∥dτ

:= I1 + I2 + I3 + I4.

Due to Lemma 2.2, we have

lim
ε→0

∥Φt(ε, τ)∥ = 0, τ ∈ [0, t− δ].

Combing this and the dominated convergence theorem leads to

lim
ε→0+

I1 = 0.

Moreover, based on Lemma 2.3, the arbitrariness of δ and the absolute continuity
of integration of (t− ·)α−1∥zn(·)∥, we have

lim
ε→0+

(I2 + I3 + I4) = 0.
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Hence,

lim
ε→0+

∥z̃n(t)− z̃n
ε
(t)∥ = 0.

Thus, for every t ∈ J ′, we derive the relative compactness of {z̃n(t)}n≥1.
Therefore, the compactness of Φ is derived by the Arzela-Ascoli theorem.
For convenience of subsequent analysis, with the help of Theorem 3.1, we intro-

duce the solution map W : L2(J ;H) → C1−α(J ;H) defined by (Wz)(·) = y(·; z),
z ∈ L2(J ;H), where y(·; z) is the unique solution of the equation:

y(t) = Tα(t)x0 +

∫ t

0

Tα(t− τ)(z(τ) + f(τ, y(τ)))dτ, t ∈ J ′.

Lemma 4.3. Let conditions (HA) and (Hf) hold. Then for z1, z2 ∈ L2(J ;H), we
have

∥Wz1 −Wz2∥C1−α ≤
(
1 +

Mbβ

α

)
M

√
b

2α− 1
Eα(MλbΓ(α))∥z1 − z2∥L2 .

Proof. The proof of this lemma is similar to that of the uniqueness of solutions
in Theorem 3.1, so we omit it here.

With the aid of above lemmas, we are now in a position to exhibit our main
result.

Theorem 4.1. Let conditions (HA), (Hf) and (Hc) be fulfilled. Then system (2.1)
is approximately controllable if

Mbϱ(1 + c)√
2α− 1

< 1. (4.4)

Proof. Owing to Lemma 4.1, it suffices to check that Kb(0) ⊂ Kb(f).
For u ∈ L2(J ;U), let x0 ∈ C1−α(J ;H) be a solution to the linear system of (2.1)

given by

x0(t) = Tα(t)x0 +

∫ t

0

Tα(t− τ)(Bu)(τ)dτ.

We can define a map fx0 :M0 →M0 by fx0(m) = ϕn, where n is chosen to satisfy
the following unique decomposition (in the sense of expression (4.2)):

F (x0 +m) = n+ q, n ∈ N, q ∈ R(B). (4.5)

Firstly, Lemma 4.2 yields the compactness of the map fx0 . Moreover, by virtue
of (4.3) and (4.5), we have

t2−2α∥fx0(m)(t)∥2

≤ b2−2α

∥∥∥∥∫ t

0

Tα(t− τ)n(τ)dτ

∥∥∥∥2
≤ M2b2−2α

(∫ t

0

(t− τ)α−1∥n(τ)∥dτ
)2

≤ M2b

2α− 1
∥n∥2L2
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≤ M2(1 + c)2b

2α− 1
∥F (x0 +m)∥2L2

≤ M2(1 + c)2b

2α− 1

∫ b

0

∥f(t, x0(t) +m(t))∥2dt

≤ M2(1 + c)2b

2α− 1

∫ b

0

(k + t1−αϱ∥x0(t)∥+ t1−αϱ∥m(t)∥)2dt

≤ M2(1 + c)2b2

2α− 1
(k + ϱ∥x0∥C1−α + ϱ∥m∥C1−α)

2,

which implies that

lim sup
∥m∥C1−α

→∞

∥fx0(m)∥C1−α

∥m∥C1−α

≤ Mbϱ(1 + c)√
2α− 1

< 1.

Thus, we can find r > 0 such that fx0Br ⊂ Br, where

Br = {m ∈M0 : ∥m∥C1−α ≤ r}.

Hence, thanks to Schauder’s fixed point theorem, the operator fx0 possesses a fixed
point m∗, i.e.,

m∗ = fx0(m∗) = ϕn. (4.6)

Therefore, by means of (4.5) and (4.6), we obtain

x0 + ϕF (x0 +m∗) = x0 + ϕn+ ϕq = x0 +m∗ + ϕq.

Let y = x0 +m∗. Then one has

x0 + ϕF (y) = y + ϕq,

that is,

y(t)= Tα(t)x0+

∫ t

0

Tα(t− s)((Bu)(τ)− q(τ))dτ+

∫ t

0

Tα(t− τ)f(τ, y(τ))dτ.

According to m∗ = ϕn and y = x0 +m∗, it follows that

x0(b) = y(b) = (W (Bu− q))(b).

In addition, in view of q ∈ R(B), we can choose a sequence {un}n≥1 ∈ L2(J ;U)
obeying Bun → q in L2(J ;H) as n → ∞. As such, it follows from Lemma 4.3
that W (Bu − Bun) → W (Bu − q) in C1−α(J ;H) as n → ∞. Thus, we obtain
(W (Bu − Bun))(b) → (W (Bu − q))(b) = x0(b) ∈ Kb(0) as n → ∞. Additionally,
we can observe that (W (Bu − Bun))(b) = x(b;u − un) ∈ Kb(f). Hence, we have
Kb(0) ⊆ Kb(f). Therefore, system (2.1) is approximately controllable.

Remark 4.1. By utilizing the technique combining integral contractor, resolvent
and space decomposition, we have displayed the approximate controllability result
for system (2.1). This method can enable us to treat the approximate controllability
problems of integer-order evolution systems and fractional evolution equations with
Riemann-Liouville type derivatives or Caputo type. However, the question whether
the results obtained in this article hold for evolution equations with Caputo-Fabrizio
type [6] or Atangana-Baleanu type [3] fractional derivative is at present far from
being solved, since there is no corresponding resolvent theory.
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Owing to Remark 2.3 and Theorem 4.1, we can obtain the following result:

Corollary 4.1. Let assumptions (HA), (Hf)(ii) and (Hc) hold. Moreover, we
suppose that
(i) for s > 0 and x, y ∈ H, ∥f(s, x)− f(s, y)∥ ≤ λs1−α∥x− y∥ with λ > 0;
(ii) sup

s∈J
∥f(s, 0)∥ <∞;

(iii)Mbλ(1+c)√
2α−1

< 1.

Then problem (2.1) is approximately controllable.

5. An application

Let us explore the following system with a Riemann-Liouville type fractional deriva-
tive:

Dαz(s, x)= ∂2

∂x2 z(s, x)+f(s, z(s, x))+(Bu)(s, x), x∈ (0, 1), s∈ (0, 1],

z(s, 0) = z(s, 1) = 0,

lim
s→0+

Γ(α)s1−αz(s, x) = g(x) =
∞∑
k=1

ck sin kπx,

(5.1)

where 1
2 < α < 1.

Let H = U = L2(0, 1), ek(x) =
√
2 sin(kπx), k = 1, 2, · · · and A = ∂2

∂x2 with
domain

D(A) = {ξ ∈ H : ξ′, ξ′′ ∈ H and ξ(0) = ξ(1) = 0}.

Then A generates an α-order resolvent {Tα(s)}s>0 (see [15]):

Tα(s)g(x) =
∞∑

n=1

sα−1Eα,α(−n2π2sα)cn sinnπx.

Meanwhile, by means of [20], A also generates an analytic compact semigroup
{T (s)}s≥0:

T (s)v =

∞∑
n=1

e−n2π2s⟨v, en⟩en, v ∈ H.

Thus, one can easily derive ∥T (s)∥ ≤ 1 and

T (s)g(x) =
∞∑

n=1

e−n2π2scn sinnπx.

Moreover, due to [20], one has T ′(s) = AT (s) and ∥AT (s)∥ ≤ C1

s , 0 < s ≤ 1, where
C1 is a constant. Hence, by utilizing probability densities function and Laplace
transformations [16], one can easily infer that for any g ∈ H,

s1−αTα(s)g(x) = α

∫ ∞

0

τξα(τ)T (s
ατ)g(x)dτ,
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Therefore,

s1−αTα(s) = α

∫ ∞

0

τξα(τ)T (s
ατ)dτ,

where

ξα(τ) =
1

α
τ−1− 1

αϖα(τ
− 1

α ),

and

ϖα(τ) =
1

π

∞∑
n=1

(−1)n−1τ−nα−1Γ(nα+ 1)

n!
sin(nπα), τ ∈ (0,∞).

Thanks to [30], we derive the compactness of {s1−αTα(s)}s>0. Furthermore, on
account of T ′(s) = AT (s), ∥AT (s)∥ ≤ C1

s , 0 < s ≤ 1 and dominated convergence
theorem, it is not difficult to check that

d(s1−αTα(s))

ds
= α2sα−1

∫ ∞

0

τ2ξα(τ)AT (s
ατ)dτ, 0 < s ≤ 1

and ∥∥∥∥d(s1−αTα(s))

ds

∥∥∥∥ ≤ αC1

sΓ(α)
, 0 < s ≤ 1.

Additionally, it is easily seen that ∥s1−αTα(s)∥ ≤ 1
Γ(α) . Therefore, (HA) is fulfilled.

Now, take U = {v : v =
∞∑
k=2

vkek with
∞∑
k=2

v2k < ∞} and define a mapping

B̃ : U → H by

B̃v = 2v2e1 +

∞∑
k=2

vkek, v ∈ U.

Moreover, we also define a mapping B : L2(J ;U) → L2(J ;H) by (Bu)(s) = B̃u(s),
u ∈ L2(J ;U). Then, in view of Naito [19] and Zhou [29], (Hc) holds and B is a
bounded linear operator.

In addition, we assume that condition H(f) holds and ϱ(1+c)

Γ(α)
√
2α−1

< 1. Then by

virtue of Theorem 4.1, system (5.1) is approximately controllable.
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