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BIFURCATIONS AND CHAOS CONTROL IN A
DISCRETE-TIME PREDATOR-PREY SYSTEM

OF LESLIE TYPE

S. M. Sohel Rana†

Abstract We investigate the dynamics of a discrete-time predator-prey sys-
tem of Leslie type. We show algebraically that the system passes through a
flip bifurcation and a Neimark-Sacker bifurcation in the interior of R2

+ using
center manifold theorem and bifurcation theory. Numerical simulations are
implimented not only to validate theoretical analysis but also exhibits chaotic
behaviors, including phase portraits, period-11 orbits, invariant closed circle,
and attracting chaotic sets. Furthermore, we compute Lyapunov exponents
and fractal dimension numerically to justify the chaotic behaviors of the sys-
tem. Finally, a state feedback control method is applied to stabilize the chaotic
orbits at an unstable fixed point.
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1. Introduction
The population models in ecology and mathematical ecology which describe predator-
prey interaction geverned by differential equations studied extensively by many re-
searchers [6,8] and the reference therein. Qualitative analyses of these works found
many rich dynamics which include global stability, stable limit cycle, bifurcatioins
and persistence analysis. But in recent years, there is a growing evidence that the
discretization of predator-prey models governed by difference equations are more
appropriate than the continuous ones, especially when the populations have non-
overlapping generations [4, 5, 7, 12, 13, 15, 16, 18, 19]. The main studied subjects in
discrete-time models were the posibility of bifurcations and chaos phenomenon those
had been performed either by using numerical simulations or by using the center
manifold theorem and bifurcation theory.

In this paper, we consider the following predator-prey system of Leslie type [6]:

ẋ = rx
(
1− x

K

)
−mxy,

ẏ = sy
(
1− hy

x

)
,

(1.1)

where x and y stand for density of prey and predator, respectively; r,K,m, s and h
are all positive parameters, and mx is Holling type I functional response. In [6],
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it is shown that the positive equilibrium of system (1.1) is globally asymptotically
stable. For the sake of simplicity, we make the following scaling

x

K
→ x,

my

r
→ y, rt → t and α =

s

r
, β =

sh

mK
.

Then the system (1.1) takes the form

ẋ = x (1− x)− xy,

ẏ = y
(
α− βy

x

)
.

(1.2)

Applying the forward Euler scheme to system (1.2), we obtain the discrete-time
predator-prey system as follows:x

y

 7→

x+ δ [x (1− x)− xy]

y + δ
[
αy − βy2

x

]  , (1.3)

where δ is the step size. The aim is to study systematically the existence of a flip
bifurcation and a NS bifurcation in the interior of R2

+ using bifurcation theory and
center manifold theory (see section 4, [10]).

This paper is organized as follows. In Section 2, we present the existence and
stability of positive fixed point for system (1.3) in R2

+. In Section 3, we prove that
under certain parametric condition system (1.3) admits a flip bifurcation and a NS
bifurcation in the interior of R2

+. In Section 4, we perform numerical simulations
which include the bifurcation diagrams, the phase portraits, maximum Lyapunov
exponents and Fractal dimensions to characterize the chaotic behaviors of the sys-
tem. In Section 5, chaos is controlled to an unstable fixed point using the feedback
control method. Finally a short discussion is carried out in Section 6.

2. Existence and stability of fixed points
The fixed points of (1.3) satisfy the following equations:

x+ δ [x (1− x)− xy] = x,

y + δ
[
αy − βy2

x

]
= y.

(2.1)

By a simple algebraic computation we obtain the following result:

Lemma 2.1. System (1.3) always has two fixed points E1(1, 0) and E2(
β

α+β ,
α

α+β )
for all permissible parameter values.

Now we investigate the local stability of the system (1.3) around each fixed
points. Note that for each fixed point E(x, y) the local stability is determined by
the modules of eigenvalues of Jacobian matrix evaluated at the fixed point. The
Jacobian matrix of system (1.3) at a fixed point E(x, y) is

J(x, y) =

1 + δ(1− 2x− y) −δx

δβy2

x2 1 + δ(α− 2βy
x )

 . (2.2)
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The characteristic equation associated with (2.2) is

λ2 − (trJ)λ+ detJ = 0, (2.3)

where trJ and detJ are the trace and determinant of J .
Using Jury’s criterion [2], a simple calculation shows the following propositions.

Proposition 2.1. The fixed point E1(1, 0) is a saddle if 0 < δ < 2, it is a source
if δ > 2 and it is non-hyperbolic if δ = 2.

We see that when δ = 2, the two eigenvalues of J(E1) are λ1 = 1 − δ and λ2 =
1 + αδ. Thus, a flip bifurcation may occur when parameters change in the small
neighborhood of

FBE1 = {(α, β, δ) ∈ (0,+∞) : δ = 2} .

In this case, the predator becomes extinction and the prey undergoes the period-
doubling bifurcation to chaos in the sense of Li-Yorke by choosing bifurcation pa-
rameter δ.

The characteristic equation of the jacobian matrix (2.2) at the fixed point
E2(x

∗, y∗) is written as

F (λ) := λ2 + p(x∗, y∗)λ+ q(x∗, y∗) = 0,

where

p(x∗, y∗) = 2−αδ− βδ

α+ β
, q(x∗, y∗) =

β − βδ + α2(−1 + δ)δ + α(1 + β(−1 + δ)δ)

α+ β
.

Then F (1) = αδ2 > 0 and F (−1) = −2β(−2+δ)+α2(−2+δ)δ+α(4+β(−2+δ)δ)
α+β .

We state the local dynamics of fixed point E2 in the following Proposition.

Proposition 2.2. Let E2 be a positive fixed point of (1.3). Then

(i) it is a sink if one of the following conditions holds

(i.1) ∆ ≥ 0 and δ < N−
√
∆

M ;
(i.2) ∆ < 0 and δ < N

M ;
(ii) it is a source if one of the following conditions holds

(ii.1) ∆ ≥ 0 and δ > N+
√
∆

M ;
(ii.2) ∆ < 0 and δ > N

M ;
(iii) it is non-hyperbolic if one of the following conditions holds

(iii.1) ∆ ≥ 0 and δ = N±
√
∆

M ;
(iii.2) ∆ < 0 and δ = N

M ;
(iv) it is a saddle except for the parameter values those lie in (i)–(iii),

where

M = α2 + β + αβ,

N = α2 + αβ,

∆ = N2 − 4(α+ β)M.
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If the term (iii.1) of Proposition 2.2 holds, then one of the eigenvalues of J(E2) is
−1 and the other is neither 1 nor −1. Therefore, there may be a flip bifurcation of
the fixed point E2 if δ varies in the small neighborhood of FB1

E2
or FB2

E2
where

FB1
E2

=

{
(α, β, δ) ∈ (0,+∞) : δ =

N −
√
∆

M
, ∆ ≥ 0

}
,

or

FB2
E2

=

{
(α, β, δ) ∈ (0,+∞) : δ =

N +
√
∆

M
, ∆ ≥ 0

}
.

Also when the term (iii.2) of Proposition 2.2 holds, then the eigenvalues of J(E2)
are a pair of conjugate complex numbers with module one. The conditions in the
term (iii.2) of Proposition 2.2 can be written as the following set:

NSBE2
=

{
(α, β, δ) ∈ (0,+∞) : δ =

N

M
, ∆ < 0

}
,

and if the parameter δ changes in the small neighborhood of NSBE2
, then the NS

bifurcation will appear.
The next result is obtained from the above analysis to study the bifurcation of

map (1.3) at E2.

Proposition 2.3. The positive fixed point E2 loses its stability:

(i) via a flip point when ∆ ≥ 0 and δ = N±
√
∆

M ;

(ii) via a Neimark-Sacker point when ∆ < 0 and δ = N
M .

In the following section, we shall use bifurcation theory in (see Section 4 in [10];
see also [3,14,17]) to study the flip bifurcation and the Neimark-Sacker bifurcation of
system (1.3) around E2, respectively where the parameter δ is chosen as bifurcation
parameter.

3. Bifurcation analysis
We first discuss the flip bifurcation of (1.3) at E2. Suppose that ∆ > 0.
If

δ = δF =
N −

√
∆

M
,

or
δ = δF =

N +
√
∆

M
,

then the eigenvalues of the positive fixed point (x∗, y∗) are

λ1(δF ) = −1 and λ2(δF ) = 3− αδF − βδF
α+ β

.

The condition |λ2(δF )| ̸= 1 leads to

αδF +
βδF
α+ β

̸= 2, 4. (3.1)
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Let x̃ = x− x∗, ỹ = y − y∗ and A(δ) = J(x∗, y∗), we transform the fixed point
(x∗, y∗) of system (1.3) into the origin, then system (1.3) becomesx̃

ỹ

 → A(δ)

x̃

ỹ

+

F1(x̃, ỹ, δ)

F2(x̃, ỹ, δ)

 , (3.2)

where

F1(x̃, ỹ, δ) = −
(
x̃2 + x̃ỹ

)
δ +O(∥X∥4),

F2(x̃, ỹ, δ) =
βδ

x∗4 x̃ (x
∗ỹ − y∗x̃)

2 − βδ

x∗3 x̃ (x
∗ỹ − y∗x̃)

2
+O(∥X∥4),

(3.3)

and X = (x̃, ỹ)T . It follows that

B1(x, y) =

2∑
j,k=1

δ2F1(ξ, δ)

δξjδξk

∣∣∣∣
ξ=0

xjyk = (−2x1y1 − x1y2 − x2y1)δ,

B2(x, y) =

2∑
j,k=1

δ2F2(ξ, δ)

δξjδξk

∣∣∣∣
ξ=0

xjyk = −2βδ(x∗x2 − y∗x1)(x
∗y2 − y∗y1)

x∗3 ,

C1(x, y, u) =

2∑
j,k,l=1

δ2F1(ξ, δ)

δξjδξkδξl

∣∣∣∣
ξ=0

xjykul = 0,

C2(x, y, u) =

2∑
j,k,l=1

δ2F2(ξ, δ)

δξjδξkδξl

∣∣∣∣
ξ=0

xjykul =
2βδ

x∗2 (x1y2u2 + x2y1u2 + x2y2u1)

− 4βδy∗

x∗3 (x1y1u2 + x1y2u1 + x2y1u1) +
6βδy∗2

x∗4 x1y1u1, (3.4)

and δ = δF .

Therefore, B(x, y) =

B1(x, y)

B2(x, y)

 and C(x, y, u) =

C1(x, y, u)

C2(x, y, u)

 are symmetric

multilinear vector functions of x, y, u ∈ R2.
Let p, q ∈ R2 be left and right eigenvectors of A for the eigenvalue λ1(δF ) = −1

respectively. Then A(δF )q = −q and AT (δF )p = −p. By direct calculation we get

q ∼
(
2− αδF ,−

α2δF
β

)T

,

p ∼
(
2− αδF ,

βδF
α+ β

)T

.

We set

p = γ1

(
2− αδF ,

βδF
α+ β

)T

to normalize p with respect to q, where

γ1 =
1

(2− αδF )2 −
α2δ2F
α+β

.
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We see that ⟨p, q⟩ = 1, where ⟨., .⟩ is the standard scalar product in R2 defined
by ⟨p, q⟩ = p1q1 + p2q2.

The direction of the flip bifurcation is obtained by the sign of the critical normal
form coefficient c(δF ) as in [10]. It is given by the formula:

c(δF ) =
1

6
⟨p, C(q, q, q)⟩ − 1

2
⟨p,B(q, (A− I)−1B(q, q))⟩. (3.5)

We state the following result.

Theorem 3.1. The system (1.3) undergoes a flip bifurcation at positive fixed point
E2(x

∗, y∗) when the parameter δ changes in a small neighborhood of δF and if the
condition (3.1) holds and c(δF ) ̸= 0. Moreover, the period-2 orbits that bifurcate
from E2(x

∗, y∗) are stable (resp., unstable) if c(δF ) > 0 (resp., c(δF ) < 0).

We next use the NS theorem in [3,10,14,17] to study the existence of a Neimark-
Sacker bifurcation.

The eigenvalues of the matrix associated with the linearization of the map (3.2)
at (x̃, ỹ) = (0, 0) are given as

λ, λ̄ =
−p±

√
p2 − 4q

2
.

Since p2 − 4q = δ2

(α+β)2∆, so the eigenvalues are complex conjugate if ∆ < 0.
Let

δ = δNS =
N

M
. (3.6)

Then detJ(δNS) = 1 and λ, λ̄ = −p
2 ± iδ

2(α+β)

√
−∆. Under (3.6), we have

|λ(δNS)| = 1,
d|λ(δ)|
dδ

∣∣∣∣
δ=δNS

=
α2 + β + αβ

2(α+ β)
̸= 0. (3.7)

In addition, if p(δNS) ̸= 0, 1,

αδNS +
βδNS

α+ β
̸= 2, 3,

which obviously satisfies

λk(δNS) ̸= 1 for k = 1, 2, 3, 4. (3.8)

Let q ∈ C2 be an eigenvector of A(δNS) corresponding to the eigenvalue λ(δNS)
such that

A(δNS)q = λ(δNS)q, A(δNS)q̄ = λ̄(δNS)q̄.

Also let p ∈ C2 be an eigenvector of the transposed matrix AT (δNS) correspond-
ing to its eigenvalue, that is, λ̄(δNS),

AT (δNS)p = λ̄(δNS)p, AT (δNS)p̄ = λ(δNS)p̄.

By direct calculation we obtain

q ∼
(
1− αδNS − λ,−α2δNS

β

)T

,

p ∼
(
1− αδNS − λ̄,

βδNS

α+ β

)T
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We set

p = γ2

(
1− αδNS ,

βδNS

α+ β

)T

to normalize p with respect to q, where

γ2 =
1

(1 + αδNS − λ̄)2 − α2δ2NS

α+β

.

It is clear that ⟨p, q⟩ = 1, where ⟨., .⟩ is the standard scalar product in C2 defined
by ⟨p, q⟩ = p̄1q2 + p̄2q1.

Any vector X ∈ R2 can be represented for δ near δNS as X = zq+ z̄q̄, for some
complex z. Indeed, the explicit formula to determine z is z = ⟨p,X⟩. Thus, system
(3.2) can be transformed for sufficiently small |δ| (near δNS ) into the following
form:

z 7→ λ(δ)z + g(z, z̄, δ),

where λ(δ) can be written as λ(δ) = (1+φ(δ))eiθ(δ) (where φ(δ) is a smooth function
with φ(δNS) = 0) and g is a complex-valued smooth function of z, z̄, and δ, whose
Taylor expression with respect to (z, z̄) contains quadratic and higher-order terms:

g(z, z̄, δ) =
∑

k+l≥2

1

k!l!
gkl(δ)z

kz̄l, with gkl ∈ C, k, l = 0, 1, · · · .

By symmetric multilinear vector functions, the Taylor coefficients gkl can be
expressed by the formulas

g20(δNS) = ⟨p,B(q, q)⟩, g11(δNS) = ⟨p,B(q, q̄)⟩
g02(δNS) = ⟨p,B(q̄, q̄)⟩, g21(δNS) = ⟨p, C(q, q, q̄)⟩,

and the coefficient a(δNS), which determines the direction of the appearance of the
invariant closed curve, can be computed via

a(δNS)=Re

(
e−iθ(δNS)g21

2

)
−Re

(
(1− 2eiθ(δNS))e−2iθ(δNS)

2(1−eiθ(δNS))
g20g11

)
−1
2
|g11|2−

1

4
|g02|2,

where eiθ(δNS) = λ(δNS).
Clearly, (3.7) and (3.8) demonstrate that the transversal condition and the non-

degenerate condition of system (1.3) hold well. We obtain the following result.

Theorem 3.2. If a(δNS) ̸= 0, then system (1.3) undergoes a Neimark-Sacker
bifurcation at the positive fixed point E2 when the parameter δ changes in the small
neighborhood of NSBE2

. Moreover, if a(δNS) < 0 (resp., > 0), then the NS
bifurcation of system (1.3) at δ = δNS is supercritical (resp., subcritical) and there
exists a unique invariant closed curve bifurcates from E2 for δ = δNS, which is
attracting (resp., repelling).

Next we give an example, which illustrates Theorem 3.1.
Example 3.1. Consider system (1.3) with α = 0.35, β = 2.5, and δ = δF = 2.57604.
Then (α, β, δ)∈FB1E2

and there is a unique positive fixed point (0.877193, 0.122807)
with multipliers λ1 = −1, λ2 = −0.161293, and c(δF ) = 0.952787. Hence, a flip bi-
furcation emerges from the fixed point (0.877193, 0.122807) at δ = δF . This verifies
Theorem 3.1.
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4. Numerical simulations

In this section, numerical simulation works have been performed to present bifur-
cation diagrams, phase portraits, Lyapunov exponents and fractal dimension of
system (1.3) to confirm our theoretical results and to show some new interesting
complex dynamical behaviors existing in system (1.3). We consider the bifurcation
parameters in the following cases:

case (i) varying δ in range 1.7 ≤ δ ≤ 1.9556, and fixing α = 0.75, β = 1.0;
case (ii) varying δ in range 1.7 ≤ δ ≤ 1.9556, β in range 1.0 ≤ β ≤ 1.3, and fixing
α = 0.75.

For case (i): The bifurcation diagrams of map (1.3) in (δ − x) plane and in
(δ − y) plane are given in Figure 1(a-b). We observe that at the fixed point
(0.571429, 0.428571) of map (1.3), a NS bifurcation emerges at δ = δNS ∼ 1.7619
and (α, β, δ) ∈ NSBE2

. It shows the correctness of proposition 2.2. And for
δ = δNS , we have λ, λ̄ = −0.164116 ± 0.986441i, |λ| = 1, |λ̄| = 1, d|λ(δ)|

dδ |δ=δNS
=

0.660714 > 0, δNS(α + β
α+β ) = 2.32823 ̸= 2, 3, g20 = 3.61014 − 2.49718i, g11 =

4.0744−1.41092i, g02 = −2.2728+5.54114i, g21 = −6.39354+11.0869i and a(δNS) =
−11.8679. Therefore, the NS bifurcation is supercritical and it verifies Theorem 3.2.

The maximum Lyapunov exponents corresponding to Figure 1(a-b) are com-
puted and plotted in Figure 1(c). From Figure 1(c), we see that some Lyapunov
exponents are positive, some are negative, so there exist stable fixed points or stable
period windows in the chaotic region. Figure 1(d) is the local amplification corre-
sponding to Figure 1(a) for δ ∈ [1.8702, 1.9142]. The diagrams in Figure 1(a-b)
show that the fixed point E2 of map (1.3) is stable for δ < 1.7619 and loses its
stability as δ increases. NS bifurcation occurs at δ ∼ 1.7619 and an invariant circle
appears when δ exceeds 1.7619. As δ grows, the circle disappears suddenly and
a period-11 orbits appear at δ ∼ 1.88. We also see that for δ ∼ 1.9556, a fully
developed chaos in system (1.3) occurs. The phase portraits associated with Figure
1(a-b) for various values of δ are disposed in Figure 2, which clearly depicts the
process of how a smooth invariant circle bifurcates from the stable fixed point.

For case (ii): The dynamics of map (1.3) can change when more parameters
vary. The 3-dimensional bifurcation diagrams of map (1.3) for control parameters
δ ∈ [1.7, 1.9556], β ∈ [1.0, 1.3], respectively, and fixing other parameters as in
case (ii), are plotted in Figure 3 (a-b). Since the measure of Lyapunov exponents
quantify the chaotic dynamics of the discrete system, so we will compute the max-
imum Lyapunov exponents of system (1.3) and will study the dependence of these
Lyapunov exponents on two real parameters δ and a. The 3-dimensional maximum
Lyapunov exponents is plotted in Figure 3(c) and its 2-dimensional projection onto
(δ, a) is shown in Figure 3(d). It is clear to see for which choice of parameters map
(1.3) is showing chaotic motion, and for which one is map (1.3) exhibiting periodic
or quasi-periodic movement. For instance, the chaotic dynamics is on Figure 2 for
values of parameters δ = 1.9556, β = 1.0, and the non-chaotic dynamics is for
values of parameters δ = 1.75, β = 1.0, which are consistent with the signs in
Figure 3.
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Figure 1. Bifurcation diagrams and maximum Lyapunov exponent of map (1.3) around E2. (a)
Neimark-Sacker bifurcation diagram of map (1.3) in (δ−x) plane, (b) NS bifurcation diagram in (δ− y)
plane, (c) maximum Lyapunov exponents corresponding to (a-b), (d) local amplification corresponding
to (a) for δ ∈ [1.8702, 1.9142] (e) Fractal dimension corresponding to (a). The initial value is (x0, y0) =
(0.57, 0.42).

4.1. Fractal dimension of the map

We compute fractal dimensions to characterize strange attractors of a map. Lya-
punov exponents quantify the separation of neighboring chaotic orbits to observe
how fast they separate each other. These exponents also indicate a dynamic mea-
sure of chaos which average the separation of the orbits of nearby initial conditions
as system runs forward in time. The fractal dimension [1, 9] is defined by using
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Figure 2. Phase portraits for various values of δ corresponding to Figure 1(a-b).

Lyapunov exponents as follows:

dL = j +

∑j
i=1 λi

|λj |

with λ1, λ2, ..., λn, where j is the largest integer such that
∑j

i=1 λi ≥ 0 and
∑j+1

i=1 λi <
0.

The fractal dimension of our two-dimensional map (1.3) is of the form

dL = 1 +
λ1

|λ2|
, λ1 > 0 > λ2.

With given set of parameter values, two Lyapunov exponents are estimated
by computer simulation and are found to be λ1 ≈ 0.0901 and λ2 ≈ −0.2924 for
δ = 1.9091, and λ1 ≈ 0.1157 and λ2 ≈ −0.1505 for δ = 1.9352. So the fractal
dimensions of the strange attractor of map (1.3) are

dL ≈ 1 +
0.0901

0.2924
= 1.3082 for δ = 1.9091 and

dL ≈ 1 +
0.1157

0.1505
= 1.7689 for δ = 1.9352.

The strange attractors given in Figure 2 and its corresponding fractal dimension
illustrate that the predator-prey system of Leslie type (1.3) has a very complex
dynamic behaviors as the parameter δ increases.
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Figure 3. The 3-dimensional bifurcation diagram and maximum Lyapunov exponents of map (1.3)
around E2. (a-b) The 3-dimensional bifurcation diagrams of map (1.3) covering δ ∈ [1.7, 1.9556], β ∈
[1.0, 1.3], and α = 0.75 in (δ − a − x) space and (δ − a − y) space (c) The 3-dimensional maximum
Lyapunov exponents corresponding to (a-b) (d) The 2-dimensional projection onto (δ, a) plane. The
initial value is (x0, y0) = (0.57, 0.42).

5. Chaos control
In order to stabilize chaotic orbits at an unstable fixed point of system (1.3), a state
feedback control method [2,11] is applied. By adding a feedback control law as the
control force un to system (1.3), the controlled form of (1.3) becomes

xn+1 = xn + δ [xn (1− xn)− xnyn] + un,

yn+1 = yn + δ
[
αyn − βy2

n

xn

] (5.1)

and
un = −k1(xn − x∗)− k2(yn − y∗),

where k1and k2 are the feedback gains, and (x∗, y∗) is the positive fixed point of
system (1.3).

The Jacobian matrix Jc of the controlled system(5.1) is given by

Jc(x
∗, y∗) =

a11 − k1 a12 − k2

a21 a22

 , (5.2)
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where a11 = α+β−βδ
α+β , a12 = − βδ

α+β , a21 = α2δ
β , a22 = 1 − αδ. The characteristic

equation of (5.2) is
λ2 − (a11 + a22 − k1)λ+ a22(a11 − k1)− a21(a12 − k2) = 0. (5.3)

Let λ1 and λ2 be the eigenvalues. Then
λ1 + λ2 = a11 + a22 − k1 (5.4)

and
λ1λ2 = a22(a11 − k1)− a21(a12 − k2). (5.5)

The lines of marginal stability are determined by solving the equations λ1 =
±1 and λ1λ2 = 1. These conditions guarantee that the eigenvalues λ1 and λ2 have
modulus less than 1.

Assume that λ1λ2 = 1, then from (5.5) we have
l1 : a22k1 − a21k2 = a11a22 − a12a21 − 1.

Assume that λ1 = 1, then from (5.4) and (5.5) we get
l2 : (1− a22)k1 + a21k2 = a11 + a22 − 1− a11a22 + a12a21.

Assume that λ1 = −1, then from (5.4) and (5.5) we obtain
l3 : (1 + a22)k1 − a21k2 = a11 + a22 + 1 + a11a22 − a12a21.

The stable eigenvalues lie within a triangular region by lines l1, l2, and l3 (see Figure
4(a)) in the (k1, k2) plane.

Some numerical simulations have been performed to see how the state feedback
method controls the unstable fixed point. Parameter values are fixed as δ = 1.8 and
rest as in case(i). The initial value is (x0, y0) = (0.57, 0.42), and the feedback gains
are k1 = 1.0 and k2 = −0.55. Figures 4(b) and 4(c) show that a chaotic trajectory
is stabilized at the fixed point (0.571429, 0.428571).

6. Discussions
We investigated the dynamic behaviors of the discrete-time predator-prey system
of Leslie type (1.3) in details and showed that it has a complex dynamics in the
closed first quadrant R2

+. We established the conditions for the existence of a flip
bifurcation and a NS bifurcation of map (1.3) at unique positive fixed point by using
center manifold theorem and bifurcation theory. Some other dynamical features of
system (1.3) have been analyzed by means of bifurcation diagrams, phase portraits,
Lyapunov exponents, and fractal dimension. Specifically, as the parameters vary,
system (1.3) exhibits a variety of dynamical behaviors, which include orbits of
period-11, an invariant cycle, and chaotic sets. These all mean that the predator
can coexist with prey in the stable period-n orbits and smooth invariant cycle in
case of NS bifurcation. We computed Lyapunov exponents and fractal dimension
to confirm the chaotic dynamics. We observed that when the prey shows chaotic
dynamic, the predator can tend to extinction or to a stable fixed point. Finally,
the chaotic orbits at an unstable fixed point are stabilized by using the feedback
control method.
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Figure 4. Control of chaotic orbits of system (5.1). (a) The bounded region for the stable eigenvalues
of the controlled system (5.1) in the (k1, k2) plane (b-c) The time responses for the states x and y of
the controlled system (5.1) in the (n, x) and (n, y) planes respectively.
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