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Abstract Over the last years, considerable attention has been paid to the
role of the quaternion differential equations (QDEs) which extend the ordi-
nary differential equations. The theory of QDEs was recently well established
and has wide applications in physics and life science. This paper establishes a
systematic frame work for the theory of linear quaternion dynamic equations
on time scales (QDETS), which can be applied to wave phenomena modeling,
fluid dynamics and filter design. The algebraic structure of the solutions to the
QDETS is actually a left- or right- module, not a linear vector space. On the
non-commutativity of the quaternion algebra, many concepts and properties
of the classical dynamic equations on time scales (DETS) can not be applied.
They should be redefined accordingly. Using q-determinant, a novel definition
of Wronskian is introduced under the framework of quaternions which is dif-
ferent from the standard one in DETS. Liouville formula for QDETS is also
analyzed. Upon these, the solutions to the linear QDETS are established. The
Putzer’s algorithms to evaluate the fundamental solution matrix for homoge-
neous QDETS are presented. Furthermore, the variation of constants formula
to solve the nonhomogeneous QDETs is given. Some concrete examples are
provided to illustrate the feasibility of the proposed algorithms.
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tal solution matrix, quaternions.
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1. Introduction

The theory of dynamic equations on time scales (DETS) has enormous applica-
tions [7, 29]. It is applicable to many fields in which physical phenomena can be
described by continuous or discrete dynamical models. For instance, both continu-
ous and discrete models are used in 3D tracking of shape, motion estimation [30] and
DNA dynamics [26]. An unify framework for the theory of DETS was introduced
in 1988 by Hilger [22, 23]. It unifies continuous and discrete dynamic equations.
The classical differential and difference equations are special cases of DETS. Many
dynamical processes are either exclusively continuous or exclusively discrete.

†The corresponding author. Email address:kikou@umac.mo(K. I. Kou)
1Department of Mathematics, Faculty of Science and Technology, University
of Macau, Macao, China

2School of Mathematical Sciences, Huaqiao University, 362021, Quanzhou, Fu-
jian, China

http://dx.doi.org/10.11948/2018.172


Quaternion dynamic equations on time scales 173

Over the years, the theory of quaternion differential equations (QDEs) has re-
ceived a lot of attention [12,17,39,40,43]. The QDEs have numerous applications in
physics and engineering, such as spatial kinematic modelling and attitude dynam-
ics [14, 21], fluid mechanics [19, 20], quantum mechanics [1, 5] and so on. Recently,
the basic theory and fundamental results of linear QDEs was established [27,28,41].
It is interesting and necessary to extend the theory of QDEs to quaternion dynamic
equations on arbitrary time scales (QDETS), so that the theory of quaternion dy-
namic equations can be widely applied to physical and engineering problems. On
the one hand, both discrete and mixture of continuous and discrete dynamical mod-
els are subsumed within the QDETS. On the other hand, some differential equations
need to be integrated into difference equations for computations or simulations. For
example, the kinematics system on discrete time was studied in [36].

The main purpose of this paper is to study the basic theory of linear QDETS.
The Hilger quaternion numbers on time scales was studied in [18]. The researchers
further gave the definition of the quaternion exponential function on time scales [18].
However, we will show that the quaternion exponential function, in general, is not
the solution of one-dimensional homogeneous linear QDETS:

y∆ = p(t)y,

unless p(t) is either a real-valued function or a quaternion constant function. This is
a striking difference between DETS and QDETS. Owing to the non-commutativity
of multiplication of quaternions, there are many concepts of DETS are not effective
for QDETS. Besides, in consideration of the differences between QDETS and QDEs
in nature, lots of results concerning QDEs can not be easily carried out to the
corresponding results of QDETS. The product rule of delta derivative on time scales
is more tedious than traditional derivative. Therefore the Wronskian defined in
[27] is inconvenient to be applied to the QDETS since it contains many product
operations. Thanks to the systematic exposition of quaternion linear algebra (refer
to [33,38,42]) in recent years, there are quite a few accessible and significant results
can be applied not only by mathematicians, but also by scientists and engineers.
In particular, complex adjoint matrix representation of quaternion matrix plays
a critical role in the current study. The definition of determinant by complex
adjoint matrix, so-called q-determinant, is crucial to define Wronskian of QDETS
and to derive the Liouville’s formula for QDETS. Employing the newly established
Wronskian and Liouville’s formula for QDETS, we obtain the algebraic structure of
general solutions of n dimensional linear QDETS. It is a right quaternion module.

Explicit formulations of the fundamental solution matrices (in particular, eAt)
for the linear QDEs with quaternion constant coefficient matrix were derived in [27].
According to the discussion in [8, 16], the eigenvalue problem of quaternion matrix
is complicated. A quaternion matrix usually has infinite number of eigenvalues.
Moreover, the set of all eigenvectors corresponding to a non-real eigenvalue is not
a submodule. If the n × n coefficient matrix A has n right linearly independent
eigenvectors. Then the fundamental solution matrix eAt can be written in terms
of the eigenvalues and eigenvectors. Otherwise, more efforts need to be exerted.
In [27], the authors constructed eAt by means of series expansion and root subspace
decomposition of quaternion matrix .

For linear QDETS with quaternion constant coefficient matrix, it is not difficult
to find its fundamental solution matrix if its coefficient matrix has enough right lin-
early independent eigenvectors. Otherwise, we cannot use the method of combining
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series expansion and root subspace decomposition to construct the fundamental so-
lution matrices of linear QDETS. This is because that the generalized exponential
function on time scales does not possess simple series expansion in contrast to eAt.
In order to overcome this difficulty, we propose a modified Putzer’s algorithm to
find the fundamental solution matrices of linear QDETS. The Putzer’s algorithm is
particularly useful for quaternion coefficient matrices that do not have enough right
linearly independent eigenvectors since it avoids the computing of eigenvectors. To
authors’ best knowledge, the Vieta’s formulas of quaternion polynomials and the
theory of annihilating polynomial of quaternion matrices have not been well studied
yet. Thus the operability of Putzer’s algorithm for QDETS may be confronted with
some challenges. Still and all, further discussion in a later section indicates that the
Putzer’s algorithm for QDETS may after all be accepted as a good choice.

The rest of the paper is organized as follow. In Section 2, some basic concepts
of quaternion algebra and the calculus of time scales are reviewed. In Section 3, the
first order linear homogeneous QDETS are studied and the properties of general-
ized exponential function for QDETS are investigated. In Section 4, the structure
of general solutions of higher order linear QDETS are analyzed. Specifically, a nov-
el Wronskian determinant for QDETS is defined and the Liouville’s formula and
variation of constants formula are given. In Section 5, explicit formulations of the
fundamental solution matrices for linear QDETS with constant coefficient matrix
are presented. Some examples are given to illustrate the feasibility of the established
Putzer’s algorithm. Finally, some conclusions are drawn at the end of the paper.

2. Preliminaries

2.1. Quaternion algebra

The quaternions were invented in 1843 by Hamilton [37]. The skew field of quater-
nions is denoted by

H := {q = q0 + q1i+ q2j + q3k},
where q0, q1, q2, q3 are real numbers and the elements i, j and k obey the Hamilton’s
multiplication rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = ijk = −1.

For every quaternion q = q0 + iq1 + jq2 + kq3, the scalar and vector parts of
q, are defined as <(q) = q0 and =(q) = q1i + q2j + q3k, respectively. If q = =(q),
then q is called pure imaginary quaternion. The quaternion conjugate is defined by
q = q0−iq1−jq2−kq3, and the norm |q| of q is defined as |q|2 = qq = qq =

∑m=3
m=0 q

2
m.

Using the conjugate and norm of q, one can define the inverse of q ∈ H\{0} by
q−1 = q/|q|2. For each fixed unit pure imaginary quaternion ς, the quaternion has
subset Cς := {a+ bς : a, b ∈ R} and Cς is isomorphic to the complex numbers.

The quaternion exponential function exp(q) is defined by means of an infinite
series as

exp(q) :=

∞∑
n=0

qn

n!
.

Analogous to the complex case one may derive a closed-form representation:

exp(q) = exp(<(q))

(
cos |=(q)|+ =(q)

|=(q)|
sin |=(q)|

)
.
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For simplicity of notations, we sometimes use eq to represent exp(q). For every
q ∈ H\{0}, its principal argument is defined by

Arg(q) := arccos
<(q)

|q|
∈ [0, π].

Then all possible values of the argument can be expressed as arg(q) = Arg(q) +
2kπ, k ∈ Z. It follows that the polar form of a non-real quaternion can be written
as:

q = |q|
(
<(q)

|q|
+
=(q)

|=(q)|
· |=(q)|
|q|

)
= |q| exp(ςθ),

where ς = =(q)
|=(q)| and θ = arg(q). Accordingly, the principal logarithm function is

defined by

Ln(q) :=

{
ln(|q|) + =(q)

|=(q)|Arg(q), q ∈ H \ R,
ln(|q|) + iπ

1−sgn(q)
2 , q ∈ R.

Let h > 0, Georgiev and Morais [18] introduced the Hilger quaternion numbers

Hh := {p ∈ H : p 6= − 1

h
}.

They defined the addition ⊕ on Hh by p⊕q := p+q+pqh and proved that (Hh,⊕) is
a group. The generalized quaternion cylinder transformation was also given in [18]:

ξh(q) :=

{
1
hLn(1 + qh), h > 0;

q, h = 0.
(2.1)

Next we recall an important transformation between quaternion and complex
matrices which were studied in [6, 42]. Every quaternion matrix A ∈ Hm×n can be
expressed uniquely in the form of

A = C1(A) + C2(A)j, where C1(A),C2(A) ∈ Cm×n.

So we can define G : Hm×n → C2m×2n by

G(A) :=

 C1(A) C2(A)

−C2(A) C1(A)

 ,

where G(A) is called the complex adjoint matrix of the quaternion matrix A. For
simplicity, G(A) will be denoted by χA in the following.

From [28], we know that Hn over the division ring H is a right H-module and
η1,η2, . . . ,ηk ∈ Hn are right linearly independent if

η1α1 + η2α2 + · · ·+ ηkαk = 0, αi ∈ H implies that α1 = α2 = · · · = αk = 0.

Let A ∈ Hn×n, a nonzero η ∈ Hn×1 is said to be a right eigenvector of A
corresponding to the right eigenvalue λ ∈ H provided that

Aη = ηλ

holds. A matrix A1 is said to be similar to a matrix A2 if A2 = S−1AS for some
nonsingular matrix S. In particular, we say that two quaternions p, q are similar
if p = α−1qα for some nonzero quaternion α. We recall some basic results about
quaternion matrices which can be found, for instance, in [8, 33,42].
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Theorem 2.1. Let A ∈ Hn×n, then the following statements hold.

(i) A has exactly n right eigenvalues (including multiplicity) which are complex
numbers with nonnegative imaginary parts. These eigenvalues are called stan-
dard eigenvalues.

(ii) If λ is a eigenvalue of A, then there exists a standard eigenvalue λ′ of A such
that λ and λ′ are similar.

(iii) A is invertible if and only if χA is invertible.

(iv) detχA ≥ 0, and the characteristic polynomial of χA has real coefficients.

(v) Let η1,η2, . . . ,ηk be eigenvectors of A that correspond to eigenvaluesλ1,λ2,. . . ,λk,
respectively. If these eigenvalues are pairwise non-similar. Then η1,η2, . . . ,ηk
are right linearly independent.

(vi) If A is (upper or lower) triangular, then the only eigenvalues are the diagonal
elements (and the quaternions similar to them).

2.2. Calculus on time scales

The theory of time scales has gained much popularity in recent years. Bohner and
Peterson together with their research collaborators, such as Agarwal and Ahlbrandt,
have greatly developed the theory of time scales (see e.g. [3,4,9,31]). An systematic
introduction to dynamic equations on time scales was given by Bohner and Peterson
[10]. We adopt the standard notations in [2, 10, 11]. A time scale is a nonempty
closed subset of R. There are some typical examples of time scales.

(i) R consists of all real numbers.

(ii) hZ := {hk : k ∈ Z}, where Z is the set of integers.

(iii) 2N0 := {2k : k ∈ N0}, where N0 is the set of nonnegative integers.

(iv) Pa,b :=

∞⋃
k=0

[k(a+ b), k(a+ b) + a], where a, b are positive real constants.

Throughout the paper, let T be a time scale. For t ∈ T, the forward jump operator
σ and the backward jump operator ρ are respectively defined by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t}.

If σ(t) > t, σ(t) = t, ρ(t) < t, ρ(t) = t, then t is said to be right-scattered, right-
dense, left-scattered, left-dense, respectively. The graininess function µ : T→ [0,∞)
and the set Tκ are respectively defined by

µ(t) := σ(t)− t (2.2)

and

Tκ :=

{
T \ (ρ(supT), supT], if supT <∞;

T, if supT =∞.

The classical time scales calculus is only concerned with the real-valued functions.
With minor adjustments, some basic concepts of time scales calculus can also be
carried to quaternion-valued functions. We denote the set of all quaternion-valued
functions which are defined on time scales T by H⊗ T.
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Definition 2.1. Assume that f ∈ H⊗T and let t ∈ Tκ. The delta derivative f∆(t)
is defined to be the number (provided it exists) with property that given any ε > 0,
there exists δ > 0 such that∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)

∣∣ ≤ ε |σ(t)− s|

holds for all s ∈ Uδ := (t− δ, t+ δ) ∩ T.

By writing f ∈ H⊗T in the form of f(t) = f0(t) + f1(t)i+ f2(t)j + f3(t)k with
fi ∈ R⊗T, it is easy to verify that f is delta differentiable if and only if f0, f1, f2, f3

are delta differentiable. Moreover, if f is delta differentiable, then

f∆(t) = f∆
0 (t) + f∆

1 (t)i+ f∆
2 (t)j + f∆

3 (t)k.

It follows that some useful results concerning the delta derivative for real-valued
functions in [10] can be carried to quaternion-valued functions.

Theorem 2.2. Assume that f, g ∈ H ⊗ T are delta differentiable at t ∈ Tκ, then
the following statements hold.

(i) f(σ(t)) = f(t) + µ(t)f∆(t).

(ii) f + g is delta differentiable at t and (f + g)∆(t) = f∆(t) + g∆(t).

(iii) For any α, β ∈ H, αfβ is delta differentiable at t and (αfβ)∆(t) = αf∆(t)β.

(iv) The product fg is delta differentiable at t and

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

(v) If f(t)f(σ(t)) 6= 0 then f̃(t) = (f(t))
−1

is delta differentiable at t and

f̃∆(t) = −(f(σ(t)))−1f∆(t)(f(t))−1 = −(f(t))−1f∆(t)(f(σ(t)))−1.

Remark 2.1. The statements 1, 2, 3 are easy to be understood. The equali-
ty f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)) can be seen from state-
ment 1. Since H is noncommutative, the equality −(f(σ(t)))−1f∆(t)(f(t))−1 =
−(f(t))−1f∆(t)(f(σ(t)))−1 is not obvious. But this equality is true by invoking

statement 4 (let g = f̃). We use an example to illustrate this result.

Example 2.1. Let T = Z, f(t) = 1 + i+ tj. Then we have

f̃(t) = (1− i− tj)(2 + t2)−1,

f(σ(t)) = f(t+ 1) = 1 + i+ (t+ 1)j,

f∆(t) = f(t+ 1)− f(t) = j.

By direct computation,

−(f(σ(t)))−1f∆(t)(f(t))−1 = −(f(t))−1f∆(t)(f(σ(t)))−1 = f̃∆(t) = f̃(t+1)− f̃(t).

They are equal to

(−(2t+ 1) + (2t+ 1)i+ (2− (t2 + t))j)(2 + t2)−1(2 + (t+ 1)2)−1.

To describe integrable quaternion-valued functions on time scales, we need to
introduce the concept of rd-continuous. The rd-continuity of real-valued functions
was defined by Bohner et al. [10].
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Definition 2.2. A real-valued function is called rd-continuous if it is continuous
at right-dense points and its left-sided limits exist (finite) at left-dense points.

Bohner et al. [10] proved that every rd-continuous function has an antideriva-
tive. Next we introduce the rd-continuity and integrability of quaternion-valued
functions.

We say that f = f0 + f1i + f2j + f3k ∈ H ⊗ T is rd-continuous provided that
its every real components f0, f1, f2, f3 are rd-continuous. For every rd-continuous
function f , we define the integral by∫ s

r

f(t)∆t :=

∫ s

r

f0(t)∆t+ i

∫ s

r

f1(t)∆t+ j

∫ s

r

f2(t)∆t+ k

∫ s

r

f3(t)∆t

=F0(s)− F0(r) + (F1(s)− F1(r))i+ (F2(s)− F2(r))j + (F3(s)− F3(r))k

=F (s)− F (r),

where F∆
i (t) = fi(t), (0 ≤ i ≤ 3) and F∆(t) = f(t) for t ∈ Tκ.

From above discussion, we have the following two theorems.

Theorem 2.3. If f ∈ H⊗ T is rd-continuous and t ∈ Tκ, then∫ σ(t)

t

f(τ)∆τ = µ(t)f(t).

Theorem 2.4. Let a, b ∈ T and suppose that f ∈ H⊗ T is rd-continuous.

1. If T = R, then ∫ b

a

f(t)∆t =

∫ b

a

f(t)dt.

Namely, it is the classical integral from calculus.

2. If [a, b] ∩ T contains only isolated points, then

∫ b

a

f(t)∆t =


∑
t∈[a,b)∩T µ(t)f(t), if a < b;

0, if a = b;

−
∑
t∈[b,a)∩T µ(t)f(t), if a > b.

3. First order linear QDETS

In this section, we will study the first order linear QDETS and its corresponding
initial value problems. Firstly, we need to introduce some auxiliary concepts.

Definition 3.1. A function p ∈ H⊗ T is said to be regressive if

1 + µ(t)p(t) 6= 0, for all t ∈ Tκ. (3.1)

The set of all regressive and rd-continuous quaternion-valued functions is denot-
ed by R(T,H). By similar arguments to (Hh,⊕) , we know that R(T,H) is a group
under addition ⊕ which is defined by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), for all t ∈ Tκ,
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where p, q ∈ R(T,H). Based on the definition of quaternion cylinder transformation
(2.1), the generalized quaternion exponential function for p ∈ R(T,H) is defined by

Ep(t, s) := exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
.

Clearly, the generalized quaternion exponential function never be zero for any
p ∈ R(T,H). We proceed by presenting some important properties of Ep(t, s).

Lemma 3.1. If p(t) = α ∈ H \ R is a quaternion constant, then p ∈ R(T,H) and
Ep(t, r)Ep(r, s) = Ep(t, s) for all r, s, t ∈ T.

Proof. Obviously, p ∈ R(T,H). Let r, s, t ∈ T, then both
∫ t
r
ξµ(τ)(p(τ))∆τ and∫ r

s
ξµ(τ)(p(τ))∆τ are Cς -valued, where ς = I(α)

|I(α)| . Therefore

Ep(t, r)Ep(r, s) = exp

(∫ t

r

ξµ(τ)(p(τ))∆τ

)
exp

(∫ r

s

ξµ(τ)(p(τ))∆τ

)
= exp

(∫ t

r

ξµ(τ)(p(τ))∆τ +

∫ r

s

ξµ(τ)(p(τ))∆τ

)
= exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
= Ep(t, s)

which completes the proof.

Lemma 3.2. Suppose that α ∈ H \ R and µ(t) > 0, then Eα(σ(t), t)− 1 = αµ(t).

Proof. Since α ∈ H \ R and µ(t) > 0, then by Theorem 2.3

Eα(σ(t), t) = exp

(∫ σ(t)

t

ξµ(τ)(α)∆τ

)
= exp

(
µ(t)ξµ(t)(α)

)
= exp (Ln(1 + αµ(t))) .

Observe that 1 + αµ(t) is certainly not real-valued. It follows that

exp (Ln(1 + αµ(t))) = 1 + αµ(t),

which completes the proof.
Now we turn to study the following first order linear QDETS.

Definition 3.2. If p ∈ R(T,H), then the first order linear quaternion dynamic
equation

y∆(t) = p(t)y(t) (3.2)

is called regressive. For any fixed t0 ∈ T and c0 ∈ H, the corresponding initial value
problem is

y∆(t) = p(t)y(t), y(t0) = c0. (3.3)

By similar arguments to Theorem 5.8 in [10], the initial value problem (3.3) has
exactly a unique solution.
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Remark 3.1. Let ψp(t, t0) denotes the unique solution of (3.3) with c0 = 1. In the
classical case, we know that ψp(t, s) = Ep(t, s). This assertion, however, is no longer
true in the quaternion case. Namely, ψp(t, s) is not equal to Ep(t, s) in general.

Example 3.1. Consider the time scale T = Z. Let p(t) = 1 + it+ j, then

ξµ(τ)(p(τ)) =
1

µ(τ)
Ln(1 + p(τ))

=
1

2
ln(5 + τ2) +

iτ + j√
1 + τ2

arccos
2√

5 + τ2
.

By direct computation, we have∫ 1

0

ξµ(τ)(p(τ))∆τ =
1

2
ln 5 + j arccos

2√
5
.

Thus

Ep(1, 0) = exp(
1

2
ln 5 + j arccos

2√
5

) = 2 + j.

Let y(t) = Ep(t, 0), we have

y∆(0) = y(1)− y(0) = 2 + j 6= 1 + j = p(0)y(0),

which implies ψp(t, 0) 6= Ep(t, 0).

Fortunately, under some suitable conditions, ψp(t, s) is still equal to Ep(t, s). To
prove this result, we give an useful lemma first.

Lemma 3.3. If σ(t) = t and p(t) = α ∈ H \ R is a quaternion constant function.
Then

lim
τ→t

ξµ(τ)(p(τ)) = α.

Proof. If there exists a number δ0 > 0 such that µ(τ) = 0 for all τ ∈ Uδ0 . Then

lim
τ→t

ξµ(τ)(p(τ)) = lim
τ→t

ξ0(α) = α.

Otherwise, for any δ > 0, there exists a number τ ∈ Uδ such that µ(τ) > 0. Let
δ1 = 1, define

D1 := {τ ∈ Uδ1 : µ(τ) > 0} and D2 := {τ ∈ Uδ1 : µ(τ) = 0},

then D1 contains infinite elements. Now we claim that lim
τ→t

µ(τ) = 0 = µ(t). S-

ince σ(t) = t, then there exists a strictly decreasing sequence {τn} ⊂ T such that
lim
n→∞

τn = t. For any τ satisfying 0 < τ − t < τ1, there exists positive integer n1

such that τn1+1 > τ > τn1
. Thus σ(τ) ≤ τn1

. It follows that µ(τ) = σ(τ) − τ ≤
τn1
− τ ≤ τn1+1 − τn1

. Therefore

lim
τ→t+

µ(τ) = lim
n1→∞

(τn1+1 − τn1
) = 0.

For any τ < t, we have τ ≤ σ(τ) ≤ t. Then µ(τ) = σ(τ)− τ ≤ t− τ . Thus

0 ≤ lim
τ→t−

µ(τ) ≤ lim
τ→t−

(t− τ) = 0.
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Then we have

lim
τ→t
τ∈D1

ξµ(τ)(α) = lim
τ→t
τ∈D1

1

µ(τ)

(
ln |1 + αµ(τ)|+ =(α)

|=(α)|
arccos

1 + µ(τ)<(α)

|1 + αµ(τ)|

)
= <(α) +

=(α)

|=(α)|
|=(α)| = α

by invoking the following two limits

lim
h→0

ln
(
|1 + h<(α)|2 + |=(α)h|2

)
2h

= <(α),

lim
h→0

arccos
1 + h<(α)

h

√
|1 + h<(α)|2 + |=(α)h|2

= |=(α)| .

In other words, for any ε > 0, there exists positive number δ2 < δ1 such that∣∣ξµ(τ)(α)− α
∣∣ < ε for all τ ∈ Uδ2∩D1. Note that for all τ ∈ Uδ2∩D2,

∣∣ξµ(τ)(α)− α
∣∣ =

|ξ0(α)− α| = 0 < ε. Hence
∣∣ξµ(τ)(α)− α

∣∣ < ε holds for all τ ∈ Uδ2 which completes
the proof.

Theorem 3.1. If p ∈ R(T,H) is real-valued or p(t) = α ∈ H \ R is a quaternion
constant function. Then ψp(t, s) = Ep(t, s) for all s, t ∈ T.

Proof. For real-valued p ∈ R(T,H), please refer to Theorem 2.33 in [10]. For
p(t) = α ∈ H \ R, observe first that Eα(s, s) = 1. We only need to show that
Eα(t, s) satisfies (3.2). Let t ∈ Tκ be right-scattered, that is, µ(t) = σ(t) − t > 0.
By applying Lemma 3.1 and 3.2,

E∆
α (t, s) =

Eα(σ(t), s)− Eα(t, s)

µ(t)

=
Eα(σ(t), t)− 1

µ(t)
Eα(t, s)

= αEα(t, s).

Let t ∈ Tκ be right-dense. For any given positive number ε < |Eα(t, s)|. Lemma
3.3 implies that there exists δ1 > 0 such that∣∣ξµ(τ)(α)− α

∣∣ < ε

2 |Eα(t, s)|
< 1

for all τ ∈ Uδ1 . Then
∣∣∣∫ tt′ ξµ(τ)(α)∆τ

∣∣∣ ≤ (1 + |α|) |t− t′| and

|Eα(t, s)| ·
∣∣∣∣∫ t

t′

(
ξµ(τ)(α)− α

)
∆τ

∣∣∣∣ ≤ ε

2
|t− t′|

for all t′ ∈ Uδ1 . Observe that lim q→0
q∈Cζ

(1− q − exp(−q)) q−1 = 0 where ζ = =(α)
|=(α)| .

Then there exists δ1 > δ2 > 0 such that∣∣∣∣1− ∫ t

t′
ξµ(τ)(α)∆τ − Eα(t′, t)

∣∣∣∣ ≤ ε

2(1 + |α|) |Eα(t, s)|
·
∣∣∣∣∫ t

t′
ξµ(τ)(α)∆τ

∣∣∣∣
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for all t′ ∈ Uδ2 . Therefore, by Lemma 3.1

|Eα(t, s)− Eα(t′, s)− αEα(t, s)(t− t′)|
= |1− Eα(t′, t)− α(t− t′)| · |Eα(t, s)|

≤ |Eα(t, s)| ·
∣∣∣∣∫ t

t′

(
ξµ(τ)(α)− α

)
∆τ

∣∣∣∣
+ |Eα(t, s)| ·

∣∣∣∣1− ∫ t

t′
ξµ(τ)(α)∆τ − Eα(t′, t)

∣∣∣∣
≤ε

2
|t− t′|+ ε

2
|t− t′|

=ε |t− t′|

for all t′ ∈ Uδ2 . This implies that E∆
α (t, s) = αEα(t, s). The proof is complete.

Proposition 3.1. Let p ∈ R(T,H), then the following assertions hold.

(i) If φ(t) satisfies (3.2) and φ(t0) = 0 for some t0 ∈ T, then φ(t) = 0 for all
t ∈ T. In other words, if φ(t0) 6= 0 for some t0 ∈ T, then φ(t) 6= 0 for all
t ∈ T.

(ii) If φ(t) is a nonzero solution of (3.2), then for any t, r, s ∈ T, ψp(t, s) =
φ(t)φ−1(s) = ψp(t, r)ψp(r, s) 6= 0 and ψ−1

p (t, s) = ψp(s, t).

(iii) For any given IVP y(t0) = c0, the solution is ψp(t, t0)c0.

(iv) ψ0(t, s) = 1 and ψp(t, t) = 1.

Proof. In the classical case, for any y = φ(t) satisfying (3.2) never vanishes,
because it is just a composition of exponential and ξµ(·)(p(·)). But Example 3.1
indicates that ψp(t, s) is not necessarily to be Ep(t, s) in the quaternion case.

So assertion 1 is not a trivial result. Let w(t) = |φ(t)|2 = C1(φ(t))C1(φ(t)) +
C2(φ(t))C2(φ(t)). Then by Theorem 2.2,

w∆ = C1(φ)C1(φ)∆ + C1(φ)
∆
C1(φ)σ + C2(φ)C2(φ)∆ + C2(φ)

∆
C2(φ)σ

= C1(φ)
(
C1(p)C1(φ)−C2(p)C2(φ)

)
+
(
C1(p)C1(φ)−C2(p)C2(φ)

)(
C1(φ)+µC1(φ)∆

)
+C2(φ)

(
C1(p)C2(φ)+C2(p)C1(φ)

)
+
(
C1(p)C2(φ)+C2(p)C1(φ)

)(
C2(φ)+µC2(φ)∆

)
= 2<(p)

(
|C1(φ)|2 + |C2(φ)|2

)
+ µ

(
C1(p)C1(φ)− C2(p)C2(φ)

)(
C1(p)C1(φ)− C2(p)C2(φ)

)
+
(
C1(p)C2(φ) + C2(p)C1(φ)

)(
C1(p)C2(φ) + C2(p)C1(φ)

)
= 2

(
<(p) + µ |p|2

)
w.

Therefore w(t0) = 0 implies that w(t) = 0 for all t ∈ T by Theorem 3.1. This
completes the proof of assertion 1. The rest of assertions follows from first assertion.

Example 3.2. Let T = 2N0 and α ∈ H \ R be a quaternion constant. Then
µ(2m) = 2m+1 − 2m = 2m and therefore

ξµ(2m)(α) = 2−mLn(1 + 2mα).
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It follows that∫ 2k

1

ξµ(τ)(α)∆τ =

k−1∑
m=0

µ(2m)ξµ(2m)(α) =

k−1∑
m=0

Ln(1 + 2mα).

Thus

Eα(2k, 1) =

k−1∏
m=0

(1 + 2mα),

Example 3.3. Let T = hZ with h > 0 and α ∈ H \ R be a quaternion constant.
Then

Eα(t, 0) = |1 + αh|
t
h

(
cos

(
t

h
arccos

1 + α0h

|1 + αh|

)
+

I(α)

|I(α)|
sin

(
t

h
arccos

1 + α0h

|1 + αh|

))
= (1 + αh)

t
h .

4. Linear systems of QDETS

Let A(t) = (aij(t))m×n be an m×n quaternion-matrix-valued function with aij(t) ∈
H⊗T. We denote the set of such quaternion-matrix-valued functions by Hm×n⊗T.
We sayA(t) is rd-continuous (delta differentiable) on T if all of aij(t) (1 ≤ i ≤ m, 1 ≤
j ≤ n) is rd-continuous (delta differentiable) on T. If A(t) is delta differentiable on
T, we put A∆(t) := (a∆

ij(t))n×n.
In order to state our results, we introduce some notations which are analo-

gous to those used in [15, 24]. Let Ω
(m)
k be the set consisting of all possible k-

combinations of the set {1, 2, . . . ,m}. The number of elements of Ω
(m)
k is Ckm. Let

Λk = {i1, i2, . . . , ik} ∈ Ω
(m)
k be an index set. For any B ∈ Cm×m⊗T, B(Λk) denotes

the principal sub-matrix that lies in the rows and columns of B indexed by Λk and

Vk(B) :=
∑

Λk∈Ω
(m)
k

detB(Λk) (4.1)

denotes the sum of determinants of all B(Λk),Λk ∈ Ω
(m)
k . Similarly, let B(Λk,∆)

be the m × m matrix generated from B by replacing original entries with delta
derivatives on the rows indexed by Λk.

We consider the linear nonhomogeneous quaternion dynamic equations

φ∆(t)=A(t)φ(t)+f(t) (4.2)

and the linear homogeneous quaternion dynamic equations

φ∆(t) = A(t)φ(t), (4.3)

where φ(t),f(t) ∈ Hn×1 ⊗ T and A(t) ∈ Hn×n ⊗ T. Let t0 ∈ T and η ∈ Hn, then
the corresponding initial value problem is

φ(t0) = η. (4.4)

We are in a position to introduce the concept of regressivity of A(t).
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Definition 4.1. We say A(t) ∈ Hn×n ⊗ T is regressive provided that

In + µ(t)A(t) is invertible for all t ∈ Tκ. (4.5)

The totality of all such regressive and rd-continuous quaternion-valued functions is
denoted by R(T,Hn×n). If A ∈ R(T,Hn×n), we say system (4.2) is regressive.

Lemma 4.1. Let A(t) ∈ Hn×n ⊗ T. Then for any fixed t ∈ T, In + µ(t)A(t) is
invertible if and only if I2n + µ(t)χA(t) is invertible.

Proof. Let Ã(t) = In + µ(t)A(t), it is easy to see that χÃ(t) = I2n + µ(t)χA(t).
Then by statement 3 of Theorem 2.1, we complete the proof.

We need a lemma about the equivalent conditions of regressivity in the classical
case. This result can be found in [10,15].

Lemma 4.2. Let B(t) ∈ Cm×m ⊗ T, then for any fixed t ∈ T, the following state-
ments are equivalent.

(i) Im + µ(t)B(t) is invertible.

(ii) The eigenvalues λi(t) of B(t) is regressive for all 1 ≤ i ≤ m. Namely, 1 +
µ(t)λi(t) 6= 0 for all 1 ≤ i ≤ m.

(iii) u(t) is regressive, namely, 1+µ(t)u(t) 6= 0, where u(t) =
∑2n
k=1 µ

k−1(t)Vk(B(t))
and Vk is defined by (4.1).

An immediate consequence of Lemma 4.1 and 4.2 is the equivalent conditions of
regressivity for A(t) ∈ Hn×n ⊗ T.

Theorem 4.1. Let A(t) ∈ Hn×n ⊗ T. Then for any fixed t ∈ T, A(t) is regressive
if and only if all of its eigenvalues are regressive.

Proof. By Lemma 4.1 and 4.2, we know that A(t) ∈ Hn×n ⊗ T is regressive if
and only if all the standard eigenvalues of A(t) are regressive. Note that if λ ∈ H is
regressive, then α−1λα is also regressive for any nonzero α ∈ H. Then by statement
2 of Theorem 2.1, we complete the proof.

By similar arguments to Theorem 5.8 in [10], we have the following existence
and uniqueness theorem.

Theorem 4.2. If A ∈ R(T,Hn×n) and f is rd-continuous. Then the initial value
problem (4.2), (4.4) has exactly a unique solution.

To study the properties of solutions of (4.3), we should define the concept of
Wronskian for quaternion dynamic equations. Due to the noncommutative property
of quaternons, there is no unified definition of determinant of quaternion matrix.
Many researchers have proposed different definitions. But, as mentioned in [28],
some definitions of determinant may be not suitable to define Wronskian. Kou
et al. [27] adopted the definition of determinant based on permutation proposed
by Chen [13]. The proof of Liouville’s formula in [27] is complicated. In this
paper, we adopt an alternative definition of determinant called q-determinant [42]
for A ∈ Hn×n. It is defined by

d̂etA := detχA. (4.6)

We know that the product rule for delta derivative is more tedious than tradi-
tional one. But the Wronskian defined in [27] contains many product operations.
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So we use q-determinant to define the Wronskian for quaternion dynamic equations
on time scales.

Definition 4.2. Let x1(t),x2(t), · · · ,xn(t), xi(t) ∈ Hn⊗T be n quaternion-vector-
valued functions. Denote

M(t) := (x1(t),x2(t), · · · ,xn(t)) =


x11(t) x12(t) · · · x1n(t)

x21(t) x22(t) · · · x2n(t)

· · ·

xn1(t) xn2(t) · · · xnn(t)

 .

The Wronskian of M(t) is defined by

W (t) := d̂etM(t) = detχM (t).

If x1(t),x2(t), · · · ,xn(t) are solutions of (4.3), then we call M(t) a solution matrix
of (4.3).

Theorem 4.3. If x1(t),x2(t) ∈ Hn⊗T are solutions of (4.3), then the right linear
combination x1(t)α1 + x2(t)α2 for any α1, α2 ∈ H is also a solution of (4.3).

Theorem 4.4. If x1(t),x2(t), ···,xn(t), xi(t) ∈ Hn⊗T are right linearly dependent
on T, then W (t) = 0 for all t ∈ T. In other words, if W (t) 6= 0 for some t0 ∈ T,
then x1(t), x2(t), · · ·, xn(t) are right linearly independent on T.

Proof. If x1(t),x2(t), ···,xn(t) are right linearly dependent on T, then there exists
a nonzero vector q = (q1, q2, · · ·, qn)> ∈ Hn such that

M(t)q = 0, for all t ∈ T.

If there exists t0 ∈ T such that W (t0) 6= 0, by definition of Wronskian, we have
χM (t0) is invertible. From Theorem 2.1, it follows that M(t0) is invertible. Thus
M(t0)η = 0 has a unique solution η = 0 by Theorem 4.3 of [42]. This contradicts
the fact that η = q is a nonzero solution of M(t0)η = 0.

Theorem 4.5. If x1(t),x2(t), · · ·,xn(t) are n right linearly independent solutions
of (4.3), then W (t) 6= 0 for all t ∈ T.

Proof. Assume that there exists t0 ∈ T such that W (t0) = 0. By similar ar-
guments to Theorem 4.4, it is easy to see that there is a nonzero vector q =
(q1, q2, · · ·, qn)> ∈ Hn such that M(t0)q = 0. Define x(t) := M(t)q for all t ∈ T.
By Theorem 4.3, x(t) is a solution of (4.3) with x(t0) = 0. Note that y(t) ≡ 0
is the unique solution of (4.3) and initial condition (4.4) with η = 0. Therefore
M(t)q = x(t) = y(t) ≡ 0. This implies that x1(t),x2(t), · · ·,xn(t) are right linearly
dependent, which is contradiction to the hypotheses of the theorem.

To deduce the Liouville’s formula, we need an important Lemma.

Lemma 4.3. Let M(t) be a solution matrix of (4.3) and W (t) be the corresponding

Wronskian. Then for any index set Λk ∈ Ω
(m)
k with m = 2n, we have

detχM (Λk,∆) = detχA(Λk) ·W.
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Proof. Without loss of generality, we may assume Λk = {i1, i2, · · ·, ik} with 1 ≤
i1 < i2 < · · · < ik ≤ m. We only consider the case of ik ≤ n, the other cases can be
similarly proved.

Observe that M∆(t) = A(t)M(t), then (ir, j)-component of χM (Λk,∆) is
n∑
s=1

C1(airs)C1(xsj)− C2(airs)C2(xsj), j ≤ n;

n∑
s=1

C1(airs)C2(xsj) + C2(airs)C1(xsj), j > n.

If i ≤ n and i /∈ Λk, the (i, j)-component of χM (Λk,∆) is{
C1(xij), j ≤ n;

C2(xij), j > n.

If i > n, the (i, j)-component of χM (Λk,∆) is{
−C2(xi−n,j), j ≤ n;

C1(xi−n,j), j > n.

Then for s ≤ n and s /∈ Λk, we do row operation of−C1(airs)Rs+Rir for χM (Λk,∆).
And for s > n, we do row operation of −C2(air,s−n)Rs +Rir for χM (Λk,∆). After
doing this procedure for 1 ≤ r ≤ k, we obtain a new matrix χM (Λk,∆, new). The
(ir, j)-component of χM (Λk,∆, new) is

k∑
s=1

C1(airis)C1(xisj), j ≤ n;

k∑
s=1

C1(airis)C2(xisj), j > n.

Construct a block diagonal matrix

S :=


Ii1−1 0 0

0 H 0

0 0 Im−ik

 ,

where Is is the s-order identity matrix and

H :=



C1(ai1i1) 0 C1(ai1i2) 0 C1(ai1i3) . . . C1(ai1ik)

0 Ii2−i1−1 0 0 0 . . . 0

C1(ai2i1) 0 C1(ai2i2) 0 C1(ai2i3) . . . C1(ai2ik)

0 0 0 Ii3−i2−1 0 . . . 0

C1(ai3i1) 0 C1(ai3i2) 0 C1(ai3i3) . . . C1(ai3ik)
...

...
...

...
...

. . .
...

C1(aiki1) 0 C1(aiki2) 0 C1(aiki3) . . . C1(aikik)


.
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Then χM (Λk,∆, new) = SχM . Therefore

detχM (Λk,∆) = detχM (Λk,∆, new) = detS · detχM = (detH) ·W.

Observe that detH = detχA(Λk), the proof is complete.
We need a lemma about delta derivative of determinant from [10, Theorem

5.105].

Lemma 4.4 ( [10]). Let C = (cij)1≤i,j≤m ∈ Rn ⊗ T be delta differentiable. For

1 ≤ k ≤ m, define B(k) = (b
(k)
ij )1≤i,j≤m by

b
(k)
ij :=


cσij if i < k,

c∆ij if i = k,

cij if i > k.

Then detC ∈ R⊗ T is delta differentiable, and

(detC)∆ =

m∑
k=1

detB(k).

Remark 4.1. Although Lemma 4.4 is established for real-valued functions, it is
easy to verify that Lemma 4.4 is also valid for complex-valued functions.

Now we present the Liouville’s formula.

Theorem 4.6. The Wronskian of solution matrix M(t) of (4.3) satisfies the fol-
lowing Liouville’s formula.

W (t) = Eu(t, t0)W (t0), (4.7)

where u =
∑2n
k=1 µ

k−1Vk(χA) and Vk is defined by (4.1).

Proof. From Lemma 4.4, we see that

W∆ = (detχM )∆

= detB(1) + detB(2) + · · ·+ detB(2n)

= det


χ∆
M (1, :)

χM (2, :)
...

χM (2n, :)

+ det


χσM (1, :)

χ∆
M (2, :)

...

χM (2n, :)

+ · · ·+ det


χσM (1, :)

χσM (2, :)
...

χ∆
M (2n, :)

 ,

where

B(s) =



χσM (1, :)

χσM (2, :)
...

χ∆
M (s, :)

...

χM (2n, :)
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and χM (j, :), (1 ≤ j ≤ 2n) is the j-th row of χM . Observe that

χσM (k, :) = χM (k, :) + µχ∆
M (k, :) for 1 ≤ k < s.

Thus

detB(s) =

s∑
k=1

∑
Λk∈Ω

(2n)
k

max Λk=s

µk−1 detχM (Λk,∆).

By Lemma 4.3, we obtain

W∆ =

2n∑
s=1

detB(s) =

2n∑
s=1

s∑
k=1

∑
Λk∈Ω

(2n)
k

max Λk=s

µk−1 detχA(Λk) ·W

=

2n∑
k=1

2n∑
s=k

∑
Λk∈Ω

(2n)
k

max Λk=s

µk−1 detχA(Λk) ·W

=

2n∑
k=1

∑
Λk∈Ω

(2n)
k

µk−1 detχA(Λk) ·W

= uW.

In fact, V1(χA),V2(χA), · · ·,V2n(χA) are coefficients of the characteristic polynomial
of χA. Then, by Theorem 2.1 and the definition of u, we conclude that u is real-
valued. From Theorem 3.1 follows the Liouville’s formula (4.7).

Remark 4.2. If T = R, then the graininess function µ vanishes identically. Thus

u(t) = V1(χA(t)) = trχA(t) = 2< (trA(t)) .

Therefore the Liouville’s formula becomes

W (t) = exp

(
2

∫ t

t0

<(trA(τ))dτ

)
W (t0).

If T = Z, then the graininess function µ is identically equal to 1. Therefore u(t)
equals to the sum of all coefficients of the characteristic polynomial of χA(t). In
this case, the Liouville’s formula becomes

W (t) = exp

(
t−1∑
τ=t0

ξ1(u(τ))

)
W (t0).

Corollary 4.1. Let W (t) be the Wronskian of solution matrix M(t) of (4.3). Then
W (t) = 0 at same t0 ∈ T if and only if W (t) = 0 for all t ∈ T.

As an immediate consequence of Theorem 4.4, 4.5 and Corollary 4.1, we have

Theorem 4.7. Let A ∈ R(T,Hn×n) and W (t) be the Wronskian of solution matrix
M(t) of (4.3). Then x1(t),x2(t), · · ·,xn(t) are right linearly dependent on T if and
only if W (t) = 0 at some t0 ∈ T . And x1(t),x2(t), · · ·,xn(t) are right linearly
independent on T if and only if W (t) 6= 0 at some t0 ∈ T .
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Let A ∈ R(T,Hn×n) and ek be the k-th column of In. Then there exists a unique
solution xk(t) of (4.3) satisfying xk(t0) = ek. Thus M(t) = (x1(t),x2(t), · · ·,xn(t))
is a solution matrix of (4.3). Let W (t) be the Wronskian of M(t). It is easy to see
that W (t0) = 1 6= 0. Then we immediately have

Theorem 4.8. If A ∈ R(T,Hn×n), then (4.3) has exactly n right linearly indepen-
dent solutions x1(t),x2(t), · · ·,xn(t). The corresponding solution matrix M(t) is
called fundamental solution matrix of (4.3).

Theorem 4.8 illustrates the existence of fundamental solution matrix. In fact,
fundamental solution matrix is not unique. Suppose that M(t) is a fundamental so-
lution matrix of (4.3). Multiplying M(t) with an arbitrary non-singular quaternion
matrix on the right-side, it remains to be a fundamental solution matrix. Using The-
orem 4.7, we can easily determine whether M(t) is a fundamental solution matrix
or not.

Corollary 4.2. A solution matrix M(t) of (4.3) is a fundamental solution matrix
if and only if its corresponding Wronskian W (t) 6= 0 for some t0 ∈ T. Moreover, if
M(t) is a fundamental solution matrix, then M(t) is invertible for all t ∈ T.

Next result describes the structure of the general solution of (4.3). It is a right
H-module. That implies that if we know n right linearly independent solutions of
(4.3), then we actually know all possible solutions of (4.3), since any other solution
is just a right linear combination of known solutions.

Theorem 4.9. Let M(t) = (x1(t),x2(t), · · ·,xn(t)) be a fundamental solution ma-
trix of (4.3). Then any solution of (4.3) can be written as

x(t) = M(t)q, (4.8)

where q = (q1, q2, · · ·, qn)> ∈ Hn is undetermined quaternion vector. The totality of
the solutions form a right H-module.

Proof. For any t0 ∈ T, by Corollary 4.2, M(t0) is invertible. Thus M(t0)η = x(t0)
has a unique solution η = q. Note that M(t)q is also a solution of 4.3 with initial
condition φ(t0) = x(t0). By the uniqueness theorem, the equality (4.8) holds.

Let A ∈ R(T,Hn×n) and M(t) be a fundamental solution matrix of (4.3). Define
the state-transition matrix

ΨA(t, s) := M(t)M−1(s).

It is not difficult to verify that ΨA(t, s) is well-defined. Suppose that M1(t) be a
fundamental solution matrix which is different from M(t). It is easy to see that
M1(t)M−1

1 (s) = M(t)M−1(s) by uniqueness theorem. By the similar arguments to
Proposition 3.1, we have

Proposition 4.1. Let A ∈ R(T,Hn×n) and t, r, s ∈ T, then the following assertions
hold.

(i) ΨA(t, s) is invertible.

(ii) Ψ0(t, s) ≡ In and ΨA(t, t) = In.

(iii) ΨA(t, s)ΨA(s, r) = ΨA(t, r). In particular, Ψ−1
A (t, s) = ΨA(s, t).

(iv) Any solution x(t) of (4.3) with x(t0)=η0 can be expressed by x(t)=ΨA(t, t0)η0.
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After studying the homogeneous equations (4.3), we also consider the nonhomo-
geneous equations (4.2). It is easy to verify the following two results.

Lemma 4.5. If φNH(t) and φH(t) are solutions of (4.2) and (4.3) respectively,
then φNH(t) + φH(t) is a solution of (4.2).

Lemma 4.6. If φNH1 (t) and φNH2 (t) are two solutions of (4.2), then φNH1 (t) −
φNH2 (t) is a solution of (4.3).

Next result describes the structure of the general solution of (4.2).

Theorem 4.10. Suppose that M(t) be a fundamental solution matrix of (4.3) and
φNH0 (t) be a solution of (4.2). Then any solution of (4.2) can be expressed by

φNH(t) = M(t)q + φNH0 (t), (4.9)

where q = (q1, q2, · · ·, qn)> is a constant quaternion vector.

Proof. For any solution φNH(t) of (4.2), we know that φNH(t) − φNH0 (t) is a
solution of (4.3) by Lemma 4.6. From Theorem 4.9, it follows that there exists
q ∈ Hn such that φNH(t)− φNH0 (t) = M(t)q. Then we have equality (4.9).

Theorem 4.10 indicates that if we know a fundamental solution matrix of (4.3)
and a particular solution of (4.2), then we actually know all possible solutions of
(4.2). The following result further points out that if a fundamental solution matrix
of (4.3)M(t) is known, then the general solution of (4.2) can be specifically described
by method of variation of constants.

Theorem 4.11. Let A ∈ R(T,Hn×n) and M(t) be a fundamental solution matrix
of (4.3). Suppose that f is rd-continuous. Then the general solution of (4.2) is
given by

φNH(t) = M(t)q +M(t)

∫ t

t0

M−1(σ(τ))f(τ)∆τ, (4.10)

where q = (q1, q2, · · ·, qn)> is a constant quaternion vector.

Proof. Let us look for a solution of (4.2) in a form similar to (4.8). Suppose that

φNH(t) = M(t)q(t). (4.11)

By differentiating both sides of (4.11), we obtain

A(t)M(t)q(t) + f(t) = M∆(t)q(t) +M(σ(t))q∆(t).

Observe that M∆(t) = A(t)M(t). Thus

q∆(t) = M−1(σ(t))f(t).

Therefore

q(t) =

∫ t

t0

M−1(σ(τ))f(τ)∆τ + q,

where q is a constant quaternion vector. Then we obtain an expression of φNH(t)
as follows:

φNH(t) = M(t)q +M(t)

∫ t

t0

M−1(σ(τ))f(τ)∆τ.
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Now it remains to show that (4.10) is exactly a solution of (4.2). We use product
rule to differentiate φNH(t):(
φNH

)∆
(t) = M∆(t)q +M∆(t)

∫ t

t0

M−1(σ(τ))f(τ)∆τ +M(σ(t))M−1(σ(t))f(t)

= A(t)

(
M(t)q +M(t)

∫ t

t0

M−1(σ(τ))f(τ)∆τ

)
+ f(t)

= A(t)φNH(t) + f(t).

The proof is complete.

Corollary 4.3. The solution of initial value problem (4.2) and (4.4) is given by

φNH(t) = ΨA(t, t0)η +

∫ t

t0

ΨA(t, σ(τ))f(τ)∆τ. (4.12)

In particular, let α ∈ H be a quaternion constant, then the solution of y∆(t) =
αy(t) + f(t), y(t0) = 0 is

y(t) =

∫ t

t0

Eα(t, σ(τ))f(τ)∆τ

=Eα(t, 0)

∫ t

t0

Eα(0, σ(τ))f(τ)∆τ

=Eα(t, 0)

∫ t

t0

E−1
α (σ(τ), 0)f(τ)∆τ.

5. Linear QDETS with constant coefficients

Let A ∈ R(T,Hn×n) be a constant quaternion matrix and suppose that f ∈ Hn×1⊗
T is rd-continuous. In this section, we consider the following quaternion-valued
linear equations

φ∆(t)=Aφ(t)+f(t) (5.1)

and its corresponding homogeneous equations

φ∆(t)=Aφ(t). (5.2)

Theorem 5.1. If λ is a right eigenvalue of A and η is an eigenvector corresponding
to λ. Then φ(t) = ηEλ(t, 0) is a solution of (5.2).

Proof. Suppose that A is regressive, then λ ∈ R(T,H) by Theorem 4.1. Thus
Eλ(t, 0) is well-defined and therefore

φ∆(t) = ηλEλ(t, 0) = AηEλ(t, 0) = Aφ(t)

for t ∈ Tκ. The proof is complete.

Theorem 5.2. If A has n right linearly independent eigenvectors η1,η2, ···,ηn cor-
responding to right eigenvalues λ1, λ2, · · ·, λn (no matter whether they are similar).
Then

M(t) = (η1Eλ1
(t, 0),η2Eλ2

(t, 0), · · ·,ηnEλn(t, 0))

is a fundamental solution matrix of (5.2). In particular, if A has n distinct standard
eigenvalues, then λ1, λ2, · · ·, λn can be chosen to be the standard eigenvalues of A.
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Proof. By Theorem 5.1, we see that η1Eλ1
(t, 0),η2Eλ2

(t, 0), · · ·,ηnEλn(t, 0) are
solutions of (5.2). It remains to show that they are right linearly independent. Let
W (t) be the Wronskian of M(t). Since η1,η2, · · ·,ηn are right linearly independent,
then

W (0) = d̂etM(0) = d̂et(η1,η2, · · ·,ηn) 6= 0.

Thus M(t) is a fundamental solution matrix of (5.2) by Theorem 4.2. If A has
n distinct standard eigenvalues λ1, λ2, · · ·, λn, then they are pairwise non-similar.
By Theorem 2.1, we know that their corresponding eigenvectors are right linearly
independent. This completes the proof.

Example 5.1. Find a fundamental solution matrix of

φ∆(t) = Aφ(t) =

i 1

0 1 + i

φ(t) (5.3)

for the special time scales T = Z.

By Theorem 2.1, we know that A has two distinct standard eigenvalues λ1 =
i, λ2 = 1 + i. Their corresponding eigenvectors are η1 = (1, 0)>,η2 = (1, 1)>

respectively. By Example 3.3, we have Eλ1
(t, 0) = (1 + i)t and Eλ2

(t, 0) = (2 + i)t.
Therefore (1 + i)t (2 + i)t

0 (2 + i)t


is a fundamental solution matrix of (5.3).

Example 5.2. Find a fundamental solution matrix of

φ∆(t) = Aφ(t) =

i j
0 i

φ(t) (5.4)

for the special time scales T = Z.

By Theorem 2.1, we know that A has a repeated standard eigenvalue λ = i. Al-
though A only has one standard eigenvalue, there are two right linearly independent
eigenvectors η1 = (1, 0)>,η2 = (k

2 , 1)> corresponding to λ = i. Therefore(1 + i)t k(1+i)t

2

0 (1 + i)t


is a fundamental solution matrix of (5.4).

From Example 7.4 in [42], we know that not every n × n constant quaternion
matrix has n right linearly independent eigenvectors. In this case, Theorem 5.2 is of
no use any more. The Putzer’s algorithm for the classical case in [10] is generalized
to quaternion dynamic equations on time scales. Since Putzer’s algorithm avoids
the computing of eigenvectors. So it is particularly useful for quaternion matrices
that do not have n right linearly independent eigenvectors.
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Theorem 5.3. Let A ∈ R(T,Hn×n) be a constant quaternion matrix. If there
exists quaternion constants α1, α2, · · ·, αm ∈ R(T,H) such that Pm = 0, where
P0, P1, P2, · · ·, Pm are recursively defined by P0 = In and

Pk =APk−1 − Pk−1αk

=Ak +

k∑
j=1

(−1)jAk−j
∑

1≤i1<i2···<ij≤k

αi1αi2 · · · αij

for 1 ≤ k ≤ m. Then

ΨA(t, t0) =

m−1∑
k=0

Pkϕk+1(t), (5.5)

where ϕ(t) := (ϕ1(t), ϕ1(t), · · ·, ϕm(t))> is the solution of the following initial value
problem

ϕ∆(t) =



α1 0 0 . . . 0

1 α2 0
. . .

...

0 1 α3
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 1 αm


ϕ(t), ϕ(t0) =



1

0

0
...

0


. (5.6)

Proof. From statement 6 of Theorem 2.1 and Lemma 4.2 we see that the co-
efficient matrix of (5.6) is regressive and therefore (5.6) has a unique solution
ϕ(t) := (ϕ1(t), ϕ1(t), · · ·, ϕm(t))>. Let φ(t) be the right-hand side of (5.5). Then

φ∆(t)−Aφ(t) =

m−1∑
k=0

Pkϕ
∆
k+1(t)−A

m−1∑
k=0

Pkϕk+1(t)

= P0α1ϕ1(t) +

m−1∑
k=1

Pk (ϕk(t) + αk+1ϕk+1(t))−A
m−1∑
k=0

Pkϕk+1(t)

=

m−1∑
k=1

Pkϕk(t)−
m−1∑
k=0

(APk − Pkαk+1)ϕk+1(t)

=

m−1∑
k=1

Pkϕk(t)−
m−1∑
k=0

Pk+1ϕk+1(t)

= −Pmϕm(t) = 0.

The last equality is a consequence of Pm = 0. Since ϕ(t0) = ϕ1(t0)P0 = I. Thus
ϕ(t) is a fundamental solution matrix of (4.3). Therefore

ΨA(t, t0) = ϕ(t)ϕ(t0) =

m−1∑
k=0

Pkϕk+1(t),

which completes the proof.
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Example 5.3. Find the state-transition matrix of the quaternion dynamic equa-
tions

φ∆(t) = Aφ(t) =


i 1 0

0 j 0

0 1 k

φ(t)

for the special time scales T = R and T = Z.
Since χA is not diagonalizable, then A does not have n right linearly independent

eigenvectors belonging to right eigenvalues. So Theorem 5.2 does not apply to this
problem.

Let α1 = i, α2 = −i, α3 = j and P0 = I3. Then we can easily get that

P1 =


0 1 0

0 j − i 0

0 1 k − i

 , P2 =


0 j + i 0

0 0 0

0 j + k 0


and P3 = 0. Now we need to solve IVP

ϕ∆(t) =


i 0 0

1 −i 0

0 1 j

ϕ(t), ϕ(t0) =


1

0

0

 .

If T = R and t0 = 0, then ϕ1(t) = eit and

ϕ∆
2 (t) = −iϕ2(t) + eit, ϕ2(0) = 0.

Then by Corollary 4.3, we have ϕ2(t) = sin t and therefore

ϕ∆
3 (t) = jϕ3(t) + sin t, ϕ3(0) = 0.

Thus

ϕ3(t) =
1

4
e−jt

(
−2je2jtt+ e2jt − 1

)
.

Then we obtain

ΨA(t, 0) =

2∑
k=0

Pkϕk+1(t) =


eit t

2

(
eit − ke−it

)
+ 1+k

2 sin t 0

0 ejt 0

0 t
2

(
ejt + iejt

)
+ 1−i

2 sin t ekt

 . (5.7)

By direct computation, we see that both Ψ∆
A(t, 0) and AΨA(t, 0) are equal to

ieit t
2

(
ieit + je−it

)
+ 1

2

(
eit + ejt

)
0

0 jejt 0

0 t
2

(
jejt + kejt

)
+ 1

2

(
ejt + ekt

)
kekt

 .

That means that (5.7) is exactly the state-transition matrix.
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If T = Z and t0 = 0, then ϕ1(t) = (1 + i)t and

ϕ∆
2 (t) = −iϕ2(t) + (1 + i)t, ϕ2(0) = 0.

Then we have ϕ2(t) = i
2 ((1− i)t − (1 + i)t) and therefore

ϕ∆
3 (t) = jϕ3(t) +

1

2
i
(
(1− i)t − (1 + i)t

)
, ϕ3(0) = 0.

Thus

ϕ3(t) =
1

4

(
1− 2−t(1− i− j − k)t

)
(1 + i− j + k)

+
1

4

(
1− 2−t(1 + i− j + k)t

)
(−1 + i+ j + k).

Then we obtain

ΨA(t, 0) =


(1 + i)t i

2γ1 + 2−t(1 + i)γ2 − 1−i+j+k
2 0

0 (1 + i)t + 1−k
2 γ1 0

0 i
2γ1 + 2−t(i+ k)γ2 − 1−i−j+k

2 (1 + i)t + 1+j
2 γ1

 , (5.8)

where γ1 = (1− i)t− (1 + i)t, γ2 = (1 + i− j+k)t−1− (1− i− j−k)t−1. By direct
computation, we see that both Ψ∆

A(t, 0) and AΨA(t, 0) are equal to
i(1 + i)t (1 + i)t − k

2 γ1 + 2−t(i− 1)γ2 − 1+i−j+k
2 0

0 j(1 + i)t + j−i
2 γ1 0

0 (1 + i)t + 1+j−k
2 γ1 + 2−t(j − 1)γ2 + 1−i+j−k

2 k(1 + i)t + k−i
2 γ1

 .

That means that (5.8) is exactly the state-transition matrix.

Example 5.4. Find the state-transition matrix of the quaternion dynamic equa-
tions

φ∆(t) = Aφ(t) =


i j j

k 1 k

0 0 1

φ(t)

for the special time scales T = R and T = Z.
Let α1 = 1, α2 = 0, α3 = 1 + i, α4 = 1− i and P0 = I3. Then we can easily get

that

P1 =


i− 1 j j

k 0 k

0 0 0

 , P2 =


−1 k i+ k

j −i k − i

0 0 0

 , P3 =


0 −2j −2j

0 −2 −2

0 0 0


and P4 = 0. Now we need to solve IVP

ϕ∆(t) =


1 0 0 0

1 0 0 0

0 1 1 + i 0

0 0 1 1− i

ϕ(t), ϕ(t0) =


1

0

0

0

 .
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If T = R and t0 = 0, then ϕ1(t) = et, ϕ2(t) = et − 1 and

ϕ∆
3 (t) = (1 + i)ϕ3(t) + et − 1, ϕ3(0) = 0.

Then we have ϕ3(t) =
(
− 1

2 −
i
2

) (
−(1 + i)et + e(1+i)t + i

)
and therefore

ϕ∆
4 (t) = (1− i)ϕ4(t) +

(
−1

2
− i

2

)(
−(1 + i)et + e(1+i)t + i

)
, ϕ4(0) = 0.

Thus

ϕ4(t) = −1 + i

4
e(1−i)t + et − 1− i

4
e(1+i)t − 1

2
.

Using the Putzer’s algorithm (5.5), we can obtain

ΨA(t, 0) =


1−i

2 + 1+i
2 γ1

k−j
2 + γ2 jγ3 + γ4 − et

j−k
2 + k−j

2 γ1
1−i

2 − jγ2 iγ3 − jγ4 − (1− j − k)et

0 0 et

 , (5.9)

where γ1 = e(1+i)t, γ2 = j−k
2 e(1−i)t, γ3 = k−1−i−j

2 , γ4 = e(1+i)t 1−i+j−k
2 . The

result is consistent with the result of Example 6.3 in [27].
If T = Z and t0 = 0, then ϕ1(t) = 2t, ϕ2(t) = 2t − 1 and

ϕ∆
3 (t) = (1 + i)ϕ3(t) + 2t − 1, ϕ3(0) = 0.

Then we have

ϕ3(t) =(2 + i)t
∫ t

0

(2 + i)−(τ+1)(2τ − 1)∆τ

=(2 + i)t
t−1∑
τ=0

(2 + i)−(τ+1)(2τ − 1)

=− 1 + i

2

(
i− (1 + i)2t + (2 + i)t

)
,

and therefore

ϕ∆
4 (t) = (1− i)ϕ4(t)− 1 + i

2

(
i− (1 + i)2t + (2 + i)t

)
, ϕ4(0) = 0.

Thus

ϕ4(t) =(2− i)t
∫ t

0

(2− i)−τ−1ϕ3(τ)∆τ

=
1

4

(
22+t − (1 + i)(2− i)t + (i− 1)(2 + i)t − 2

)
.

Then we obtain

ΨA(t, 0) =


1−i

2 + 1+i
2 γ1

k−j
2 + γ2 jγ3 + γ4 − 2t

j−k
2 + k−j

2 γ1
1−i

2 − jγ2 iγ3 − jγ4 − (1− j − k)2t

0 0 2t

 , (5.10)
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where γ1 = (2 + i)t, γ2 = j−k
2 (2− i)t, γ3 = k−1−i−j

2 , γ4 = (2 + i)t 1−i+j−k
2 . By

direct computation, we see that both Ψ∆
A(t, 0) and AΨA(t, 0) are equal to

i(2 + i)t j(2− i)t (1 + i)γ4 − 2t

k(2 + i)t (2− i)t (k − j)γ4 − (1− j − k)2t

0 0 2t

 .

That means that (5.10) is exactly the state-transition matrix.

Theorem 5.3 is a generalization of Theorem 5.35 in [10]. In the classical case,
by Cayley-Hamilton theorem,

n∏
j=1

(A− λjI) = 0,

where A ∈ Cn×n and λj , (1 ≤ j ≤ n) are eigenvalues of A. So α1, α2, · · ·, αm can
be chosen as the eigenvalues of A ∈ Cn×n. In the quaternion case, however, the
selection of αk, (1 ≤ k ≤ m) is more difficult. What should be clear to us is that
the less m the less calculation.

We say that h(z) = zm + zm−1β1 + · · · + βm is an annihilating polynomial of
quaternion matrix A ∈ Hn×n if

h(A) = Am +Am−1β1 + · · ·+ Inβm = 0,

where β1, β2, · · ·, βm ∈ H. To authors’ best knowledge, there are (at least) two
annihilating polynomials for every A ∈ Hn×n. The first one which was presented
by Zhang [42] is chχA(z), the characteristic polynomial of χA. In this case, m = 2n
and α1, α2, · · ·, αm are exactly the standard eigenvalues of A. The other one is
called minimal polynomial which was given by Rodman [33]. The coefficients of
minimal polynomial in [33] are confined to be real. Thus, there may be some other
annihilating polynomials (with quaternion coefficients), which possess less degree
than minimal polynomial. Since m-degree minimal polynomial possesses real co-
efficients, then it has m complex roots and the Vieta’s formula holds. Therefore,
α1, α2, · · ·, αm can be chosen as the complex roots of minimal polynomial. Un-
fortunately, there is no explicit expression for minimal polynomial of quaternion
matrices until now. On the other hand, even when we know an annihilating poly-
nomial h(z) = zm + zm−1β1 + · · ·+ βm (with quaternion coefficients) of A, we still
can not find α1, α2, · · ·, αm. In fact, we need to find α1, α2, · · ·, αm such that

(−1)k
∑

1≤i1<i2···<ik≤m

αi1αi2 · · · αik = βk (5.11)

for 1 ≤ k ≤ m. Thus, α1, α2, · · ·, αm may not exist. Even if they exist, we can
not conclude that they are roots of h(z) (see Example 5.5). Even if they are roots
of h(z), we still can not find them. This is because that the number of zeros of
quaternion polynomials is indeterminate and the computing of zeros of quaternion
polynomials is complicated. For details of zeros of quaternion polynomials, please
refer to [25,32,34,35].

Example 5.5. Let h(z) = z2 + zβ1 + β2 and α1 = i, α2 = −j. Then α1, α2, β1, β2

satisfy (5.11), but
h(α1) = i2 + i(j − i) + k = 2k 6= 0.
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In practice, α1, α2, · · ·, αm are usually chosen to be the eigenvalues of A ∈ Hn×n
(see Example 5.3 and 5.4). The value of m does not need to be as large as 2n. By
iterative computing, we can always get more and more succinct Pk as k increases.
Although there are some theoretical challenges on selections of α1, α2, · · ·, αm, the
Putzer’s algorithm is still feasible. The theoretical challenges give us something to
focus on and work toward.

The method of variation of constants for one-dimensional case has been used
many times in Example 5.3 and 5.4. We now present an example to illustrate the
feasibility of the method of variation of constants for higher dimensional case.

Example 5.6. Find the solution of the initial value problem

φ∆(t) = Aφ(t) + f(t) =

j 0

0 k

φ(t) +

 i
tj

 , φ(0) =

j
k

 (5.12)

for the special time scale T = Z.
It is easy to get that

ΨA(t, 0) =

(1 + j)t 0

0 (1 + k)t

 .

By Corollary 4.3,

φ(t) =ΨA(t, 0)φ(0) + ΨA(t, 0)

∫ t

0

Ψ−1
A (σ(τ), 0)f(τ)∆τ

=ΨA(t, 0)φ(0) + ΨA(t, 0)

∫ t

0

(1 + j)−τ−1 0

0 (1 + k)−τ−1

 i
tj

∆τ

=ΨA(t, 0)φ(0) + ΨA(t, 0)

 ∑t−1
τ=0(1 + j)−τ−1i∑t−1
τ=0 τ(1 + k)−τ−1j


=ΨA(t, 0)φ(0) +

(1 + j)t 0

0 (1 + k)t

 (1− (1 + j)−t)k

(1 + k)−t (1− (1 + k)t + tk) j


=

j(1 + j)t

k(1 + k)t

+

 ((1 + j)t − 1)k

(1− (1 + k)t + tk) j


=

 j(1 + j)t + ((1 + j)t − 1)k

k(1 + k)t + (1− (1 + k)t + tk) j

 .

Note that

φ∆
1 (t) =φ1(t+ 1)− φ1(t)

=j(1 + j)t+1 +
(
(1 + j)t+1 − 1

)
k − j(1 + j)t +

(
(1 + j)t − 1

)
k

=(1 + j)t(1− i)
=jφ1(t) + i
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and

φ∆
2 (t) =φ2(t+ 1)− φ2(t)

=k(1+k)t+1+
(
1−(1 + k)t+1+(t+ 1)k

)
j−k(1 + k)t+

(
1− (1 + k)t + tk

)
j

=(1 + k)t(i− 1)− i
=kφ2(t) + tj.

Thus φ(t) is exactly the solution of (5.12).

6. Conclusion

In this paper, we establish the basic theory of linear quaternion dynamic equa-
tions on time scales (QDETS). It not only generalizes the theory of quaternion
differential equations (QDEs) but also extends the theory of dynamic equations
on time scales (DETS). Employing the newly defined Wronskian determinant, the
Liouville’s formula for QDETS is derived, thereby giving the structure of general
solutions of QDETS. We present the Putzer’s algorithm to compute fundamental
solution matrix for homogeneous QDETS. The Putzer’s algorithm is applicable to
all homogeneous QDETS with constant coefficient matrices. It is particularly use-
ful for quaternion coefficient matrices which are not diagonalizable. Furthermore,
the variation of constants formula of solving the nonhomogeneous QDETS is also
derived. Importantly, examples are given in each sections to illustrate our results.
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[35] R. Serôdio and L.-S. Siu, Zeros of quaternion polynomials, Appl. Math. Lett.,
2001, 14(2), 237–239.

[36] J. Sola, Quaternion kinematics for the error-state KF, Laboratoire d’Analyse
et d’Architecture des Systemes-Centre national de la recherche scientifique
(LAAS-CNRS), Toulouse, France, Tech. Rep, 2012.

[37] A. Sudbery, Quaternionic analysis, in Mathematical Proceedings of the Cam-
bridge Philosophical Society, 85, Cambridge Univ Press, 1979, 199–225.

[38] Q.-W. Wang, The general solution to a system of real quaternion matrix equa-
tions, Comput. Math. Appl., 2005, 49(5), 665–675.
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