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GENERAL ENERGY DECAY FOR A
DEGENERATE VISCOELASTIC

PETROVSKY-TYPE PLATE EQUATION WITH
BOUNDARY FEEDBACK∗

Fushan Li1,† and Guangwei Du2

Abstract In this paper, we consider a degenerate viscoelastic Petrovsky-type
plate equation

K(x)utt + ∆2u−
∫ t

0

g(t− s)∆2u(s)ds + f(u) = 0

with boundary feedback. Under the weaker assumption on the relaxation
function, the general energy decay is proved by priori estimates and analysis
of Lyapunov-like functional. The exponential decay result and polynomial
decay result in some literature are special cases of this paper.

Keywords General energy decay, degenerate Petrovsky plate equation, bound-
ary feedback, function approximation.
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1. Introduction

In this paper, we are concerned with the following initial-boundary value problem
of a degenerate viscoelastic Petrovsky-type plate equation

K(x)utt + ∆2u−
∫ t

0

g(t− s)∆2u(s)ds+ f(u) = 0 in Ω× (0,∞), (1.1)

u =
∂u

∂ν
= 0 on Γ0 × (0,∞), (1.2)

B1u− B1

{∫ t

0

g(t− s)u(s)ds

}
= 0 on Γ1 × (0,∞), (1.3)

B2u− B2

{∫ t

0

g(t− s)u(s)ds

}
= 0 on Γ1 × (0,∞), (1.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (1.5)

†the corresponding author. Email address:fushan99@163.com(F. Li)
1School of Mathematical Sciences, Qufu Normal University, Qufu, 273165,
China

2Department of Applied Mathematics, Northwestern Polytechnical University,
Xi’an, 710129, China
∗The authors were supported by National Natural Science Foundation of Chi-
na (11201258), National Science Foundation of Shandong Province of China
(ZR2011AM008, ZR2011AQ006, ZR2012AM010) and STPF of University in
Shandong Province of China (J17KA161).

http://dx.doi.org/10.11948/2018.390


General energy decay for a degenerate . . . 391

where Ω is a bounded domain of R2 with a smooth boundary Γ := ∂Ω such that
Γ = Γ0 ∪ Γ1 with meas

(
Γ0 ∩ Γ1

)
= 0 and Γ0,Γ1 have positive measures and

x = (x, y), ∆ = ∂2

∂x2 + ∂2

∂y2 . The vector ν = (ν1, ν2) is the unit exterior normal

and η = (−ν2, ν1) represents the corresponding unit tangent vector on Γ. We will
assume in the sequel that K ∈ C1(Ω) and K(x) ≥ 0 for all x ∈ Ω. Here, the
relaxation function g is positive and nonincreasing function, f is a countinuous
function and

B1u = ∆u+ (1− µ)B1u, B2u =
∂∆u

∂ν
+ (1− µ)B2u,

where the constant µ (0 < µ < 1
2 ) is the Poisson’s ratio and the boundary operators

B1 and B2 are defined by

B1u = 2ν1ν2uxy − ν2
1uyy − ν2

2uxx, B2u =
∂

∂η

[
(ν2

1 − ν2
2)uxy + ν1ν2(uyy − uxx)

]
.

This problem appears in the mathematical description of viscoelastic materi-
als. It is well known that viscoelastic materials exhibit nature damping, which is
due to the special property of these materials to keep memory of their past his-
tory. From the mathematical point of view, these damping effects are modeled
by integro-differential operators. Therefore, dynamics of viscoelastic materials are
great important and interesting as they have wide applications in natural sciences.
Problems related to (1.1)-(1.5) are interesting not only from the point of view of
PDE theory, but also due to its applications in mechanics.

The non-degenerate Petrovsky plate model can be found in [6]. Indeed, starting
with [6] and followed by papers [3,4], uniform decay properties for the energy of the
modified von Kármán system with boundary dissipation were established. We recall
that in the case of the modified von Kármán system, the in-plane displacements are
not accounted for and the system can be decoupled via the Airy stress function
(thus it is reduced to a scalar equation). In [20], the author consider the problem

∂2w

∂t2
+ a(x)

∂w

∂t
+ ∆2w = 0, x ∈ Ω, t ≥ 0,

w =
∂w

∂n
= 0, x ∈ ∂Ω, t ≥ 0,

w|t = 0 = w0(x), wt|t=0 = v0(x), x ∈ Ω,

where a(x) ≥ a0 > 0 a.e. in Ω, and a(·) ∈ L∞(Ω), and proved the exponential energy
decay. The first author of this paper showed the energy functional associated with
the viscoelastic Petrovsky decays exponentially or polynomially to zero as time goes
to infinity in [8]. In [18], Santos and Junior considered a plate model

utt + ∆2u = 0

with a memory boundary condition, and proved that such dissipation is strong
enough to produce exponential decay to the solution, provided the relaxation func-
tions also decays exponentially. When the relaxation functions decays polynomially,
they proved that the solution decays polynomially and with the same rate. Raposo
and Santos in [17] considered the non-degenerate modified von Kármán plate model
with memory and showed the general decay of the solution as time goes to infinity,
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under the conditions for the kernel g ∈ C2 and

g, g′, g′′ ∈ L1(0,+∞), g(0) > 0, g′ < 0, α := 1−
∫ ∞

0

g(s)ds > 0,

and there exists a differential function ξ satisfying

g′(t) ≤ −ξ(t)g(t), ξ(t) > 0, ξ′(t) < 0, t ≥ 0.

Kang [5] studied the non-degenerate modified von Kármán plate model with memory
and boundary nonlinear feedback and established an explicit and general decay
rate result, using some properties of the convex functions. Shin an Kang in [19]
considered a degenerate plate model

K(x)utt + ∆2u+ f(u) = 0 in Ω× (0,∞),

with a memory condition at the boundary, under some geometrical assumption
on domain and twice continuous differentiable assumption resolvent kernels, they
establish a more general decay result.

In [9–11], Li et al. proved the existence uniqueness, uniform energy decay rates,
and limit behavior of the solution to nonlinear viscoelastic Marguerre-von Kármán
shallow shells system, respectively. Li et al. in [12–14], shown the global existence
uniqueness and decay estimates for nonlinear viscoelastic equation with boundary
dissipation. The authors in [2, 7, 15, 16] studied the blow-up phenomenon for some
evolution equations.

Motivated by the above work, we intend to study the global existence and the
energy decay for problem (1.1)-(1.5). By using the perturbed energy method and
differential inequality, we will prove that under some conditions on g , the solution
of the problem exists globally and the general decay rate is obtained. The main
contribution of this paper are: (a)this degenerate Petrovsky plate with classical
boundary feedback possess physical significance and the possibility of wide appli-
cation in the future; (b) the detail construction process of the energy functional
and auxiliary functionals are given by multiplicator method; (c) we waken the as-
sumptions for ξ(t) in (A1), only need ξ(t) is locally integrable in (0,∞), instead of
being differentiable, the hypothesis on g are weaker and the estimates are precise
for the degenerate characteristic and weak assumptions; (d)the general decay result
of the memory-type Petrovsky plate model is proved, the exponential decay result
and polynomial decay result in some literature are the special cases of this paper.

The present work is organized as follows. In section 2, we present some as-
sumptions and notations for our work and state the existence result and the general
energy decay result to problem (1.1)-(1.5). In section 3, some lemmas and the proof
of our main result will be given.

2. Preliminaries and main results

Throughout this paper, we define

H1
Γ0

=
{
u ∈ H1 : u = 0 on Γ0

}
, H2

Γ0
=

{
v ∈ H2 : v =

∂v

∂ν
= 0 on Γ0

}
,
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and the following norms

‖u‖Lp(Ω) =

(∫
Ω

|u|pdx
) 1

p

.

To simplify the notations, we denote ‖u‖L2(Ω) by ‖u‖, and for µ (0 < µ < 1
2 ), we

define the bilinear form a(u, v) as follows

a(u, v) =

∫
Ω

{uxxvxx + uyyvyy + µ(uxxvyy + uyyvxx) + 2(1− µ)uxyvxy}dΩ,

where dΩ = dxdy. since meas(Γ0) 6= ∅ we know that
√
a(u, u) is a norm equivalent

to the usual Sobolev norm on H2(Ω), that is,

c0‖u‖2H2(Ω) ≤ a(u, u) ≤ C0‖u‖2H2(Ω), (2.1)

where c0 and C0 are generic positive constants.
Assumptions on the functions g and f :
(A1) g(t): R+ → R+ is a C1 function such that

g(0) > 0, 1−
∫ ∞

0

g(s)ds = 1− l > 0,

and there exists a nonincreasing function ξ with ξ ∈ L1
loc(0,+∞) satisfying

g′(t) ≤ −ξ(t)g(t). (2.2)

(A2) Let f be a Lipschitz continuous function with f(0) = 0 and satisfy

f(s)s ≥ 0, ∀s ∈ R, ‖f(u)‖2 ≤ Ca(u, u).

Additionally, we suppose that f is superlinear, that is,

f(s)s ≥ (2 + α)F (s) ≥ 0, F (z) =

∫ z

0

f(s)ds, ∀s ∈ R,

for some α > 0.
To simplify calculation in our analysis we introduce the following notations

(g ∗ u)(t) :=

∫ t

0

g(t− s)u(s)ds, g � u :=

∫ t

0

g(t− s)‖u(·, t)− u(·, s)‖2ds,

g � ∂2u :=

∫ t

0

g(t− s)a (u(·, t)− u(·, s), u(·, t)− u(·, s)) ds.

Our results is based on the following existence and regularity theorem of the solution
to the problem (1.1)-(1.5).

Theorem 2.1. If (u0, u1) ∈ (H4(Ω) ∩ H2
Γ0

) × H2
Γ0

, then there exists a unique
solution of system (1.1)-(1.5) satisfying

u∈L∞loc
(
0,∞;H4(Ω) ∩H2

Γ0

)
, ut∈L∞loc

(
0,∞;H2(Ω) ∩H1

Γ0

)
, utt∈L∞loc(0,∞;L2(Ω).

Proof. The proof can be obtained by Faedo-Galerkin method and calculus theorem
in [1, 9].
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Theorem 2.2. Let u be the global solution of the problem (1.1)-(1.5) with the con-
ditions (A1)-(A2). We define the energy functional as

E(t) =
1

2

∫
Ω

K(x)|ut|2dΩ +
1

2

(
1−

∫ t

0

g(s)ds

)
a(u, u) +

1

2
g � ∂2u+

∫
Ω

F (u)dΩ.

Then, for some t0 > 0 there exist positive constants C0 and k such that

E(t) ≤ C0e
−k

∫ t
t0
ξ(s)ds

.

3. The proof of main result Theorem 2.2

To demonstrate the stability of the system (1.1)-(1.5) the lemmas below are essen-
tial.

Lemma 3.1. For any v ∈ C1
(
[0, T ];H2(Ω)

)
, we have

a(g ∗ v, vt) = −1

2
g(t)a(v, v) +

1

2
g′ � ∂2v − 1

2

d

dt

{
g � ∂2v −

(∫ t

0

g(s)ds

)
a(v, v)

}
.

Proof. Differenting − 1
2

{
g � ∂2v −

(∫ t
0
g(s)ds

)
a(v, v)

}
, we have

− 1

2

d

dt

{
g � ∂2v −

(∫ t

0

g(s)ds

)
a(v, v)

}
= −1

2
g′ � ∂2v − 1

2

∫ t

0

g(t− s) [a(v(t)− v(s), v(t)− v(s))]t ds

+
1

2
g(t)a(v, v) +

1

2

∫ t

0

g(s)ds [a(v(t), v(t))]t

= −1

2
g′ � ∂2v +

∫ t

0

g(t− s)a(vt(t), v(s))ds+
1

2
g(t)a(v, v)

= −1

2
g′ � ∂2v + a(g ∗ v, vt) +

1

2
g(t)a(v, v).

This completes the proof of Lemma 3.1 �

Lemma 3.2. For any u ∈ H4(Ω) and v ∈ H2(Ω), we have∫
Ω

(∆2u)vdΩ = a(u, v) +

∫
Γ

{
(B2u)v − (B1u)

∂v

∂ν

}
dΓ. (3.1)

Proof. The definition of a(u, v) gives∫
Ω

∆u∆vdΩ = a(u, v) +

∫
Ω

{(1− µ)(uxxvyy + uyyvxx)− 2(1− µ)uxyvxy} dΩ.

Using Green’s formula, we see∫
Ω

(∆2u)vdΩ =

∫
Γ

(
∂∆u

∂ν

)
vdΓ−

∫
Γ

∆u
∂v

∂ν
dΓ +

∫
Ω

∆u∆vdΩ

=

∫
Γ

(
∂∆u

∂ν

)
vdΓ−

∫
Γ

∆u
∂v

∂ν
dΓ + a(u, v)
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+

∫
Ω

{(1− µ)(uxxvyy + uyyvxx)− 2(1− µ)uxyvxy} dΩ.

Recalling the definition of B1 and B2 and using the fact that∫
Ω

(uxxvyy + uyyvxx − 2uxyvxy)dΩ =

∫
Γ

{
(B2u)v − (B1u)

∂v

∂ν

}
dΓ,

our conclusion follows.
In order to define the energy function E(t) of the problem (1.1)-(1.5), we give the

following computation. Multiplying equation (1.1) by ut, integrating the result over
Ω and employing Green’s formula and boundary conditions, we get from Lemma
3.1 and Lemma 3.2 that

0 =

∫
Ω

(
K(x)utt + ∆2u−

∫ t

0

g(t− s)∆2u(s)ds+ f(u)

)
utdx

=
1

2

d

dt

(∫
Ω

K(x)|ut|2dΩ + a(u, u)

)
+
d

dt

∫
Ω

F (u)dΩ− a(g ∗ u, ut)

=
1

2

d

dt

(∫
Ω

K(x)|ut|2dΩ +

(
1−

∫ t

0

g(s)ds

)
a(u, u) + g � ∂2u

)
+
d

dt

∫
Ω

F (u)dΩ

+
1

2
g(t)a(u, u)− 1

2
g′ � ∂2u.

The above computation inspires us to define energy functional as follows

E(t) =
1

2

∫
Ω

K(x)|ut|2dΩ +
1

2

(
1−

∫ t

0

g(s)ds

)
a(u, u) +

1

2
g � ∂2u+

∫
Ω

F (u)dΩ.

Lemma 3.3. The energy function E(t) of the problem (1.1)-(1.5) satisfies

E′(t) = −1

2
g(t)a(u, u) +

1

2
g′ � ∂2u ≤ 0.

Proof. By the above computation and from assumptions (A1), (A2), it is easy to
see that

E′(t) = −1

2
g(t)a(u, u) +

1

2
g′ � ∂2u ≤ 0.

From Lemma 3.3, we only can conclude the energy is decreasing. To get our
desired energy decay rates, we give the following Lemmas.

Lemma 3.4. Let (A1)-(A2) hold. If u is the solution of (1.1)-(1.5), then

Φ(t) =

∫
Ω

K(x)utudΩ,

satisfies

Φ′(t) ≤
∫

Ω

K(x)|ut|2dΩ−
(

1− (δ + 1)

∫ t

0

g(s)ds

)
a(u, u) +

1

4δ
g � ∂2u

− (2 + α)

∫
Ω

F (u)dΩ,

for all δ > 0.
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Proof. Multiplying (1.1) by u and performing an integration on Ω, we get∫
Ω

K(x)uttudΩ = −a(u, u)−
∫

Γ1

[
(B2u)u− (B1u)

∂u

∂ν

]
dΓ + a(g ∗ u, u)

+

∫
Γ1

[
(B2(g ∗ u))u− (B1(g ∗ u))

∂u

∂ν

]
dΓ−

∫
Ω

f(u)udΩ

= −a(u, u) + a(g ∗ u, u)−
∫

Ω

f(u)udΩ.

So, we have

Φ′(t) =

∫
Ω

K(x)uttudΩ +

∫
Ω

K(x)|ut|2dΩ

= −a(u, u) + a(g ∗ u, u) +

∫
Ω

K(x)|ut|2dΩ−
∫

Ω

f(u)udΩ.

Using Young’s inequality and the assumption (A2), we obtain

a(g ∗ u, u) ≤ (δ + 1)

(∫ t

0

g(s)ds

)
a(u, u) +

1

4δ
g � ∂2u,

and

−
∫

Ω

f(u)udΩ ≤ −(2 + α)

∫
Ω

F (u)dΩ.

From these estimates, we have

Φ′(t) ≤
∫

Ω

K(x)|ut|2dΩ−
(

1− (δ + 1)

∫ t

0

g(s)ds

)
a(u, u) +

1

4δ
g � ∂2u

− (2 + α)

∫
Ω

F (u)dΩ,

for all δ > 0.

Lemma 3.5. Let (A1)-(A2) hold. If u is the solution of (1.1)-(1.5), then there
exist positive constants C, c0 and λ > 0 such that

Ψ(t) = −
∫

Ω

K(x)ut

∫ t

0

g(t− s)(u(t)− u(s))dsdΩ,

satisfies

Ψ′(t) ≤λ(l + 2l2 + C)a(u, u) +

(
1 + (8λl + 1 + c−1

0 )l

4λ

)
g � ∂2u− g(0)

4λc0
g′ � ∂2u

+

(
λmax
x∈Ω

K(x)−
∫ t

0

g(s)ds

)∫
Ω

K(x)|ut|2dΩ.

Proof. Differentiating Ψ(t) with respect to t yields

Ψ′(t) =−
∫

Ω

K(x)utt

∫ t

0

g(t− s)(u(t)− u(s))dsdΩ
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−
∫

Ω

K(x)ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdΩ−
∫ t

0

g(s)ds

∫
Ω

K(x)|ut|2dΩ.

Using (1.1)-(1.5) and Lemma 3.2, we see

Ψ′(t) =

∫ t

0

g(t− s)a(u(t)− u(s), u(t))ds−
∫ t

0

g(t− s)a (u(t)− u(s), g ∗ u)) ds

−
∫

Ω

K(x)ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdΩ

+

∫
Ω

f(u)

∫ t

0

g(t− s)(u(t)− u(s))dsdΩ−
(∫ t

0

g(s)ds

)∫
Ω

K(x)|ut|2dΩ

:= I1 + I2 + I3 + I4 −
(∫ t

0

g(s)ds

)∫
Ω

K(x)|ut|2dΩ. (3.2)

Now, let us estimate the terms in the right side of (3.2). Using Young’s, Hölder’s
inequality, (2.1) and the assumption (A2) , we have

|I1| ≤
∫ t

0

g(t− s)[a(u(t)− u(s), u(t)− u(s))]
1
2 [a(u(t), u(t))]

1
2 ds

≤ λla(u, u) +
1

4λ
g � ∂2u,

|I2| ≤
l

4λ

∫ t

0

g(t− s)a(u(t)− u(s), u(t)− u(s))ds+ λl

∫ t

0

g(t− s)a(g ∗ u, g ∗ u)ds

≤ l

4λ
g � ∂2u+ λl2a(g ∗ u, g ∗ u)

=
l

4λ
g � ∂2u

+ λl2a

(∫ t

0

g(t− s)(u(t)− u(s))ds−
∫ t

0

g(s)dsu(t),∫ t

0

g(t− s)(u(t)− u(s))ds−
∫ t

0

g(s)dsu(t)

)
≤
(

2λl2 +
l

4λ

)
g � ∂2u+ 2l3λa(u, u),

|I3| ≤ λmax
x∈Ω

K(x)

∫
Ω

K(x)|ut|2dΩ +
1

4λ

∫
Ω

(∫ t

0

g′(t− s)|u(t)− u(s)|ds
)2

dΩ

≤ λmax
x∈Ω

K(x)

∫
Ω

K(x)|ut|2dΩ− g(0)

4λc0
g′ � ∂2u,

|I4| ≤ λ
∫

Ω

|f(u)|2dΩ +
1

4λ

∫
Ω

(∫ t

0

g(t− s)|u(t)− u(s)|ds
)2

dΩ

≤ λCa(u, u) +
l

4λc0
g � ∂2u.

Substituting these inequalities into (3.2), we finish the proof. �

Lemma 3.6. Let L(t) = NE(t)+εΦ(t)+Ψ(t), for large enough N , then there exist
two positive constants α1, α2 > 0 such that

α1E(t) ≤ L(t) ≤ α2E(t).
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Proof. From Young’s inequality, Hölder’s inequality and (2.1), we deduce

|Φ(t)| ≤
∣∣∣∣∫

Ω

K(x)utudΩ

∣∣∣∣ ≤ 1

2
max
x∈Ω

K(x)

∫
Ω

K(x)|ut|2dΩ +
1

2c0
a(u, u), (3.3)

|Ψ(t)| ≤ 1

2
max
x∈Ω

K(x)

∫
Ω

K(x)|ut|2dΩ +
1

2

∫
Ω

(∫ t

0

g(t− s)|u(t)− u(s)|ds
)2

dΩ

≤ 1

2
max
x∈Ω

K(x)

∫
Ω

K(x)|ut|2dΩ +
l

2c0
g � ∂2u. (3.4)

Thus, from (3.3) and (3.4), we obtain

|L(t)−NE(t)| ≤ 1

2
max
x∈Ω

K(x)(1 + ε)

∫
Ω

K(x)|ut|2dΩ +
ε

2c0
a(u, u) +

l

2c0
g � ∂2u

≤ C0E(t),

where C0 is a positive constant depending on ε, l, c0 and max
x∈Ω

K(x). Choosing N > 0

large enough, we complete the proof of Lemma 3.6.

Lemma 3.7. For any fixed t0 > 0 and sufficiently large N > 0, there exist positive
constants β and γ such that

L′(t) ≤ −βE(t) + γg � ∂2u, ∀t ≥ t0. (3.5)

Proof. Using Lemma 3.6, we obtain

L′(t) = NE′(t) + εΦ′(t) + Ψ′(t). (3.6)

Since g is positive, for any fixed t0 > 0, we have
∫ t

0
g(s)ds ≥

∫ t0
0
g(s)ds := g0 >

0 ∀t ≥ t0. Thus, substituting Lemma 3.3-Lemma 3.5 into (3.6), it yields

L′(t) ≤−
(
g0 − ε− λmax

x∈Ω
K(x)

)∫
Ω

K(x)|ut|2dΩ

−
[
N

2
g(t)+ε(1−(1+δ)l)−λ(l+2l2+C)

]
a(u, u)+

(
N

2
− g(0)

4λc0

)
g′ � ∂2u

+

(
ε

4δ
+

1

4λ
+

l

4λ
+

l

4λc0
+ 2l2

)
g � ∂2u− (2 + α)

∫
Ω

F (u)dΩ.

We firstly take ε > 0 and δ > 0 small enough such that g0 − ε > 0 and 1 −
(1 + δ)l > 0 respectively. Then, we choose λ > 0 sufficiently small such that
g0 − ε − λmax

x∈Ω
K(x) > 0 and ε(1 − (1 + δ)l) − λ(l + 2l2 + C) > 0. Finally, taking

N > 0 large enough, this finish the conclusion.

Lemma 3.8. Define η ∈ C∞(R1
+) by

η(t) =

C exp( 1
t2−1 ), 0 ≤ t < 1,

0, t ≥ 1,

the constant C > 0 is selected such that
∫ +∞

0
η(t)dt = 1. For each ε > 0, set

ηε(t) =
1

ε
η

(
t

ε

)
.
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If ξ : R1
+ → R is locally integrable, we define the mollification

ξε :=

∫ ε

0

ηε(s)ξ(t− s)ds, t ∈ (ε,+∞).

Then the following properties of ξε hold

(i) ξε ∈ C∞(ε,+∞),

(ii) ξε → ξ a.e. as ε→ 0,

(iii) If 1 ≤ p <∞ and ξ ∈ Lploc, then ξε → ξ in Lploc[0,+∞),

(iv) d
dtξ

ε(t) ≤ 0.

Proof. The proof of (i)-(iii) is similar to [1, Theorem 6, pp. 629–631].
Now, we prove (iv). The assumption that ξ does not increase gives for τ ≥ 0

ξε(t+ τ)− ξε(t) =

∫ ε

0

ηε(s) [ξ(t+ τ − s)− ξ(t− s)] ds ≤ 0,

which implies the conclusion.

Proof of Theorem 2.2. Multiplying (3.5) by ξ(t), noting that ξ(t) is nonincreas-
ing, and using (2.2) and Lemma 3.3, we obtain

ξ(t)L′(t) ≤ −βξ(t)E(t) + γξ(t)g � ∂2u ≤ −βξ(t)E(t)− γg′ � ∂2u

≤ −βξ(t)E(t)− 2γE′(t), ∀t ≥ t0. (3.7)

Let F ε(t) := L(t)ξε(t) + 2γE(t). Using Lemma 3.8, we have

F (t) := lim
ε→0

F ε(t) = L(t)ξ(t) + 2γE(t)

and

F ε′(t) := L′(t)ξε(t) + L(t)ξε′(t) + 2γE′(t) ≤ L′(t)ξε(t) + 2γE′(t).

Letting ε→ 0 leads to

F ′(t) ≤ L′(t)ξ(t) + 2γE′(t).

Thus from (3.7), we have

F ′(t) ≤ −βξ(t)E(t).

Since L(t) ∼ E(t), we have F (t) ∼ E(t). Therefore, there exists a positive
constant k > 0 such that

F ′(t) ≤ −kξ(t)F (t).

Integrating by part over (t0, t), we get

F (t) ≤ ce−k
∫ t
t0
ξ(s)ds

.

Owing to F (t) ∼ E(t), we conclude that there exists a positive constant C0 such
that

E(t) ≤ C0e
−k

∫ t
t0
ξ(s)ds

.

The proof is completed.
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Remark 3.1. From Theorem 2.2, we obtain exponential decay for ξ(t) = a and
polynomial decay for ξ(t) = a(1 + t)−1, where a > 0 is a constant. Hence the
exponential decay result and polynomial decay result in some literatures [8,17,18,20]
are the special cases of this paper. The assumptions on g, ξ(t) and the domain are
weaker than that in [5, 19].
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plate with nonlinear boundary dissipation, Differential and Integral Equations,
1994, 7, 885–908.

[4] M. A. Horn and I. Lasiecka, Global stabilization of a dynamic von Kármán
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