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SWITCHING SYNCHRONIZED CHAOTIC
SYSTEMS APPLIED TO SECURE

COMMUNICATION

Hildebrando M. Rodrigues1,†, Jianhong Wu2

and Marcio Gameiro3

Abstract The purpose of this paper is to study the behavior of the solutions
of two synchronized chaotic systems when the solutions switch from the first
to the second system and vice-versa. The initial condition is chosen in the
first system and the solutions travels for time t ∈ [0, h], where h > 0. The
value of the solution at time h is then chosen as the initial condition for the
solution of the second system and this solution travels for time t ∈ [h, 2h].
The value of the solution at time 2h is then chosen as the initial value for the
solution of the first system and so on. The first system is composed of two
subsystems, Master and Slave that are synchronized. We present applications
using the Lorenz, Chua and Chen systems. Some simulations using Matlab
are presented.
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1. Introduction

The subject of synchronization has been treated in several previous works. Chua,
Matsumoto and Komuro [8] discovered an electronic circuit whose solutions have
chaotic behaviors. In Afraimovich et all [1], the authors presented some techniques
to prove synchronization of two coupled systems. In Afraimovich and Rodrigues [2]
and in Rodrigues [23], using Liapunov like functions the authors presented some
mathematical methods to prove synchronization of two chaotic systems. In Ro-
drigues, Alberto and Bretas [24, 26] synchronization of chaotic systems and ap-
plications to power systems ware discussed and an invariant principle for systems
that depend on parameters was proved, extending the classical result proved by
LaSalle [18]. In [4], Carvalho, Dlotko and Rodrigues presented a version for infinite
dimensional systems with applications to partial differential equations. Labouriau
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and Rodrigues [15] studied synchronization of coupled equations of Hodgkin-Huxley
type. Gameiro and Rodrigues [12] show how to use synchronization of chaotic sys-
tems for communication systems to codify and transmit signals. For discrete systems
some new mathematical methods were presented in Rodrigues, Wu and Gabriel [27]
and Rodrigues, Wu and Gameiro [28]. Some applications to communication systems
were given in Rodrigues, Wu and Gameiro [28]. Switching systems and synchro-
nization in switching systems have attracted considerable attention in recent years
(see e.g., [5–7,9, 11, 14,19–21,29]).

In this paper we introduce two new features. One feature allows us to send
one part of the signal through one system and another part through the switched
system. Another feature is to send two different signals using two different variables
of these systems, like if we were using two different chanels. This is illustrated in
Example 4.3 using Chen’s system.

The outline of this paper is as follows: we assume that using Theorem 2.1,
proved in [27], one can prove the global dissipativeness of two of our examples,
namely, Chua’s System and Lorenz System, as it is presented in [12]. For the
global dissipativeness of Chen’s system we rely in Barboza and Chen [3]. To prove
synchronization in our three examples we use Theorem 2.2. The Liapunov functions
that we use for this purpose are discussed when we consider each case. Theorem
3.1 is the main theoretical result of this paper. It shows that swiching between
two different, but similar systems preserves the transmitted signal. In some sense
this is a stability result. To prove stability of swiching systems many authors rely
on the fact that a unique Liapunov function can be used. In our case we use
different but similar, Liapunov functions which are Liapunov functions depending
on parameters. In each case, they use different values of the parameters. However
we prove that both have the same exponential decay. Essentially in our approach
we use nonautonomous discontinuous systems and discontinuous Liapunov functions
with the same estimate for exponential decay. In each example we obtain a Liapunov
function with the corresponding estimate to obtain synchronization.

Finally we present simulation using Matlab of all these examples. These simu-
lations are coherent with our mathematical results.

2. Dissipativeness and Synchronization

In this section, we state and prove some results, in a convenient form, that will be
very useful on the applications of the next section. For details, see Rodrigues, Wu
and Gameiro [28].

Let E be a Banach space and Λ ⊂ E. Let f ∈ C(R × Rn × Λ,Rn) satisfy the
following Lipschitz condition with respect to x ∈ Rn: for each λ ∈ Λ and each
bounded set B ⊂ R× Rn there exists a constant L ≥ 0 such that

∥f(t, x1, λ)− f(t, x2, λ)∥ ≤ L∥x1 − x2∥, ∀(t, x1), (t, x2) ∈ B. (2.1)

Consider the equation

ẋ = f(t, x, λ). (2.2)

The next theorem gives conditions under which one can find a bounded set
containing the attractor of (2.2) for all values of the parameter λ ∈ Λ. See Figure 1
for an illustration.
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Figure 1. Figures illustrating the bounds in Theorem 2.1.

Theorem 2.1. Let V ∈ C1(R × Rn × Λ,R). Suppose there are a, b, c ∈ C(Rn,R)
such that a(x) → +∞ as ∥x∥ → +∞ and

a(x) ≤ V (t, x, λ) ≤ b(x), −V̇ (t, x, λ) ≥ c(x)

for every (t, x, λ) ∈ R× Rn × Λ, where

V̇ (t, x, λ) :=
∂

∂t
V (t, x, λ) +

[
∂

∂x
V (t, x, λ)

]
f(t, x, λ).

We also assume that there exists ρ > 0, such that the set Cρ := {x ∈ Rn : c(x) ≤
ρ} is nonempty and bounded. Let r > 0 be sufficiently large in such a way that
r > supx∈Cρ

b(x). Let Ar := {x ∈ Rn : a(x) ≤ r}. Then the following holds for
Equation (2.2):

(i) Given (t0, x0) ∈ R × Rn and λ ∈ Λ, the solution x(t, t0, x0, λ) of (2.2) is
defined in [t0,+∞) and there exists t1 ≥ t0 such that x(t, t0, x0, λ) ∈ Ar for
every t ≥ t1.

(ii) If x(t) is a solution of (2.2) defined for every t ∈ R, with supt∈R ∥x(t)∥ < +∞,
then x(t) ∈ Ar for every t ∈ R.

In the next theorem, we give sufficient conditions to obtain synchronization of
two systems of ordinary differential equations.

Let f, g ∈ C(R × Rn × Rn × Λ,Rn) satisfy the Lipschitz condition on bounded
sets (2.1), with respect to (x, y) ∈ Rn × Rn. For λ1, λ2 ∈ Λ, consider the system ẋ = f(t, x, y, λ1),

ẏ = g(t, x, y, λ2).
(2.3)

Theorem 2.2. We assume the following hypotheses:

(i) There exists a bounded set B ⊂ Rn × Rn such that, for each (t0, x0, y0) ∈
R×Rn×Rn and λ1, λ2 ∈ Λ, the solution x(t) := x(t, t0, x0, y0, λ1, λ2), y(t) :=
y(t, t0, x0, y0, λ1, λ2) of (2.3) is defined for t ∈ [t0,+∞) and there exists t1 ≥ t0
such that (

x(t), y(t)
)
∈ B, for every t ≥ t1.
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(ii) There exist V ∈ C1(R× Rn × Λ,R) and positive constants k1, ρ, α1, α2 and
β ≥ 1, such that

∂

∂t
V (t, y − x, λ)+

⟨
∇V (t, y−x, λ), g(t, x, y, λ)−f(t, x, y, λ)

⟩
≤−ρV (t, y − x, λ),

α1∥y − x∥β ≤ V (t, y − x, λ) ≤ α2∥y − x∥β and
∥∥∇V

(
t, y − x, λ

)∥∥ ≤ k1
(2.4)

for every (x, y) ∈ B, t ∈ R and λ ∈ Λ, where

∇V (t, x, λ) =

(
∂V

∂x1
(t, x, λ), . . . ,

∂V

∂xn
(t, x, λ)

)
,

and ∇V (t, y − x, λ) = ∇V (t, z, λ)
∣∣
z=y−x

.

(iii) There exists a function H1 : R+ → R+, with H1(0) = 0, H1 being continuous
at 0 ∈ R+, such that

∥f(t, x, y, λ2)− f(t, x, y, λ1)∥ ≤ H1(∥λ2 − λ1∥)

for every t ∈ R, (x, y) ∈ B and λ1, λ2 ∈ Λ.

Then we have

∥y(t)− x(t)∥ ≤ M∥y(t1)− x(t1)∥e−α(t−t1) + kH(∥λ2 − λ1∥), ∀t ≥ t1,

where α := ρ/β, k := ( k1

ρα1
)1/β, M := (α2/α1)

1/β and H : R+ → R+ is given by

H(r) :=
(
H1(r)

)1/β
.

3. Switching Systems and Synchronization

Let Λ ⊂ Rm be a set of parameters. Let f, g, F,G : R×Rn×Rn×Λ → Rn. Consider
the two following systems of ordinary differential equationsẋ = f(t, x, y, λ1),

ẏ = g(t, x, y, λ2);
(3.1)

u̇ = F (t, u, v, µ1),

v̇ = G(t, u, v, µ2).
(3.2)

Given h > 0 we consider the following switch systemẋ = fh(t, x, y, λ1),

ẏ = gh(t, x, y, λ2),
(3.3)

where

fh(t, x, y, λ1) =

{
f(t, x, y, λ1), if t ∈ [2kh, (2k + 1)h], k = 0, 1, 2, . . .

F (t, x, y, λ1), if t ∈ [(2k + 1)h, 2kh], k = 0, 1, 2, . . .
(3.4)

and

gh(t, x, y, λ1) =

{
g(t, x, y, λ1), if t ∈ [2kh, (2k + 1)h], k = 0, 1, 2, . . .

G(t, x, y, λ1), if t ∈ [(2k + 1)h, 2kh], k = 0, 1, 2, . . .
(3.5)
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Theorem 3.1. Assume that both system (3.1) and system (3.2) satisfiy the hy-
potheses of Teorem 2.2. Then there exists h > 0 such that the switch system (3.3)
synchronizes.

Proof. Let (x(t), y(t)) be a solution of (3.3). Then for t ∈ [0, h] we have that
(x(t), y(t)) is a solution of (3.1) and, since (3.1) satisfies the hypotheses of Theo-
rem 2.2, we have that

|y(t)− x(t)| ≤ Me−α(t−0)|y(0)− x(0)|

which implies that
|y(h)− x(h)| ≤ Me−αh|y(0)− x(0)|.

Analogously, if t ∈ [h, 2h] we have that (x(t), y(t)) is a solution of (3.2), and we
have that

|y(t)− x(t)| ≤ Me−α(t−h)|y(h)− x(h)| ≤ Me−α(t−h)Me−αh|y(0)− x(0)|

which implies that

|y(2h)− x(2h)| ≤ (Me−αh)2|y(0)− x(0)|.

Continuing this way, for t ∈ [nh, (n+ 1)h] we have that

|y(t)− x(t)| ≤ Me−α(t−nh)(Me−αh)n|y(0)− x(0)|.

Taking h sufficiently large such that Me−αh < 1, given ε > 0 take n such that
M(Me−αh)n|y(0)− x(0)| < ε. For t ∈ [(n+ 1)h, (n+ 2)h], we have

|y(t)− x(t)| ≤ Me−α(t−(n+1)h)(Me−αh)n+1|y(0)− x(0)|

≤ M(Me−αh)nMe−αh|y(0)− x(0)|

≤ M(Me−αh)n|y(0)− x(0)| < ε.

4. Applications

In this section we present some examples to illustrate the results in the paper.
The examples and the simulations in the examples demonstrate the applicability of
the results to known systems of ODEs, hence showing the possibility for practical
applications of these results. The code to perform the simulations are available
at [25].

Example 4.1 (Lorenz System). We start with the classical Lorenz System:
ẋ = −σx+ σy,

ẏ = rx− y − xz,

ż = −bz + xy,

with the following reference values for the parameters: σ = 10, r = 28, b = 8
3 .
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Now we consider the system:

ẋ = −σx+ σy,

ẏ = r (x+m(t))− y − (x+m(t)) z,

ż = −bz + (x+m(t)) y,

u̇ = −σu+ σv,

v̇ = r (x+m(t))− v − (x+m(t))w,

ẇ = −bw + (x+m(t)) v,

(4.1)

where m(t) represents the signal to be codified and transmitted. If we let X =
x− u, Y = y − v, Z = z − w we obtain the following system:

Ẋ = −σX + σY,

Ẏ = −Y − (x+m(t))Z,

Ż = −b Z + (x+m(t))Y.

(4.2)

We have

XẊ = −σX2+σXY, Y Ẏ = −Y 2−(x+m(t))Y Z, ZŻ = −b Z2+(x+m(t))Y Z.

If we consider the following Liapunov Function Φ = 1
2 (X

2 + σY 2 + σZ2) we
have:

Φ̇ = −σX2 + σXY + σ(−Y 2 − (x+m(t))Y Z) + σ(−b Z2 + (x+m(t))Y Z),

− Φ̇ = σX2 − σXY + σY 2 + σbZ2,

− Φ̇− ρΦ = (σ − ρ

2
)X2 − σXY + σ(1− ρ

2
)Y 2 + σ(b− ρ

2
)Z2.

The above quadratic form will be definitely positive if ρ < 2b and∣∣∣∣∣∣σ − ρ
2

σ
2

σ
2 σ(1− ρ

2 )

∣∣∣∣∣∣ = σ(σ − ρ

2
)(1− ρ

2
)− σ2

4
= σ

[
σ − (1 + σ)ρ

2
+

ρ2

4

]
− σ2

4

= σ

[
σ − (1 + σ)ρ

2
+

ρ2

4
− σ

4

]
= σ

[
3σ

4
− (1 + σ)ρ

2
+

ρ2

4

]
=

σ

4

[
3σ − 2(1 + σ)ρ+ ρ2

]
> 0.

Now we will analyze the roots of:

ρ2 − 2(1 + σ)ρ+ 3σ = 0.

If we let ∆ = 4(1 + σ)2 − 12σ we obtain

∆ = 4(σ2 + 2σ + 1)− 12σ = 4(σ2 + 2σ + 1− 3σ) = 4(σ2 − σ + 1) > 0.

Both roots are positive and they are given by:

ρ1 =
2(1 + σ)−

√
4(σ2 − σ + 1)

2
= (1 + σ)−

√
(σ2 − σ + 1),

ρ2 = (1 + σ) +
√

(σ2 − σ + 1).
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Therefore, we should choose:

0 < ρ ≤ inf{2b, ρ1}.

This implies that

Φ̇ ≤ −ρ Φ.

Consider the systems of ODEs

ẋ = −σ1x+ σ1y,

ẏ = r1 (x+m(t))− y − (x+m(t)) z,

ż = −b1z + (x+m(t)) y,

u̇ = −σ1u+ σ1v,

v̇ = r1 (x+m(t))− v − (x+m(t))w,

ẇ = −b1w + (x+m(t)) v;

(4.3)



Ẋ = −σ2X + σ2Y,

Ẏ = r2 (X +m(t))− Y − (X +m(t))Z,

Ż = −b2Z + (X +m(t))Y,

U̇ = −σ2U + σ2V,

V̇ = r2 (X +m(t))− V − (X +m(t))W,

Ẇ = −b2W + (X +m(t))V.

(4.4)

The first system is used to transmit the message m(t) in the interval [0, h] the
second to transmit the message m(t) in the interval [h, 2h], then the first is used to
transmit in the interval [2h, 3h], and so on.

For the simulations presented in Figure 2 we used the following parameter values:
σ1 = 10, r1 = 28, b1 = 8/3, σ2 = 13, r2 = 32, b2 = 5, h = 10, and m(t) = 3 cos(5t).

Example 4.2 (Chua Like System.). We first consider the Chua Like System:
ẋ = −αx+ αy − α h (x, a, b) ,

ẏ = −x− y + z,

ż = −βy − σz,

(4.5)

where h (x, a, b) = bx+ (a−b)
2 (|x+ 1| − |x− 1|) . a > b and b < 1. Here we use the

following reference values α = 7, β = 100, a = 8
7 , σ = 1

2 , b = 5
7 .

Now we consider the coupled master-slave system:

ẋ = −αx+ αy − α h (x+m(t), a, b) ,

ẏ = − (x+m(t))− y + z,

ż = −βy − σz,

u̇ = −αu+ αv − α h (x+m(t), a, b) ,

v̇ = − (x+m(t))− v + w,

ẇ = −βv − σw.

(4.6)
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Figure 2. Simulations for the Lorenz system. In (a) we plot the solutions (x(t), y(t)) and (u(t), v(t));
in (b) we show |x(t)− u(t)|+ |y(t)− v(t)|+ |z(t)−w(t)|; in (c) we plot the original message m(t) and
the coded message x(t) + m(t); and in (d) we plot the original message m(t) and the decoded message
x(t) + m(t) − u(t).

If we let X = x− u, Y = y− v, Z = z −w and take the difference between the
above two systems we obtain the system:

Ẋ = −αX + αY,

Ẏ = −Y + Z,

Ż = −βY − σZ.

(4.7)

We have:

XẊ = −αX2 + αXY, Y Ẏ = −Y 2 + Y Z, ZŻ = −βY Z − σZ2.

We consider the following Liapunov Function:

Φ =
1

2
(X2 + βY 2 + Z2),

Φ̇ = XẊ + βY Ẏ + ZŻ = −αX2 + αXY − βY 2 + βY Z +−βY Z − σZ2,

− Φ̇ = αX2 − αXY + βY 2 + σZ2,

− Φ̇− ρΦ = (α− ρ

2
)X2 − αXY + β(1− ρ

2
)Y 2 + (σ − ρ

2
)Z2.
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The above quadratic function will be definitely positive if we impose that ρ <
inf{2σ, 2α} and∣∣∣∣∣∣α− ρ

2 −α
2

−α
2 β(1− ρ

2 )

∣∣∣∣∣∣ = β(α− ρ

2
)(1− ρ

2
)− α2

4
= β

[
α− (1 + α)ρ

2
+

ρ2

4

]
− α2

4
> 0,

4

[
α− (1 + α)ρ

2
+

ρ2

4
− α2

4β

]
= ρ2 − 2(1 + α)ρ+ 4α− α2

β
> 0.

Let

∆ = 4(1+α)2 − 4(4α− α2

β
) = 4(α2 +2α+1)− 16α+

4α2

β
= 4(α− 1)2 +

4α2

β
> 0.

The roots of the equation ρ2 − 2(1 + α)ρ + 4α − α2

β = 0 are both positive and
are given by:

ρ1 = (1 + α)−

√
(α− 1)2 +

α2

β
, ρ2 = (1 + α) +

√
(α− 1)2 +

α2

β
.

Therefore we could take ρ < inf{2α, 2σ, ρ1}. This implies that

Φ̇ ≤ −ρ Φ.

Consider the systems of ODEs:

ẋ = −α1x+ α1y − α1h (x+m(t), a1, b1) ,

ẏ = − (x+m(t))− y + z,

ż = −β1y − σ1z,

u̇ = −α1u+ α1v − α1h (x+m(t), a1, b1) ,

v̇ = − (x+m(t))− v + w,

ẇ = −β1v − σ1w;

(4.8)



Ẋ = −α2X + α2Y − α2h (X +m(t), a2, b2) ,

Ẏ = − (X +m(t))− Y + Z,

Ż = −β2Y − σ2Z,

U̇ = −α2U + α2V − α2h (X +m(t), a2, b2) ,

V̇ = − (X +m(t))− V +W,

Ẇ = −β2V − σ2W,

(4.9)

where

h(x, a, b) = bx+
(a− b)

2
(|x+ 1| − |x− 1|) .

As in the previous example these systems will play the role of our switching
systems. In Figure 3 we show some simulations for these systems, where the fol-
lowing parameter values are used: α1 = 7, β1 = 100, µ1 = 1/2, a1 = 8/7, b1 = 5/7,
α2 = 12, β2 = 80, µ2 = 1/3, a2 = 6/7, b2 = 4/7, h = 10, and m(t) = 3 cos(5t).
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Figure 3. Simulations for Chua’s system. In (a) we plot the solutions (x(t), y(t)) and (u(t), v(t)); in
(b) we show |x(t) − u(t)| + |y(t) − v(t)| + |z(t) − w(t)|; in (c) we plot the original message m(t) and
the coded message x(t) + m(t); and in (d) we plot the original message m(t) and the decoded message
x(t) + m(t) − u(t).

Example 4.3 (Chen’s System). Consider the Chen’s System:
ẋ = −ax+ ay,

ẏ = −ax+ cx+ cy − xz,

ż = −bz + xy,

(4.10)

with the reference values a = 35, b = 3, c = 28.

Consider the coupled master-slave system of ODEs

ẋ = −ax+ ay,

ẏ = (c− a)x+ (c− a)y − (x+m(t)) z + a(y + ℓ(t)),

ż = −bz + (x+m(t)) y,

u̇ = −au+ av,

v̇ = (c− a)u+ (c− a)v − (x+m(t))w + a(y + ℓ(t)),

ẇ = −bw + (x+m(t)) v.

(4.11)

Consider the difference between the two above systems considering X = x −
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u, Y = y − v, Z = z − w:
Ẋ = −aX + aY,

ẏ = (c− a)X + (c− a)Y − (x+m(t))Z,

ż = −bZ + (x+m(t))Y.

(4.12)

We take the Liapunov function:

Φ =
1

2

[
a− c

a
X2 + Y 2 + Z2

]
,

XẊ = aY X − aX2,

Y Ẏ = (c− a)XY − (x+m(t))ZY + (c− a)Y 2,

ZŻ = −bZ2 + (x+m(t))Y Z.

Therefore,

Φ̇ =
a− c

a
[aY X − aX2] + c− a)XY − (x+m(t))ZY + (c− a)Y 2 − bZ2

+ (x+m(t))Y Z

= −(a− c)X2 − (a− c)Y 2 − bZ2,

−Φ̇ = (a− c)X2 + (a− c)Y 2 + bZ2,

−Φ̇− ρΦ = (a− c)X2 + (a− c)Y 2 + bZ2 − ρ

2

[
a− c

a
X2 + Y 2 + Z2

]
= [(a− c)− ρ

2

(a− c)

a
]X2 + [(a− c)− ρ

2
]Y 2 + (b− ρ

2
)Z2.

This implies that we should chose ρ > 0 satisfying:

ρ < 2a, ρ < 2(a− c), ρ < 2b.

Due to the initial established parameters we choose ρ < 2b.
This implies that

Φ̇ ≤ −ρ Φ.

The two systems below will play the role of our switching systems.

ẋ = −a1x+ a1y,

ẏ = −a1x+ c1 (x+m(t)) + (c1 − a1)y − (x+m(t)) z + a1(y + ℓ(t)),

ż = −b1z + (x+m(t)) y,

u̇ = −a1u+ a1v,

v̇ = −a1u+ c1 (x+m(t)) + (c1 − a1)v − (x+m(t))w + a1(y + ℓ(t)),

ẇ = −b1w + (x+m(t)) v;

(4.13)



Ẋ = −a2X + a2Y,

Ẏ = −a2X + c2 (x+m(t)) + (c2 − a2)Y − (x+m(t))Z + a2(y + ℓ(t)),

Ż = −b2Z + (x+m(t))Y,

U̇ = −a2U + a2V,

V̇ = −a2U + c2 (x+m(t)) + (c2 − a2)V − (x+m(t))W + a2(y + ℓ(t)),

Ẇ = −b2W + (x+m(t))V.

(4.14)
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We presente some simulations for these systems in Figure 4. In these simulations
we used the following parameter values: a1 = 35, b1 = 3, c1 = 28, a2 = 37, b2 = 5,
c2 = 23, h = 10, m(t) = 3 cos(5t), and ℓ(t) = 2 sin(3t).
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Figure 4. Simulations for Chen’s system. In (a) we plot the solutions (x(t), y(t)) and (u(t), v(t)); in
(b) we show |x(t) − u(t)| + |y(t) − v(t)| + |z(t) − w(t)|; in (c) we plot the original message m(t) and
the coded message x(t) + m(t); and in (d) we plot the original message m(t) and the decoded message
x(t) + m(t) − u(t); in (e) we plot the original message ℓ(t) and the coded message y(t) + ℓ(t); and in
(f) we plot the original message ℓ(t) and the decoded message y(t) + ℓ(t) − v(t).
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